Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXXIX, págs. 69-78 (artículo completo) F.E. Dotti, M. Febbo, S.P. Machado, M. Saravia, M.A. Storti (Eds.) Bahía Blanca, 1-4 Noviembre 2022

MODELACIÓN SIMPLIFICADA DE ESTRUCTURAS METÁLICAS RETICULADAS DE SECCIÓN TRANSVERSAL RECTANGULAR

SIMPLIFIED MODELING OF LATTICE STEEL STRUCTURES WITH RECTANGULAR CROSS SECTION

Alberto M. Guzmán

CeReDeTeC, Facultad Regional Mendoza, Universidad Tecnológica Nacional, Rodriguez 273, Ciudad, Mendoza (M5502AJE), Argentina, mguzman@frm.utn.edu.ar

Palabras clave: reticulados espaciales, propiedades equivalentes, modelos simplificados, simulación numérica.

Resumen. Los reticulados espaciales son ampliamente utilizados en diversos sistemas estructurales metálicos tales como columnas, vigas y pórticos. Estos se caracterizan por presentar un gran número de elementos (largueros, diagonales y montantes), por lo que una modelación simplificada que sea capaz de reducir dicho número de elementos, pero que al mismo tiempo tenga un desempeño numérico satisfactorio, resulta muy conveniente. En un trabajo previo y mediante un planteo energético, se obtuvieron las propiedades equivalentes de reticulados espaciales de sección transversal rectangular con distintos patrones de reticulación. Estas propiedades indicadas resultan necesarias para la modelación simplificada del reticulado como viga-columna equivalente. El objetivo del presente trabajo, es llevar a cabo la implementación de estas propiedades equivalentes en diversos sistemas estructurales que resultan de uso habitual en la práctica profesional, y con ello, valorar su conveniencia. Con el fin de validar el desempeño de la modelación simplificada propuesta, se llevaron a cabo simulaciones numéricas sobre distintos casos de reticulados espaciales. Los resultados encontrados permiten establecer un adecuado comportamiento de la modelación propuesta, con la ventaja que representa su bajo costo computacional de modelación y procesamiento.

Keywords: spatial lattices, equivalent properties, simplified models, numerical simulation.

Abstract. Spatial lattices are widely used in various steel structural systems such as columns, beams and frames. These are characterized by presenting a large number of elements (legs, diagonals and struts), so a simplified model that is capable of reducing said number of elements, but at the same time having satisfactory numerical performance is very convenient. In a previous work and through an energetic approach, the equivalent properties of spatial lattices of rectangular cross-section with different lattice patterns were obtained. These indicated properties are necessary for the simplified modeling of the lattice as a equivalent beam-column. The objective of this work is to carry out the implementation of these equivalent properties in various structural systems that are commonly used in professional practice, and with it, assess its convenience. In order to validate the performance of the proposed simplified modeling, numerical simulations were carried out on different cases of spatial lattices. The results found allow us to establish an adequate behavior of the proposed modeling, with the advantage of its low computational cost of modeling and processing.

1. INTRODUCCIÓN

Las estructuras reticuladas espaciales están formadas por un gran número de elementos simples tales como largueros, diagonales y montantes. Debido a esa gran cantidad de elementos que forman parte del reticulado, la modelación numérica puede implicar un esfuerzo y costo computacional significativo, más aún, si la estructura está formada por varios reticulados como podría ser en el caso de un pórtico reticulado.

Diversos desarrollos basados en un planteo energético han permitido obtener modelos simplificados para la representación de reticulados espaciales. En ese sentido se puede citar a Salehian (2008) quien desarrolló un modelo 1D continuo para la representación de un reticulado espacial de sección transversal triangular con un único patrón de reticulación, utilizado para soportar paneles solares de satélites. O también, los modelos desarrollados para el análisis de reticulados espaciales de sección transversal triangular (Guzmán et al., 2019) y de sección transversal rectangular (Guzmán y Roldan, 2021), desarrollados en estos casos para cuatro patrones distintos de reticulación.

El interés por desarrollar modelos simplificados para la representación de reticulados espaciales, en especial los de sección transversal rectangular, se debe principalmente a que son ampliamente utilizados para constituir diversos sistemas estructurales tales como columnas, vigas y pórticos, entre otros (Fig. 1).

Figura 1: Reticulados de sección transversal rectangular.

