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Abstract.We introduce an algorithm to solve an inverse problem for a non-linear system of partial
differential equations, which can be used to estimate oil water displacement functions. The direct model
is non-linear because the sought for parameter is a function of the solution of the system of equations.
Traditionally, the estimation of functions requires the election of a fitting parametric model and thus the
optimum curve depends on that election. We develop an algorithm that does not require a parametric
model and thus provides a more objective fit. The estimation procedure is carried out linearizing the
solution of the direct model with respect to the parameter and then computing the least squares solution
in functional spaces. We present the partial differential equations that are used to compute the Fréchet
derivative. The resulting method has shown convergence in numerical tests, and because of its general
theoretical formulation has the potential to be extended to solve more complex problems. The main
contribution of this work is the formulation and application of the algorithm described above to estimate
non-linear parameters in functional spaces. This algorithm obtains the sought-after parameters without
the imposition of a priori parametric models. Though the use of such models is currently the common
practice among field engineers, different models yield different results and there is no objective criterion
to choose among them.
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1 INTRODUCTION

The purpose of this paper is to estimate relative permeabilities curves from measurements
taken during a displacement test of oil by water at the laboratory. These curves appear as coef-
ficients of the equations that rule the two phase flow through a porous media. Fluid saturations
and pressures are the solution of the differential problem. As the oil-water relative permeability
curves are functions of saturations, the direct model is a non-linear partial differential system.

The traditional approach to estimate a function (e.g. relative permeability) requires a para-
metric model depending on constant values. These values are determined minimizing in finite
dimensional spaces (Chardaire-Riviere et al., 1992; Savioli and Bidner, 1994, 1995). This
approach has the drawback of imposing a subjective parametric model. Some authors have pro-
posed alternatives to deal with the estimation problem without imposing a parametric model,
by using discretized direct models (Kruger et al., 2003; Valestrand et al., 2003).

This work proposes a new alternative to the traditional approach, which is novel in the field of
non-linear equations. Up to now, it has been successfully applied to problems where the direct
model is based on a linear partial differential equation (Fernández-Berdaguer, 1998; Fernández-
Berdaguer et al., 1995, 1996; Tarantola, 1987).

2 THE MATHEMATICAL DIRECT MODEL

Accurate numerical simulation is a crucial task to predict the flow pattern on a reservoir. Es-
sential to the simulation are the values of the parameters appearing in the model. Mathematical
flow models consist on a strongly coupled system of non-linear equations.

In this section we present a model for two-phase, incompresible immiscible flow (H. J.
Schroll and A. Tveito, 1997). We will ignore the capillary pressure and assume that pressures
in the oil and water phases are equal.

Since we are assuming that the flow and the rock are incompressible the densities ρi, i =
o, w and the porosity Φ are independent of the pressure. We denote by K the absolute per-
meability, kri denotes the the relative permeability of phase i and µi the viscosity of phase i.
The absolute permeability, the porosity and the viscosities are considered constant parameters,
wehereas the relative permeabilities for oil and water are functions of the oil saturation only.
We define λi as

λi = KA
kri

µi

,

where A denotes the cross-sectional area for the flow.
The total mobility is λT = λw + λo, and the fractional flow function of phase o is f =

λo

λT

,

thus the equations that rule the two phase flow are

Φ
∂S(x, t)

∂t
+ VT (x, t)

∂f(S(x, t))

∂x
= 0,

∂

∂x
(λT

(
S(x, t)

)∂P (x, t)

∂x
) + AQT = 0,

AVT (x, t) + λT

(
S(x, t)

)∂P (x, t)

∂x
= 0, x ∈ (0, L), t ∈ (0, T ].

(1)

Here, QT is the source term, total volumetric flow rate per unit volume and VT is the total Darcy
velocity. Notice that VT = VT (λT , P ).

