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Abstract. Rigidizable/Inflatable (RI) materials offer the possibility of deployable large space
structure$ and so are of interest in applications where large optical or RF apertures are needed.
In particular, in recent years there has been renewed interest in inflatable-rigidizable truss-
structures (see Figure 1) because of the efficiency they offer in packaging during boost-to-orbit.
However, much research is still needed to better understand dynamic response characteristics,
including inherent damping, of truss structures fabricated with these advanced material sys-
tems.

One of the most important characteristics of such space systems is their response to changing
thermal loads, as they move in/out of the Earth’s shadow. We study the thermoelastic behaviour
of a basic truss component consisting of two Rl beams connected through a joint subject to
solar heating.

T This research was supported in part by Defense Advanced Research Projects Agency/Special Projects Office
(DARPA/SPO), NASA Langley Research Center and the National Institute for Aerospace of USA, under Grant
NIA 2535, by the Consejo Nacional de Investigaciones Qieaty Tecnicas of Argentina, CONICET and by
Universidad Nacional del Litoral, UNL, Santa Fe, Argentina.
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1 THERMOELASTIC MODEL

Figure 1: Truss-structure

Figure 2: Basic truss component

The equations of motion for the Joint-Leg-Beam system depicted in Figure 2 has been de-
rived int as the following:

O%ui(t, s; O%u'(t, s; O*wi(t, s; Mwi(t, s;
putbs) _ py Tults) oy Owlhs) g Owths) g
ot 0s; ot 0s;
[ My(t) ]
(1) Ni(t)
2|yt | _ M;(t) : - able. A
M4 o) | = C Ny () for timet¢ > 0 and spatial variable; € [0, L;], where
b2(1) (1)
| Fa(t)
m 0 —mid; COS P1 mada COS P2 0 —cosp1 0 cosya singpy  sin o
M — 0 m +m1dy sin 1 mads sin 2 C — 0 sinp; 0 sings cosp] — cos @2
- —m1dj cos 1 midy sin g Ilz+m1d% 0 ’ - 1 01 0 0 0 0 )
mads cos 2 Mmads sin o 0 Iyp+mod3 0 0 1 4y 0 0
(2)

and the other functions and parameters are as followsw®: longitudinal and transversal
displacement of the beam z,y: horizontal and vertical displacement of the joint’s tif;
rotation angle of the leg, p;, A;, L;, E;, I;; mass density, cross section area, length, Young’s
modulus, moment of inertia of the beaimy;, v;: damping coefficientsin;, d;, ¢;, I;;: mass,
center of mass, length, moment of inertia of iegr,,: mass of the jointyn = m; + my + my,;

1. Initial angle of legl with positivey axis; @, initial angle of leg2 with negativey axis;
F;(t): extensional force of bearnat the ends; = L;; N;(t): shear force of beamat the end

s; = L;; M;(t): bending moment of bearnat the ends; = L,. The beams are clamped at the
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ends; = 0. Thus the boundary conditions gt= 0 are
ow'
&si

At the other end of the beam, we have geometric compatibility conditions that can be written
in the form:

u'(t,0) = w'(t,0) = —(£,0) = 0, i=1,2. )

gu L) ] T 0,1 '
(75 Ly) —x(t) cos 1 + y(t) sin gy + 6161 (¢) (1)
852 (t LQ) — 02(t) —CT y(t) (4)
w?(t, Ly) x(t) cos g + y(t) sin g + l202(t) O.(t) |-
—ul (t, Ly) (t) sin @y + y(t) cos 0a(t)
—u?(t,Ly) | | x(t) sin g — y(t) cos po