En ese sentido y como anteriormente se citó, a partir de un planteo energético Guzmán y Roldan (2021) obtuvieron las propiedades equivalentes para la representación como vigacolumna de un reticulado espacial de sección transversal rectangular. El estudio abordó cuatro patrones distintos de reticulación.

Como conclusiones de este estudio se destaca que la posibilidad de una representación de menor complejidad como resulta ser la formulación viga-columna, reduce significativamente el tiempo necesario para la construcción del modelo numérico, donde los esfuerzos internos (esfuerzos axiales) que determinan el comportamiento estructural de cada elemento del reticulado, son fácilmente recuperables conociendo en el modelo numérico las fuerzas que actúan en la posición x de interés y aplicando las ecuaciones analíticas que se proponen para tal fin.

El objetivo del presente trabajo es poder implementar estas propiedades equivalentes que fueron determinadas, formalizando así modelos numéricos simplificados que permitan el análisis estructural de reticulados espaciales de sección transversal rectangular. Para dicha implementación, se toman como casos de estudio diversos sistemas estructurales que resultan de uso habitual en la práctica profesional, permitiendo así validar el desempeño de la modelación propuesta a partir de casos concretos.

2. PROPIEDADES EQUIVALENTES

Las propiedades equivalentes son relaciones matemáticas de equivalencia que permiten representar de manera más simple, un problema físico inicialmente más complejo.

En el caso de los reticulados espaciales de sección transversal rectangular, las propiedades equivalentes permiten la representación del problema espacial (3D) a través de una modelación simplificada como resulta ser el modelo equivalente (1D) viga-columna (Fig. 2).

Figura 2: Reticulado de sección transversal rectangular. a) Modelo 3D. b) Modelo 1D.

Por ejemplo en el caso de mástiles reticulados y arriostrados, es habitual en el diseño utilizar modelos equivalentes para la representación simplificada del mástil, resultando ello en un menor costo computacional (Madugula et al., 1998; Wahba et al., 1998).

Para la obtención de estas propiedades equivalentes, se pueden seguir distintos planteos, como el caso de Ben Kahla (Kahla, 1995) quien basado en un planteo de flexibilidad determinó las propiedades elásticas equivalentes para distintos patrones de reticulado de sección transversal triangular, o como el caso de Salehian (Salehian, 2008) quien utilizó un planteo energético.

En el presente trabajo se implementan las propiedades equivalentes para la representación como viga-columna de reticulados espaciales de sección transversal rectangular, cuyo desarrollo y formulación fueron obtenidos por Guzmán y Roldan (2021) a partir de un planteo energético. Se destaca que el estudio abordó cuatro patrones distintos de reticulación, referenciados como Patrón 1, 2, 3 y 4 (Fig. 3).

Figura 3: Reticulados de sección transversal rectangular con distintos patrones de reticulación.

En Figura 4 se presentan las designaciones adoptadas para referenciar los parámetros geométricos de la sección transversal, tales como sus lados y el paso entre diagonales, y también, los parámetros geométricos y mecánicos de los elementos que constituyen el reticulado espacial.

Figura 4: Referencia de los parámetros geométricos y mecánicos del reticulado.

En Tabla 1 se presentan las propiedades equivalentes para cada uno de los patrones de reticulación considerados, donde resulta: $(EA)_0$ rigidez axial; $(GA_B)_0$ y $(GA_D)_0$ rigideces transversales respectivamente en la dirección de y y z; $(GJ_x)_0$ rigidez torsional; $(\rho A)_0$, $(\rho J_{xD})_0$ y $(\rho J_{xB})_0$ inercias traslacionales respectivamente en la dirección de x, y y z; mientras que r_{do} está relacionado a una contribución inercial de las diagonales.

Por otra parte, la relación entre los giros flexionales y los desplazamientos transversales permiten establecer las propiedades equivalentes asociadas a la rigidez flexional $(EJ_y)_0$ y $(EJ_z)_0$; e inercia flexional $(\rho J_y)_0$ y $(\rho J_z)_0$ de la sección transversal en las direcciones y y z respectivamente. En Tabla 2 se presentan dichas propiedades equivalentes relacionadas.