The first equation is the saturation equation, the second the pressure equation.
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In the case of water injection the initial conditions is

S(x, 0) =

{
Sor, x = 0

1− Swc, 0 < x ≤ 1
(2)

and boundary conditions for known injection flow rate are

Qwi(t) = KA
krw

(
S(0, t)

)
µw

∂P

∂x
(0, t), (3)

P (1, t) = p(t). (4)

2.1 A simpler case

In this paper we will handle the case of smooth solutions of the problem. In order to do that
we must assume that the initial condition for the saturation is a continuous approximation g(x)
to the physically correct S(x, 0) (2).

Also we assume constant inyection water flow rate, thus the velocity VT is constant. Source
terms are nil in the equations because they are considered in the inlet and outlet boundary
conditions.

Then the direct model that we consider is the initial-boundary value problem (5)

Φ
∂S(x, t)

∂t
+H(S(x, t))

∂S(x, t)

∂x
= 0,

∂

∂x

(
λT (x, t)

∂P (x, t)

∂x

)
= 0, x ∈ (0, L), t ∈ (0, T ],

(5)

where H(S) =
Qwi

AL
f ′(S).

The initial condition is
S(x, 0) = g(x), x ∈ [0, L], (6)

and inlet boundary condition is constant injection water rate,

Qwi = λT
∂P

∂x

∣∣∣
x=0

. (7)

At outlet (x = 1), the boundary condition is imposed by the atmospheric pressure,

P (1, t) = pa, t ∈ (0, T ]. (8)

3 THE ESTIMATION PROBLEM

The measurements, which are denoted by Sobs(t) and P obs(t), are the values of the saturation
and pressure at a recording point xrec, for times in the interval [0, T ]. The problem is to find
(λ∗T , H

∗) such that (S, P )(λ∗T , H
∗)(xrec, t) matches the values of (Sobs, P obs)(t), for t ∈ [0, T ].

Specifically: find (λ∗T , H
∗) such that

S(λ∗T , H
∗)(xrec, t) = Sobs(t), (9)

P (λ∗T , H
∗)(xrec, t) = P obs(t). (10)
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The first equation is non-linear in the arguments whereas the second one is linear on
1

λT

because

it is equivalently written as:

pa +

∫ L

xrec

Qwi

λT (S(η, t))
dη = P obs(t). (11)

We will linearize the saturation equation in order to obtain a linear system. We denote by
S ′

λT
, S ′

H the derivatives of the function S with respect to the parameters λT , H respectively.
Let λ = λ̃T + δλ and H = H̃ + δH , the linearized function S about (λ̃T , H̃) is calculated as

S(λT , H) = S(λ̃T , H̃) + S ′
λT

(λ̃T , H̃) δλT + S ′
H(λ̃T , H̃) δH. (12)

Now, the approximate problem to solve is the set of equations formed by the linearized satura-
tion equation(

S(λ̃T , H̃) + S ′
λT

(λ̃T , H̃) δλT + S ′
H(λ̃T , H̃) δH

)
(xrec, t) = Sobs(t) (13)

and the pressure equation (11).

3.1 Sensitivity equations

In this section we describe how to compute the terms S ′
λT

(λ̃T , H̃) δλT and S ′
H(λ̃T , H̃) δH in

(13). That is, how to compute the Fréchet derivatives of S with respect to H and λT .
We denote by Λ the pair of functions (λT , H).
For each (λT , H) there is a solution of (5)-(8). To derive the sensitivity equation for S ′

λT
and

S ′
H we consider the function

F
(
Λ, S(Λ), P (Λ)

)
= Φ

∂S(Λ)

∂t
+H(S(Λ))

∂S(Λ)

∂x
. (14)

The equation
F

(
Λ, S(Λ), P (Λ)

)
= 0 (15)

defines implicitly S, P as functions of Λ. Then we compute the Fréchet derivatives of F with
respect to (λT , H) from (15) to obtain a system of differential equations for S ′

λT
, S ′

H :

∂F

∂λT

= Φ
∂S ′

λT

∂t
+H

∂S ′
λT

∂x
= 0,

∂F

∂H
= Φ

∂S ′
H

∂t
+H

∂S ′
H

∂x
+
∂S

∂x
= 0.