2 THERMAL DYNAMICS

Following Thorntorf for each beam, the external heat flux in the space normal to the beam’s
surface is given bys; = Sy cos <5Z Bs. > where .S, is the solar flux and; is the angle

of orientation of the solar vector with respect to beﬁrrSmce is small, it is negligible.
We denote byl = T'(t,s;, ¢;) the deviation of the temperature of beamwith respect to a
reference temperatui&. Then, conservation of energy for a small segment of circular cylinder
including longitudinal and circumferential conduction in the cylinder wall and radiation from
the cylinder’s surface yields:

or ki 9*T! Tt oe

piciﬁ - R_ZQ agb% - ka a 2 + (T +T) = hl SZ COS(¢i) 5(¢’L) (5)

where k! and k! are the axial and circumferential thermal conductivity coefficients, respec-
tively, ¢; is the specific heatl; is the cylinder radiush; is the wall thicknesss; is the surface
emissivity andy’, is the surface absorptivity, all of beaiyy is the Stefan-Boltzmann constant,
d(¢i) = 1for¢; € (=%, %), andd(¢;) = 0for ¢; € [, —F]U[F, w]. The heat flux distribution

on the RHS of equation (5) can be written as

S cos(8)8(61) = Si(~ +9(0) = >+ 5:9(6) ©

where
\_ Jeos(¢) — =, forg; e [-3,7]
9(1) = {_t for ¢; € [-m,—5) U (3, 7].

Clearly g(¢;) is continuous and it has zero average-r, .
For each beam, the temperature distribution is separated into two parts, namely:

T'(t, s, &) = T'(t, ) + T (L, 83) g(¢), (7)
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whereT"(t, s;) is independent op; and corresponds to the uniform part of the fléﬂx, in (6),
andT™(t, s;) g(¢;) amounts for the circumferential variation of the flux in (6). Note that for
everys; c [07 Lz], t>0 Tm’i(t, Si) = Tl(t, Si, 0) — Tl(t7 Si, 7T) = Tl<t, Si, O) — Tl(t, Si, ¢) for
anyo € [-m, %) U (5, 7.

Also, we approximate the thermal radiation teff{ + 7°(¢, s;, ¢;) )* in (5) by linearizing
T(t, s, ¢;) aroundT (¢, s;, ;) = T¢ (whereT?, to be determined later, is the steady-state con-
stant temperature increment produced on the undeformed bbwitihe solar fluxs;), i.e., we
approximate Ti+T(t, s;, ;) ) bY (Te+TH +4(Te+TE)3 (T(t, s;) — T2+ T™ (¢, 5:)g(9:))-
Hence equation (5) is replaced by

m@% PMW 9(¢i) — gchml( s:) 9" (i)
yy 82T({;(97; si) i 82T”(;;Et , Si) o)
EWGWTQ+qn+ﬁf@w@yjyfmmwgmﬂ
= O‘h—s E + g(@)} 8)

Integration of equation (8) over the cylinder’s cross sectional area yields

OT*(t, s;) O?T(t,s;)  doe(Te +TH3 . .
C _ Lt S T N — T
p’bc’b at k 8812 + h/z [ (t7$2) S]
alS;  oe(Te +TH] |
= | == - Sl =f; 9

Next, note that in this equation, the temperatiifés determined by setting the RHS, equals

to zero. By doing so we obtain
. 1
, PG\ ,
T = (O‘—) -7 (10)

TOE;

Note that with this value of ! we haveT"(t,s;) = T at the steady-state and, since usually
T™(t, s;) is small compared t@;, the linearization of the thermal radiation term performed
above, is justified near the steady state solution.

Now multiplying equation (8) by (¢;) and integrating over the cylinder’'s cross sectional
area, we obtain fof™* the following equation:

8Tm’i t, S; 82Tml t S5 c m,i "
prelalP T — i gl - s [ o enaten ao

4 Z-Tl—l—T;
+0€(Z. )

lgll* T™(t, 5:) =
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Sincellgl?> = J7 g(¢:)?d¢: = == and [T g"(¢:)g(¢:)d¢; = —7F, the equation above
reads:
8Tm’i (t, Si) ; (92Tm’i<t, Si) ki7T2 4U€i (Té + TZ)3 :
i Z _ k/,Z C S Tm,’L t’ Z
PGt a T 982 R —4) " hi (t,5:)
alS;
= 57t 11
3 (12)

To consider the thermally induced vibration in the system, we use Hooke’s law for the stress-
strain relation in the form oft | = Eiiail + o; T, whereq; is the thermal expansion coefficient,
andT" is, as before, the deviation from the reference temperdafiireNote that at/* = 0
thermal strain vanishes, so thgt is interpreted as the (uniform) temperature of beamthe
unstressed, rest-state. By the standard derivation of Euler-Bernoulli beam equation, we modify
the Joint-Leg-Beam system (1) as follows:

O*ui(t, s;) d [Oul(t,s;) ;

piAiT = EZAZ(?_SZ (8—31 —aiT'(t, Sz)) ) (12)
O?w'(t, s;) 0% [ 0*w'(t, s;) .y

IOiAiT = _Ei[ic‘?_sf (8—312 + T (8, Sz)) (13)

The above beam equations are coupled to the heat equations modified from equations (9) and
(11) and withT? chosen as in equation (10) (so thfat= 0in (9) ), that is:

oT(t, s;) 0Tt s;)  doe(Ti+TH3 , , 0%
i, k! - 5 T t, i) — T) — ,LEZAZTZ ! t, i)
piCi— o T Bs? h (T'(t,s;) = T?) — « Oﬁsiatu( S)
(14)
and , ‘ . . ,
aTm,l(t7 Si) ) a2Tm,z (t, 3i) kzﬂ.Q 4UEZ(T5 + Tz)3 )
i Ci =k — < S T™Y(t, s
pic ot a 0s? R2(m2 — 4) + h, (t, 1)
;P ayS;

We impose Robin type boundary conditions for the temperature at both ends of each beam, i.e.
%Tl(t? Sis ¢z) |Sz‘:Li: )‘3% (T* — 15— Tl(tv L;, gb@))’ %T“t) Sis gbl) 5;=0— )‘IL(T(H_TZ(t’ 0, gbl)'

T*),¥t >0, ¢; € [-m, 7|, i = 1,2, whereT* is the temperature of the surrounding medium
and\;, A%, i = 1,2, are nonnegative constants. By writitig)(¢, s;, ¢;) in terms of the decom-
position given in (7) these equations take the form:

o . o . S .
8S‘Tl(t, L) + aS.Tm”(t, Li)g(¢i) = N (T — Ty — T(t, L) — T™(t, L) g(e1))
o . o o ,
aS,T’(t, 0) + asTW(f’ 0)g(i) = A (T + T'(t,0) + T™(¢,0)g(¢s) — T*) .

Copyright © 2006 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



2436 E.M. CLIFF, Z. LIU, R.D. SPIES

Since these equations must hold forglle [—, 7] it follows that

ai»Ti(t’ L) =N (T =Ty — T'(t, Ly)) a(Z’Ti(zs, 0) =\, (Tg +T°(t,0) = T*)  (16)
and 9 _ 9
851-T ’ (tyL’L) = _)‘RT ’ (taLi)a 8_31T ’ (t,O) = >‘LT ’ (t70)7 (17)

forallt > 0,7 = 1,2. So, just like the dynamics for the temperature distribution (8)
decouples into equations (14) and (15) f6r and 7™, respectively, we observe that the
boundary conditions also decouple. Note however in equation (16) that the boundary condi-
tions for the axial component of the temperatdrgt, s;), are non-homogeneous. By defining
Ti(t,s;) = T'(t,s;) — (T — T¢), equation (14) can be written in the form

OTi(t,s:) _ 1 0°T'(ts) _ doe(Ty +T0)°
WG, T -
Y a T §s? hi
2

(fi(t, si) +T* —Ti — T;‘)

while the boundary conditions (16) now take the form

O Filt, L) = =Ny Ti(t, L), (1, 0) = AL Ti(,0), (19)

851' S;

Observe now that these boundary conditions are exactly the same as those in (17) for the cir-
cumferential component of the temperature. Finally, note also that in equatiorift12)s;)
can be replaced by (¢, s;) without any changes.