	Patrón 1	Patrón 2
piedades ivalentes		
Pro equ		
$(EA)_o$	$4E_lA_l + \frac{1}{2}E_d\left(A_{dB}\sin^3\alpha_B + A_{dD}\sin^3\alpha_D\right)$	$4E_lA_l + \frac{1}{2}E_d \Big(A_{dB}sin^3\alpha_B + A_{dD}sin^3\alpha_D \Big)$
$(GA_B)_o$	$2E_d A_{dB} sin \alpha_B \cos^2 \alpha_B$	$2E_d A_{dB} sin \alpha_B \cos^2 \alpha_B$
$(GA_D)_o$	$2E_d A_{dD} sin \alpha_D \cos^2 \alpha_D$	$2E_d A_{dD} sin \alpha_D \ cos^2 \alpha_D$
$(GJ_x)_o$	$\frac{1}{4} \Big((GA_B)_{o1} D^2 + (GA_D)_{o1} B^2 \Big)$	$\frac{1}{4} \Big((GA_B)_{o1} D^2 + (GA_D)_{o1} B^2 \Big)$
$(\rho A)_o$	$4\rho_l A_l + 2\rho_d \left(\frac{A_{dD}}{\sin\alpha_D} + \frac{A_{dB}}{\sin\alpha_B}\right)$	$4\rho_l A_l + 2\rho_d \left(\frac{A_{dD}}{\sin\alpha_D} + \frac{A_{dB}}{\sin\alpha_B}\right) + 2\rho_s \left(\frac{A_{sD}}{\tan\alpha_D} + \frac{A_{sB}}{\tan\alpha_B}\right)$
$(\rho J_x)_o$	$\left(\rho J_{xD}\right)_{o} + \left(\rho J_{xB}\right)_{o}$	$\left(\rho J_{xD}\right)_{o} + \left(\rho J_{xB}\right)_{o}$
$(\rho J_{xD})_o$	$\left[\rho_l A_l + \frac{1}{6}\rho_d \left(\frac{A_{dD}}{sin\alpha_D} + 3\frac{A_{dB}}{sin\alpha_B}\right)\right] D^2$	$\left[\rho_l A_l + \frac{1}{6}\rho_d \left(\frac{A_{dD}}{\sin\alpha_D} + 3\frac{A_{dB}}{\sin\alpha_B}\right) + \frac{1}{6}\rho_s \left(\frac{A_{sD}}{\tan\alpha_D} + 3\frac{A_{sB}}{\tan\alpha_B}\right)\right] D^2$
$(\rho J_{xB})_o$	$\left[\rho_l A_l + \frac{1}{6}\rho_d \left(3\frac{A_{dD}}{\sin\alpha_D} + \frac{A_{dB}}{\sin\alpha_B}\right)\right] B^2$	$\left[\rho_l A_l + \frac{1}{6}\rho_d \left(3\frac{A_{dD}}{\sin\alpha_D} + \frac{A_{dB}}{\sin\alpha_B}\right) + \frac{1}{6}\rho_s \left(3\frac{A_{sD}}{\tan\alpha_D} + \frac{A_{sB}}{\tan\alpha_B}\right)\right] B^2$
r_{do}	$rac{1}{6} ho_d \Big(rac{A_{dD}}{sinlpha_D}+rac{A_{dB}}{sinlpha_B}\Big)\Delta^2$	$rac{1}{6} ho_d \Big(rac{A_{dD}}{sinlpha_D}+rac{A_{dB}}{sinlpha_B}\Big)\Delta^2$
· · · · · · · · · · · · · · · · · · ·		
	Patrón 3	Patrón 4
dades lentes	Patrón 3	Patrón 4
ropiedades quivalentes	Patrón 3	Patrón 4
Propiedades equivalentes	Patrón 3	Patrón 4
$\begin{tabular}{c} Propiedades \\ equivalentes \\ e$	Patrón 3 $AE_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$	Patrón 4 $A = \sum_{l=1}^{l} A_{l} + E_{d} \left(A_{dB} sin^{3} \alpha_{B} + A_{dD} sin^{3} \alpha_{D} \right)$
$[(EA)_o] (GA_B)_o$	Patrón 3 $AE_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{d}A_{dB}sin\alpha_{B}\cos^{2}\alpha_{B}$	Patrón 4 $A = \begin{bmatrix} A \\ B \end{bmatrix}$ $4E_l A_l + E_d \left(A_{dB} sin^3 \alpha_B + A_{dD} sin^3 \alpha_D \right)$ $4E_d A_{dB} sin \alpha_B \cos^2 \alpha_B$
$[(EA)_o] \\ (GA_B)_o \\ (GA_D)_o $	Patrón 3 Patrón 3 $4E_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{d}A_{dB}sin\alpha_{B}\cos^{2}\alpha_{B}$ $4E_{d}A_{dD}sin\alpha_{D}\cos^{2}\alpha_{D}$	Patrón 4 $A = \begin{bmatrix} P \\ P$
$\begin{tabular}{ c c c c } \hline & & & & & \\ \hline & & & & & & \\ \hline & & & &$	Patrón 3 Patrón 3 $4E_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{d}A_{dB}sin\alpha_{B}\cos^{2}\alpha_{B}$ $4E_{d}A_{dD}sin\alpha_{D}\cos^{2}\alpha_{D}$ $\frac{1}{4}\left((GA_{B})_{o1}D^{2} + (GA_{D})_{o1}B^{2}\right)$	Patrón 4 $A = Patrón 4$ $A = Patr$