(16)

Since in the direct model the initial condition is independent of Λ the initial condition for (16)
is zero. Thus the solution of the first equation above S ′

λT
(x, t), x ∈ (0, L), t ∈ (0, T ] is zero

and as a consequence we only have to solve the sensitivity equation for S ′
H :

Φ
∂S ′

H

∂t
+H(S)

∂S ′
H

∂x
= −∂S

∂x
. (17)

The above equation makes clear that there is no dependency of S ′
H on λT . Thus in the notation

we will supress that dependency and we will use the notation S ′
H(H).

The Fréchet derivative aplied to δH ,
(
S ′

H(H̃) δH
)
(xrec, t), is computed as(

S ′
H(H̃) δH

)
(xrec, t) = S ′

H(x, t)δH(S(x, t)). (18)
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4 THE ESTIMATION ALGORITHM

From the previous section we have the linear approximation to (9)(
S ′

H(H̃) δH
)
(xrec, t) = Sobs(t)− S(H̃)(xrec, t). (19)

The algorithm to estimate H and
1

λT

consists of two steps:

• First, we estimate H∗ iteratively as

1. Give an approximation H̃ of H∗,

2. Calculate an increment δH using the least squares method, that is, we solve the
following normal equation(

S ′
H(H̃)

)∗(
S ′

H(H̃) δH
)
(xrec, t) =

(
S ′

H(H̃)
)∗(

Sobs(t)− S(H̃)(xrec, t)
)
. (20)

3. Update H as Hnew = H̃ + δH .

• Second, once H∗ has been estimated, we obtain an approximation to λ∗T solving

pa +

∫ L

xrec

Qwi

λT (S(η, t))
dη = P obs(t). (21)

The above equation is a Volterra type equation as we show in subsection (4.2). Following
we describe the discretization to carry out the numerical implementation of the continuous
algorithm.

4.1 Estimation of the parameter function H

First we approximate the function H by finite elements to make it amenable to calculations.
We seek functions H(z) of the form

H(z) =
M∑

j=1

γjψj(z). (22)

The finite elements ψj(z) that we use in (22)are defined as follows. We make a partition
{zj}, j = 1, . . . ,M ; of the domain of H , such that z1 < z2 < · · · < zM . Now,

ψj(z) =


z − zj−1

zj − zj−1

zj−1 ≤ z ≤ zj

zj+1 − z

zj+1 − zj

zj ≤ z ≤ zj+1

0 otherwise, j = 1, . . . ,M.

(23)
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4.1.1 Discretization of the normal equation

We give an initial guess of H(z): H0.
Next we specify the procedure for each iteration k ≥ 0.
First we calculate S(Hk)(xrec, t). Since Hk is a piecewise linear function, the solution of

(5)-(8) can be calculated by solving the following (non-linear in most cases) equation on S(Hk):

S(Hk)(xrec, t) = g
(
xrec − γj − γj−1

zk−1
j − zk−1

j−1

S(Hk)(xrec, t) t−
γj−1z

k−1
j − γjz

k−1
j−1

zk−1
j − zk−1

j−1

t
)
, (24)

where j is chosen to satisfy
zk−1

j−1 ≤ S(xrec, t) ≤ zk−1
j . (25)

Now, with S(Hk)(xrec, t) computed above, we define a partition of the domain of Hk by
points {zk

j } as follows:

zk
j = S(Hk)(xrec, tM−j+1), j = 1, . . . ,M. (26)

We notice that in the algorithm the nodes zj and, as a consequence, the functions ψj of Eq.(23)
change at each iteration k, to remark it we denote the coefficients and the functions in (22) by
γk

j and ψk
j respectively.

Next, we express Hk and the unknown increment δHk using the discretization (22). Explic-
itly, the increment δHk is

δHk(z) =
M∑

j=1

δγk
j ψ

k
j (z). (27)

To determine δγk
j , j = 1, . . . ,M ; we solve (20) for S(H̃) = S(Hk) and δH = δHk.