System (12)-(15) (or equivalently (12), (13), (15), (18)), together with the joint-leg dynam-
ics described by equation (1) constitute the thermoelastic Joint-Leg-Beam equations with the
external solar heat source. The extensional forces, shear forces and bending moments of the
beams at; = L, are now given by:

F(t) = EA (a—“@, si) — T (t, si)> (20)
Osi si=L;
9 (*uw' .y
Nz(t) = El]za_sl (8—‘9?@’ Si) —+ OéiT (t, Sz)) - s (21)
o' ,
Ml(t) = Ez.[z —Q(t, 51') + Oé,'Tm’z(t, 52’) (22)
0s; =L,

A state-space formulation and semigroup theory can be used to establish well-posedness and
exponential stability of this system. We refer the reader to Cliff étfatl details on this issues.
In what follows we characterize the equilibrium solutions and present several numerical results.
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3 EQUILIBRIUM STATE

The equilibrium state, or time-invariant solution, is characterized by equations (12) - (15) with
time-derivatives set to zero. From those equations we find that

o . )
aS‘u’(si) = o;T'(s;) + C; (23)
8QZ . . . .
@wl(si) = —a;T™(s;) + Dis; + Dy, (24)
T'(s;) = T!+ E}cosh(B;s;) + FEysinh(8;s;) , (25)
T (s;) = ];;5;2 + Fy cosh(d;s;) + Fj sinh(d;s;) , (26)

. (TiTi)3 . 20 (TiTi)\3 . . .
wheref), = /G, 5, =\ [l + RS andC, D) B, Fi = 1,2, are

constants to be determined using the boundary conditions.
Specifically, from equations (25) and (26) and the boundary conditions (16), (17), we obtain:

E} (Bisinh(B;L;) + Ng cosh(B;L;) ) + E3 (B; cosh(B;L;) + N sinh(5;L;) )
BN, — By = A (T = Ty = T7),

and
FY} (0;sinh(8;L;) 4+ A cosh(6;L;) ) + Fy (6; cosh(6;L;) + N sinh(6;L;) )
= _)\3{ v,
FiIN, — Fi6; = =)\ v,
wherey; = kah562 . Solving these two systems of equations we obtain:
oo (T* — T — T (BiNg + B\ cosh(B;L;) + A A sinh(6;L;))
=

Bi( AL + Aoy cosh(B;Li) + (52 + Ao \) sinh(5;L;) ’
(T =T = T7) (N NR(1 = cosh(B;L;) ) — 3i\}, sinh(G;L;))
N Bi(AL + Ag) cosh(B;Li) + (87 + ALAR) sinh(B;L;)
= (0N + 0N cosh(0;L;) + N N sinh(6;L;))
(82 + AL AR sinh(0;L;) + 6 (AL 4+ A% cosh(6;L;)
Vi (0; N5 sinh(6;L;) + N X% cosh(6;L;) — Ao \%)

F, = L : : =1,2. 27

Replacing now these known steady-state temperature profiles (25)-(26) into (23)-(24) and
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using the boundary conditions (3) we obtain

u'(s;) = (Te+ C;)s; + dit sinh(0;s;) + il (cosh(fF;s;) — 1) (28)
; D; Di — a;u; FY
wi(s;) = =Lsd 4+ 22 it 57— a 21 (cosh(d;s;) — 1)
6 2 5
- a522 (sinh(d;s;) — d;8;) - (29)

The constant§);, D¢, Di, i = 1,2, in (28)-(29) must now be determined using the dynamic
and geometric compatibility conditions at = L,. The steady state version of the joint-legs
equations (1) lead to

and
sing; — Cos Y1 Fi n sin g €OS P2 F | |0 (31)
COS 1 sin q Ny — COS o Sin o Ny | | 0]°

Replacing with (26) and (29) into (21) and (22) we obtain that= E;I;(D} L; + D}) and
N; = E;1I; Di. Substituting into the equation (30) above we then obtain that

Dy=—(l;+ L) D}, i=1,2. (32)

This reduces to four the number of constants to be determined in (28)-(29), n@mély, D}
andD?. Also, replacing with (25) and (28) into (20) we obtain that

F, = E;AC;, i=1,2.
Hence, equation (31) takes the form

ClElAl sin ®1 + OQEQAQ sin Y2 — D%Elll COS Y1 + D%EQIQ COS Yy = 0 (33)
ClElAl COS Q1 — OQEQAQ COS 9 + D%Elll sin V1 + D%EQ]Q sin Yo = 0 (34)