$\begin{tabular}{ c c c c } \hline & & & & & \\ \hline & & & & & & \\ \hline & & & &$	$\begin{array}{c} \textbf{Patrón 3} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Patrón 4 Patrón 4 $AE_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{d}A_{dB}sin\alpha_{B}\cos^{2}\alpha_{B}$ $4E_{d}A_{dD}sin\alpha_{D}\cos^{2}\alpha_{D}$ $\frac{1}{4}\left((GA_{B})_{o1}D^{2} + (GA_{D})_{o1}B^{2}\right)$ $4\left[\rho_{l}A_{l} + \rho_{d}\left(\frac{A_{dD}}{sin\alpha_{D}} + \frac{A_{dB}}{sin\alpha_{B}}\right) + \frac{1}{2}\rho_{s}\left(\frac{A_{sD}}{tan\alpha_{D}} + \frac{A_{sB}}{tan\alpha_{B}}\right)\right]$
$[(EA)_o \\ (GA_B)_o \\ (GA_D)_o \\ (GJ_x)_o \\ (\rho A)_o \\ (\rho J_x)_o $	Patrón 3 Patrón 3 $AE_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{d}A_{dB}sin\alpha_{B}cos^{2}\alpha_{B}$ $4E_{d}A_{dD}sin\alpha_{D}cos^{2}\alpha_{D}$ $\frac{1}{4}\left((GA_{B})_{o1}D^{2} + (GA_{D})_{o1}B^{2}\right)$ $4\left[\rho_{l}A_{l} + \rho_{d}\left(\frac{A_{dD}}{sin\alpha_{D}} + \frac{A_{dB}}{sin\alpha_{B}}\right)\right]$ $\left(\rho J_{xD}\right)_{o} + \left(\rho J_{xB}\right)_{o}$	Patrón 4 Patrón 4 $ \begin{array}{c} & & \\ & $
$\begin{tabular}{ c c c c c } \hline & & & & & \\ \hline & & & & & \\ \hline & & & & &$	Patrón 3 Patrón 3 $AE_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{d}A_{dB}sin\alpha_{B}cos^{2}\alpha_{B}$ $4E_{d}A_{dD}sin\alpha_{D}cos^{2}\alpha_{D}$ $\frac{1}{4}\left((GA_{B})_{o1}D^{2} + (GA_{D})_{o1}B^{2}\right)$ $4\left[\rho_{l}A_{l} + \rho_{d}\left(\frac{A_{dD}}{sin\alpha_{D}} + \frac{A_{dB}}{sin\alpha_{B}}\right)\right]$ $\left(\rho_{JxD}\right)_{o} + \left(\rho_{JxB}\right)_{o}$ $\left[\rho_{l}A_{l} + \frac{1}{3}\rho_{d}\left(\frac{A_{dD}}{sin\alpha_{D}} + 3\frac{A_{dB}}{sin\alpha_{B}}\right)\right]D^{2}$	$Patrón 4$ $AE_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{d}A_{dB}sin\alpha_{B}cos^{2}\alpha_{B}$ $4E_{d}A_{dD}sin\alpha_{D}cos^{2}\alpha_{D}$ $\frac{1}{4}\left((GA_{B})_{o1}D^{2} + (GA_{D})_{o1}B^{2}\right)$ $4\left[\rho_{l}A_{l} + \rho_{d}\left(\frac{A_{dD}}{sin\alpha_{D}} + \frac{A_{dB}}{sin\alpha_{B}}\right) + \frac{1}{2}\rho_{s}\left(\frac{A_{sD}}{tan\alpha_{D}} + \frac{A_{sB}}{tan\alpha_{B}}\right)\right]$ $\left(\rho J_{xD}\right)_{o} + \left(\rho J_{xB}\right)_{o}$ $\left[\rho_{l}A_{l} + \frac{1}{3}\rho_{d}\left(\frac{A_{dD}}{sin\alpha_{D}} + 3\frac{A_{dB}}{sin\alpha_{B}}\right) + \frac{1}{6}\rho_{s}\left(\frac{A_{sD}}{tan\alpha_{D}} + 3\frac{A_{sB}}{tan\alpha_{B}}\right)\right]D^{2}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{Patrón 3} \\ \hline \\ $	$Patrón 4$ $AE_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{l}A_{l} + E_{d}\left(A_{dB}sin^{3}\alpha_{B} + A_{dD}sin^{3}\alpha_{D}\right)$ $4E_{d}A_{dB}sin\alpha_{B}cos^{2}\alpha_{B}$ $4E_{d}A_{dD}sin\alpha_{D}cos^{2}\alpha_{D}$ $\frac{1}{4}\left((GA_{B})_{o1}D^{2} + (GA_{D})_{o1}B^{2}\right)$ $4\left[\rho_{l}A_{l} + \rho_{d}\left(\frac{A_{dD}}{sin\alpha_{D}} + \frac{A_{dB}}{sin\alpha_{B}}\right) + \frac{1}{2}\rho_{s}\left(\frac{A_{sD}}{tan\alpha_{D}} + \frac{A_{sB}}{tan\alpha_{B}}\right)\right]$ $\left(\rho J_{xD}\right)_{o} + \left(\rho J_{xB}\right)_{o}$ $\left[\rho_{l}A_{l} + \frac{1}{3}\rho_{d}\left(\frac{A_{dD}}{sin\alpha_{D}} + 3\frac{A_{dB}}{sin\alpha_{B}}\right) + \frac{1}{6}\rho_{s}\left(\frac{A_{sD}}{tan\alpha_{D}} + 3\frac{A_{sB}}{tan\alpha_{B}}\right)\right]D^{2}$ $\left[\rho_{l}A_{l} + \frac{1}{3}\rho_{d}\left(3\frac{A_{dD}}{sin\alpha_{D}} + \frac{A_{dB}}{sin\alpha_{B}}\right) + \frac{1}{6}\rho_{s}\left(3\frac{A_{sD}}{tan\alpha_{D}} + \frac{A_{sB}}{tan\alpha_{B}}\right)\right]B^{2}$