The computation of the discrete version of (20) requires tedious calculations, which are
detailed in the Appendix and lead to the simple formula

δγk
j = −S(Hk)(xrec, tM−j+1)− Sobs(tM−j+1)

S ′
H(xrec, tM−j+1)

. (28)

By using (28) in (27) we compute δHk and update Hk,

Hk+1 = Hk + δHk. (29)

The stopping criterion is that the residual

J(Hk) =
( ∫ T

0

(
S(Hk)(xrec, ·)− Sobs

)2
dt

)1/2

(30)

must be small.

4.1.2 Outline of the algorithm

1. Read (tj, S
obs
j ), j = 1, . . . ,M and the stopping criterion (TOL).

2. Give an initial guess H0, set k = 0.
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3. Solve the initial value problem (5)-(8) with H = Hk. Compute S(Hk(xrec, tj)).

4. Compute the residual J(Hk), (Eq. (30)).

5. If J(Hk) < TOL then Hk is the solution. STOP

6. If not,

for j = 1, . . . ,M

• Define zk
j = S(Hk)(xrec, tM−j+1)

• Compute γk
j = Hk(zk

j ).

• Compute S ′
H(x, t), solving the initial value problem (17) with H = Hk.

• Compute δγk
j applying (28).

• Define γk+1
j = γk

j + δγk
j .

end for

• Update H: Hk+1 =
∑M

j=1 γ
k+1
j ψk

j (z).

• k = k + 1, go to 3.

4.2 Estimation of the parameter function
1

λT

Now, once Hopt has been estimated, we seek for
1

λ∗T
that satisfies

pa +

∫ L

xrec

Qwi

λ∗T (S(Hopt)(η, t))
dη = P obs(t). (31)

For H = Hopt we apply the following change of variables:

z = S(H)(η, t). (32)

Therefore

dz = S(H)x(η, t) dη =
g′

(
g−1(z)

)
1 + g′

(
g−1(z)

)
H ′(z)t

dη. (33)

Then (31) can be written as

P obs(t) = P (xrec, t) = qa +

∫ S(L,t)

S(xrec,t)

K(z, t)
(
λ∗T (z)

)−1
dz (34)

where

K(z, t) =
1 + g′

(
g−1(z)

)
H ′(z)t

g′
(
g−1(z)

) (35)
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4.2.1 Numerical computation of the parameter function
1

λT

The discretization of function
1

λT

is analogous to that of the function H ,

1

λT

=
M∑

j=1

ξjψj(z), (36)

where ψj(z) are defined in (23).
Replacing (36) in

P obs(tj) = P (xrec, tj) = qa +

∫ S(L,tj)

Sobs(tj)

K(z, t)
(
λ∗T (z)

)−1
dz, (37)

we obtain a M ×M upper triangular linear system in the unknowns ξj, j = 1, . . . ,M .

5 NUMERICAL EXPERIMENTS

The algorithm described in the previous section was tested with several examples. We es-
timate the derivative of the fractional flow curve: H(z) and the inverse of the total mobility
1/λT .

Two examples are shown. In both the fractional flow curve and the total mobility have a
typical shape because we choose the well known potential model for oil and water relative
permeabilities. In the first case, kro(S) = S2 and krw(S) = 0.2 (1 − S)2. In the second one
kro(S) = S2 and krw(S) = 0.2 (1 − S). Besides the values of oil and water viscosities are
equal. Therefore, the oil fractional curves f(S) result

f(S) =
S2

0.2 (1− S)2 + S2
(38)

and

f(S) =
S2

0.2 (1− S) + S2
. (39)

The fractional flow is obtained numerically, integrating the estimated function.
For the numerical tests the observations Sobs(tj) and P obs(tj) are the evaluation of the exact

solution at x = 0.98 and times tj = j ∗ 0.05, j = 1, . . . , 20 . The accuracy required for
convergence is TOL= 10−10.