These are the first two equations needed to deterdiin€’,, D{ and D?. The other two will
come from the geometric compatibility conditions at the leg-beam interfaces. These conditions
require (se® that for everyt > 0:

flwil (t, Ly) cos o1 +w'(t, Ly) cos o1 + u'(t, L) sin ¢y
= ngi (t, L) cos @q 4+ w?(t, Ly) cos g + u?(t, Ly) sin @y (35)

and

5111);1 (t, Ly) sin gy +w'(t, Ly) sin oy — u'(t, L) cos ¢y
= —ngi (t, Ly) sin o — w(t, Ly) sin g + u?(t, Ly) cos @y (36)
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In particular, using (28), (29) and replacifiy and D2 by (32), we find that at the steady-state,
the above two geometric compatibility conditions can be written in the form:

L? L?
ClLl sin »1 — C2L2 sin Y2 — D%Ll COS @1 <£% + €1L1 + 31> + D%Lg COS Y2 <£% + EQLQ + 32>

2 . .
; T 3
= Z:(—l)Z+1 {Ei COoS ©; (aiwLi + a(s L sinh(8;L;) + aé 2 (cosh(0;L;) — 1))
i=1 ! !

aiViLZZ Oél.FlZ

+ cos @; < 5t 52 (cosh(d;L;) — 1) + a; by (sinh(6;L;) — 5¢Li)>

52

3 7

(3 (2

— singp; <aiTs,iLi + aiﬁEi sinh(8;L;) + a%Eé (cosh(pB;L;) — 1) ﬂ ;
(37)

and 72 72
C1 Ly cos gy + Cy Ly cos py + Di Ly sin ¢y (e% + 0Ly + 31> + D3 Ly sin @y <e§ + lo Lo + 32)

2 a; F? a; F!
= — Z [& sin ¢; (aiuiLi + 3 1 sinh(6;L;) + g 2 (cosh(d;L;) — 1))
i=1 ‘ ‘

OéiI/iLZZ Oé,LFll

+ sin ©i < 9 + (52 (COSh((SlLl) — 1) + 04352 (smh(&zLZ) — 51[/2))

28 (i) + “ 2 cosn(mL) - 1) ). (39)
The four equations (33)-(34)-(37)-(38) uniquely determine the four constants,, D} and D2.

Summarizing, the steady-state solutions of the thermoelastic joint-leg-beam equations (12)-(15), (1),
with the boundary conditions (3), (16), (17), extensional forces, shear forces and bending moments at
the right endpoints of the beams given by equations (20)-(22) and geometric compatibility conditions at
the beam-leg interfaces given by (35)-(36), are given by:

+ cos @; <a¢T;L¢ +

(2

u'(si) = (T, +Cy)si + aﬁ' L sinh(B;s;) + i (cosh(B;s;) — 1)

DZ2 — Gl 2 OllF‘lZ
o T2

, D} o; Fi
wi(s;) = —Ls5+ (2522
7

6 (sinh(éisi) — (5131) .

(cosh(d;s;) — 1) —

where

. 1 ,
T — <a25i> v T, ” oS

* o \7oe kih;o2’

4oe;(Ti+ Th)3 w2k 4oe;(TE+ Th)3
hik?, ki RZ(m? —4) kih;
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E!, Fj,i,j = 1,2, are as given in (27), the four constarts, C», Di, D{ are the solutions of the
C1
. C
equationA (ﬁ) = Y where
D}

E1A;sing; EgAgsin o —E1 11 cos g1 E> I3 cos g

E1A; cospr —FEa Az cos pa FEq 11 sin g Es 15 sin g 0
. . 2 L? 2 L2 ) Y = )
Ly sin o — Ly sin pa —L1(€1+£1L1+Tl)cos p1 L2(€2+€2L2+72)cos P2 Y3

Y4

A=

X L2, .
L1 cos 1 Lo cos p2 L1(3§+21L1+71)smg01 L2(Z§+Z2L2+72)smg02
with
2

Ys = Z(‘Diﬂ [& COS (; <Oéz'ViL7j + ajfl sinh(6;L;) + aif2 (cosh(8:L;) — 1)>
i=1 ) i

i

OciVZ'L% + a,fl
2 0;

)

Ny
(COSh((siLi) — 1) + ity (Sinh((sl'Li) — 52L1)>

+ cos p; < 52
7

OéZEi

— sing; <aiT;Li + ——sinh(5; L;) + 2 ?(cosh(ﬁiLi) — 1))] )