Tabla 1: Propiedades equivalentes (Guzmán y Roldan, 2021).

En cuanto a los esfuerzos internos en cada elemento del reticulado, estos pueden ser fácilmente recuperados a partir de los esfuerzos resultantes en el modelo simplificado viga-columna.

A.M. GUZMAN

Tabla 2: Propiedades equivalentes relacionadas (Guzmán y Roldan, 2021).

Siendo $M_{\theta_{wo}(x)}$ (momento flector alrededor de z), $M_{\theta_{vo}(x)}$ (momento flector alrededor de y), y $N_{uo(x)}$ (esfuerzo axial en la dirección de x) las fuerzas que actúan en la viga-columna a la altura x, el esfuerzo axial en los largueros resulta:

$$N_l = \frac{N_{uo(x)}}{4} + \frac{M_{\theta_{wo}(x)}}{2B} + \frac{M_{\theta_{vo}(x)}}{2D}$$
(1)

Por otra parte, a partir de los esfuerzos de corte que resultan en la viga-columna, se obtienen los esfuerzos axiales en las diagonales. Siendo $S_{vo(x)}$ (esfuerzo de corte en la dirección de y) y $S_{wo(x)}$ (esfuerzo de corte en la dirección de z) las fuerzas que actúan en la viga-columna a la altura x, el esfuerzo axial en las diagonales resulta:

$$N_{dB} = \frac{S_{vo(x)}}{2cos\alpha_B} \quad ; \quad N_{dD} = \frac{S_{wo(x)}}{2cos\alpha_D} \tag{2}$$

3. CASOS DE ANÁLISIS

A fin de evaluar el desempeño de la modelación simplificada, se proponen distintos casos de estructuras reticuladas de sección rectangular (sección cuadrada, como un caso particular) y de uso habitual en la práctica profesional. Sobre estos casos se evalúa el desempeño numérico de la modelación propuesta implementando las propiedades equivalentes presentadas.