Figure 1 displays the exact solution H , the initial guess H0, the first iteration H1 and the
optimum estimated Hk for example 1. Convergence was achieved in nine iterations.
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Figure 1: Estimation of the derivative of the fractional flow curve for example 1

The approximation of the inverse of the total mobility for example 1 is shown in the following
figure:

Figure 2: Estimation of the inverse of the total mobility for example 1
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Similarly Figures 3 and 4 show the estimation of the H and 1/λT for example 2. In this case
convergence for the parameter H was achieved in 12 iterations.

An almost exact match to the ’true’ function is obtained in every case.

Figure 3: Estimation of the derivative of the fractional flow curve for example 2

Figure 4: Estimation of the inverse of the total mobility for example 2
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From these examples and some other cases tested, the algorithm proved numerically suc-
cessful.

6 CONCLUSIONS

An algorithm to solve an estimation problem in a non-linear system is introduced. This
algorithm is based on the least squares criterion in functional spaces and therefore an infinite
dimensional estimation problem is solved. The sensitivity equation that is used to compute the
Frèchet derivative is presented. The resulting algorithm has shown convergence in numerical
tests, and because of its general theoretical formulation has the potential to be extended to
solve more complex problems. This algorithm obtains the sought-after parameters without
the imposition of a priori parametric models. Though the use of such models is currently the
common practice among field engineers, different models yield different results and there is no
objective criterion to choose among them. Thus the result yielded by the different parametric
models can be compared to those of our algorithm, so as to select the most fitting model.

7 APPENDIX

We show the steps that lead to Eq. (24) starting from its continuous version (20) and using
the discrete versions of H and S(H).

We denote by Ψ the subespace of L2([zk
1 , z

k
M ]) that is generated by the set of functions

{ψk
j }j=1...,M . From Eq.(22) Hk ∈ Ψ. From Eq.(24) S(Hk)(xrec, t) ∈ L2([0, T ]), therefore,

S ′
H(xrec, ·) ∈ L2([0, T ]), specifically,

S ′
H : Ψ → L2([0, T ]),

δH(z) → S ′
HδH(xrec, t),

(40)

as a consequence, (
S ′

H

)∗
: L2([0, T ]) → Ψ. (41)

To compute the coefficients δγk
j of δH we proceed as usual. We calculate the scalar product of

(20) with an element of the basis of Ψ.
The computation of the left hand side, for j = 1, . . . ,M results:(

S ′
H(S(Hk))∗S ′

H(S(Hk)
)
δH , ψk

j

)
L2([zk

1 ,zk
M ])

=
(
S ′

H(S(Hk)
)
δH , S ′

H

(
S(Hk)

)
ψk

j

)
(L2[0,T ])

.
(42)

Using Eq.(18) to replace S ′
H(S(Hk)) in the above equation and writing explicitly the scalar

product in L2([0, T ]), Eq.(42) equals to∫ T

0

(
S ′

H
2
δH

(
S(Hk)

)
ψk

j

(
S(Hk)

))
(xrec, t) dt. (43)

Discretizing Eq.(43) in t, using the definition of ψk
j and that of zk

j (Eq.(26)), we obtain the
chain of equalities:

M∑
l=1

(
S ′

H
2
δH

(
S(Hk)

)
ψk

j

(
S(Hk)

))
(xrec, tl) ∆t

=
(
S ′

H
2
δH

(
S(Hk)

)
(xrec, tM−j+1) ∆t

= S ′
H

2
(xrec, tM−j+1) δγ

k
j ∆t

(44)

Mecánica Computacional Vol XXV, pp. 2687-2698 (2006) 2697

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Similarly, the right hand side of (20) is,

−
∫ T

0

(
S(Hk)− Sobs

)(
S ′

H ψk
j

(
S(Hk)

))
(xrec, t) dt

≈ −
M∑
l=1

(
S(Hk)− Sobs

)(
S ′

H ψ
k
j

(
S(Hk)

)
(xrec, tl) ∆t

= −
((
S(Hk)− Sobs

)
S ′

H

)
(xrec, tM−j+1) ∆t.

(45)
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