K3 2

Yqa = — Z |:€z sin 2 (OéiI/iLi + Oz; 1 sinh(éiLi) + OC(S 2 (COSh((SiLi) — 1)>
i=1 ‘ :
OéZ'VZ‘L,LZ 0411‘7‘1Z

2 67

(cosh(é;L;) — 1) + iy (sinh(6;L;) — 5iLi)>

+ sin g; < 52
7

+ cos (OéiTsZLi + alﬂ, tsinh(6;L;) + alﬁ_ 2 (cosh (L) — 1))] :
7

and finally the two constant®}, D2 are given byD} = —(¢; + L;) D}, i=1,2.

4 NUMERICAL RESULTS

We now present some numerical results for the thermal steady-state deflections of the two beams in our
joint-leg-beam system, after they are subjected to a solar radiation flux acting on different angles. The
values used for these simulations are shown in Table 1 and correspond to a composite material. The mass
of each leg was set equal to 8% of the mass of each beam and the mass of the joint’s tip was taken equal
to 4% of the beam’s mass.

Note that with the values af; andy; given in Table 1, the angle between both beams/is Thus,
for instance, a perpendicular solar flux on one of the beams will have no thermal effect on the other.

4.1 Case 1: No flux at the boundariesA] = AL = )\2 = )\% =0

Experiment 1: {; = 0, &, = 7. Figure 3 shows the steady-state thermal transverse and mechanical axial
deflections induced on both beams. The steady-state values for the axial and circumferential temperature
deviations wereT} = 16.1939, T2 = —280 (corresponding to temperatures296.1939 K° and0 K°,
respectively) 7™ ! = 207.2897 K°and1™?2 = (0 K°. Steady-state temperatures of beam 1 are much
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Table 1: Joint, legs, beams and solar radiation parameters

Parameter Notation Value
Beam'’s length L1 =1 2.00m
Beam'’s radius Ri = Ry 0.064 m
Beam'’s thickness hi = ho 0.0003 m
Material density p1 = P2 1320kg/m?
Young’s modulus E, = E 0.9 x 10! N/m?
Leg’s length by =l 0.20 m (<£1/10)
Leg’s mass miy = mo 8 % mass of beam.
Joint’s mass my 4 % mass of beam.
Initial leg’s angles »1 = P2 /4
Solar radiation So 1.37 x 10> W/m?
Stefan-Boltzman’s constant o 5.67 x 1078 W/m? K4
Beam'’s surface (radiation) emissivity €1 = €9 0.4
Beam’s surface (radiation) absorsivity | ol = o? 0.4
Beam’s axial thermal conductivity kl = k2 5.75 W/mK
Beam’s circumferential thermal conductivity k! = &2 2.34 W/mK
Undeformed reference temperature | T = T3 280 K
Thermal expansion coefficients a1 = Q9 1.0 x 1076

higher than those of beam 2 due to the fact that solar radiation is acting perpendicular to beam 1 and,
therefore, parallel to beam 2. In Figure 3 we observe a negative thermal transverse bending in beam 1
and almost no transverse bending in beam 2. However, we observe that this transverse bending induces
a mechanical (linear) compression in beam 2 due to the fact that the beams are coupled by the joint.
Figure 4 shows the steady-state circumferential distribution of the temperature in both beams.
Experiment 2: §; = —3, {2 = 0. This case is symmetric with respect to case 1. Solar radiation is
now perpendicular to beam 2 and therefore, parallel to beam 1. Figure 5 shows the thermal transverse
and mechanical axial deflections induced on both beams. The steady-state values for the axial and cir-
cumferential temperature deviations wetg: = —280, T2 = 16.1939 (corresponding to temperatures
of 0 K° and 296.1939 K, respectively)I™! = 0 K° and7™2 = 207.2897 K°. Figure 5 shows a
negative thermal transverse bending in beam 2 and almost no transverse bending in beam 1. However,
we observe that this thermal bending induces a mechanical (linear) compression in beam 1 due to the
fact that the beams are coupled at the joint. Figure 6 shows the steady-state circumferential distribution
of the temperature in both beams.
Experiment 3: {1 = —7, & = 7. In this case the magnitude of the incident solar radiation angle is
the same for both beams. Figure 7 shows the transverse and axial thermal deflections induced on both
beams. The coupling of the joint produces a small (note the scale) positive transverse deflection near the
right end of both beams while both remain in compression. The steady-state values were equal in both
beams:T! = T2 = —8.3890 (corresponding to a temperature2l.6110 K°) and7"™! = 72 =
184.1316 K°. Figure 7 shows the transverse bending for both beams and a small linear compression in
both beams due to the coupling produced by the joint. Figure 8 shows the steady-state circumferential
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Figure 5: Steady-state thermal deflections for §or= Figure 6: Steady-state circumferential temp. distrib.,
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2

distribution of the temperature in both beams.

4.2 Case 2: With flux at some of the boundaries

Experiment 4: In this case we took agaiy = 0, & = 7 just like in Experiment 1, so that the

solar radiation is perpendicular to beam 1. Figure 9 shows the temperature distribution along beam 1
for the case of zero flux. For this case we saw that= 16.1939 K°. This is the value of the average
steady-state temperature increment produced on beam 1 by the solar radiation. Therefore the steady-state
average temperature of beam Tjs+ 7.} = 296.1939 K°.

We then tookT™ = 296.1939 K°, i.e. the external temperature was assumed to be equal to the
average temperature of beam 1. We also tdpk= 10 and A}, = A2 = \% = 0. Figure 10 shows the
temperature distribution on beam 1 for this case. At the left boundary (0) we observe a temperature
drop at the top part of the beam( ~ 0) and a temperature increase at the bottgmn £ +x). This
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is so because the upper part of the beam is hotter than the external temperature while the lower part
is cooler. Figure 11 shows the steady-state transverse and axial deflections induced on both beams for
this case. We observe no substantial differences with respect to the results obtained for the no-flux case
(Experiment 1). This is justified because although heat is flowing out of the upper part of the left end
of beam 1, the same amount is flowing in at the bottom, so keeping unchanged the average temperature
of the beam. Figure 12 shows the circumferential temperature grabifehts,) for this case. We see

that its values are much smaller near the left boundary due to the fact that the flux here tends to make
equal the temperatures at the top and bottom of the beam. Iriffact(s,) tends to zero at; = 0 as

the coefficient\! increases.

Temperature distribution of beam 1

Temperature distribution of beam 1

Figure 9: Temperature distribution on beam¢,= 0, Flgureﬂlo Temperatur? distribution on Eea'l'fll 0,
—_ 52**,T—TO+T—2961939K A = 10,
&2 = 5, no boundary flux N E A2 =0
=2 =A% =

Experiment 5: Same as in Experiment 4, except that now we tddk= 300 K©, i.e. the external
temperature is a few degrees above the average temperature of the beam. Also we chal€# and
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Figure 11: Transverse and axial deflections of beam Rigure 12:  Circumferential temperature gradient,
& = 0,6 =5, T =T5 + T} = 2961939 K° T™l(s)), & = 0, & = I, T = T} + T}
AL =10, 2L =2 =)%4=0 206.1939 K° A} =10, L =X2 =24 =0

AL = A2 = \% = 0. Once again, no significant changes are observed on the longitudinal and transverse
deflection of the beams. Figure 13 show the transverse deflections and axial displacements in this case
while Figure 14 depicts the temperature distribution on beam 1.

w? Temperature distribution of beam 1
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Figure 13: Transverse and axial deflections of beam Rigure 14: Temperature distribution on beanti = 0,
& =08 =73,T"=300 K%\ =100, A\ = A} = & =72,T* =300 K° AL =100, \h, = A3 =%, =0
N =0

Experiment 6: Same as in Experiment 5, except that now we tddk= 290 K©, i.e. the external
temperature is a few degrees below the average temperature of the beam. Once again no significant
changes are observed on the axial and transverse deflection of the beams. Figure 15 show the transverse
deflections and axial displacements in this case while Figure 16 depicts the temperature distribution on
beam 1.

Experiment 7: For this experiment we took; = —7, {2 = 7, so that the solar incident angle is
equal for both beams. Also we chdfé = 200 K°, i.e. the external temperature is much smaller than
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Figure 15: Transverse and axial deflections of beam Rigure 16: Temperature distribution on beantl = 0,
=08 =75,T =290 K%\ =100, A\ = A} = & =7,T* =290 K° AL =100, \hb = A} =3, =0
A2 =0

average temperature of the beam. The boundary flux parameters where takexj te-bk}, = \? =

A% = 10°. Figure 18 show the transverse deflections and axial displacements while Figure 17 depicts
the temperature distribution on beam 1 for this case (the temperature distribution for beam 2 is exactly
the same) . Also Figure 19 shows the circumferential temperature grddiets; ).

Temperature distribution of beam 1
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Figure 18: Transverse and axial deflections of beam 1,
51 = _%152 = ng* :200]{01)\}1 :A}%:)\% =
A2 =10°

Figure 17: Temperature distribution on beamé¢i, =
—IZ, & =%, T =200 K° A} =\, =X =% =
10°

Experiment 8: For this experiment all values where the same as for Experiment 7 except that now
the external temperature was chosen t@bhe= 400 K°, i.e. a value much higher than average temper-
ature of the beam. Figure 21 show the transverse deflections and axial displacements while Figure 20
depicts the temperature distribution on beam 1 for this case. Also Figure 22 shows the circumferential
temperature gradie™!(s;).

Finally we include some results obtained for the case in which the material used for the beams is
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Figure 19: Circumferential temperature gradiéfit: ! (s1), & = —5, & = 5, 7% = 200 K°, A} = A\, = A} =
A2 = 10°

aluminum. We took the same parameter values as those appearing in table (1), except for the physical
parameters shown in the next table.

Table 2: Physical parameters for aluminum

Parameter Notation Value
Material density p1=p2 | 2700kg/m?
Young’s modulus Ey = FE, | 75 x 10 N/m?

Beam'’s surface (radiation) emissivity | ¢; = e 0.1

Beam'’s surface (radiation) absorsivity | a! = o? 0.1
Beam’s axial thermal conductivity kl=k2 | 20.0W/mK
Beam'’s circumferential thermal conductivityk! = k2 | 20.0 W/mK
Thermal expansion coefficients a1 = Qo 24.0 x 1076

Figure 23 shows the axial and transverse bending for this case under the same conditions of experi-
ment 1. Compare with Figure 3. Note that the transverse bending of beam 1 is about thirty times larger
for aluminum than for the composite material while the compression exerted on beam 2 is about 25
times larger in in this case. Similarly, Figure 24 shows the circumferential temperature distribution for
this case. Compare with Figure 4. Figure 25 shows the axial and transverse bending for this case under
the same conditions of experiment 3. Compare with Figure 7. Once again, the compression exerted on
beam 2 is about 25 times larger in in this case.

Figure 26 shows a comparison of the transverse bending in beam 1 for aluminum and composite
material under the same conditions of experiment 4. Once again the bending observed at the right
boundary is about thirty times larger for aluminum than for composite. Finally, Figure 27 depicts a
comparison of the circumferential temperature gradi@hts'(s;) for aluminum and composite under
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the same conditions of experiment 7.

5 CONCLUSIONS

In this paper we studied the thermo-mechanical behavior of a triangular truss-component consisting of
two RI thin-walled circular beams connected through a joint. In the model, transverse and axial mechan-
ical motions of the two beams are coupled though a mechanical joint. The external solar effects were
also incorporated by decomposing the temperature fields in the beams. This decomposition lead to two
heat equations: one for the circumferential average temperature and one for the axial temperature. The
axial temperature is coupled to axial motions of the beam, while the second accounts for a temperature
gradient across the beam and is coupled to beam bending. The resulting system of partial and ordinary
differential equations formally describes the coupled thermo-mechanical behavior of the joint-beam sys-
tem. The equilibrium solutions were characterized and several numerical results were presented.
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Figure 22: Circumferential temperature gradiéfit:! (s, ), &;
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Transverse bending for aluminum and composite materials
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Figure 26: Comparison of transverse deflections of beam
axial deflections of beam 1 for composite and aluminum.
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Figure 27: Comparison of the circumferential temperature gradi€nts(s; ) for composite and aluminum
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