Para dicha evaluación, se utilizó un software comercial de elementos finitos (SAP2000, 2007), comparando así los resultados obtenidos en el modelo espacial (3D), con aquellos resultados obtenidos en el modelo simplificado (1D) propuesto.

3.1. Columna en voladizo

Se presenta el caso de una columna empotrada-libre, de 12.0 m de altura y con una carga en la dirección de y de 40 kN aplicada en su extremo libre. La sección transversal es 1.0x1.0 m y con un patrón de reticulación definido como "patrón 2"(Fig. 5). En Tabla 3 se indican los parámetros mecánicos y geométricos de los elementos que constituyen la columna reticulada, en tanto que en Tabla 4 se comparan los resultados obtenidos en las respectivas modelaciones 3D y 1D.

Figura 5: Columna reticulada. a) Modelos 3D y 1D. b) Estructura deformada.

Parámetro	Notación	Valor	Unidad
Lado B	В	1.00	m
Lado D	D	1.00	m
Longitud de los largueros	L_l	12.0	m
Sección de los largueros	A_l	1.393×10^{-3}	m^2
Momento de inercia de los largueros	$J_{ly} = J_{lz}$	8.569×10^{-7}	m^4
Separación de diagonales	Δ	2.0	m
Sección de las diagonales y montantes del lado B	$A_{dB} = A_{sB}$	$6.885 \text{x} 10^{-4}$	m^2
Sección de las diagonales y montantes del lado D	$A_{dD} = A_{sD}$	6.885×10^{-4}	m^2
Módulo de elasticidad	$E_l = E_d$	200000	MPa
Densidad de masa	$\rho_l = \rho_d$	7850	kg/m ³

Tabla 3: Parámetros geométricos y mecánicos de la columna reticulada considerada.

Tabla 4: Resultados numéricos obtenidos. Modelo 3D vs. modelo simplificado 1D.

Respuesta estructural	Modelo 3D	Modelo 1D	Diferencia [%]
Deformación horizontal máxima [mm]	87.3	84.0	3.8
Esfuerzo normal máximo en larguero [kN]	242.8	243.0	0.1
Esfuerzo normal máximo en diagonal [kN]	29.2	28.3	3.1
Periodo flexional [s]	0.161	0.155	3.7

3.2. Viga simplemente apoyada

Se presenta el caso de una viga de 20.0 m de vano, con cargas puntuales de 1.5 kN aplicadas en la dirección de x cada 1.0 m de separación. La sección transversal es de 0.3x0.8 m y con un patrón de reticulación definido como "patrón 1"(Fig. 6). En Tabla 5 se indican los parámetros mecánicos y geométricos de los elementos que constituyen la viga reticulada, en tanto que en Tabla 7 se comparan los resultados obtenidos en las respectivas modelaciones 3D y 1D.

Figura 6: Viga reticulada. a) Modelos 3D y 1D. b) Estructura deformada.

Parámetro	Notación	Valor	Unidad
Lado B	В	0.30	m
Lado D	D	0.80	m
Longitud de los largueros	L_l	20.0	m
Sección de los largueros	A_l	3.142×10^{-4}	m^2
Momento de inercia de los largueros	$J_{ly} = J_{lz}$	7.854×10^{-9}	m^4
Separación de diagonales	Δ	0.5	m
Sección de las diagonales del lado B	A_{dB}	$7.854 \mathrm{x} 10^{-5}$	m^2
Sección de las diagonales del lado D	A_{dD}	$1.539 \mathrm{x} 10^{-4}$	m^2
Módulo de elasticidad	$E_l = E_d$	200000	MPa
Densidad de masa	$\rho_l = \rho_d$	7850	kg/m ³

Tabla 5: Parámetros geométricos y mecánicos de la viga reticulada considerada.

Tabla 6: Resultados numéricos obtenidos. Modelo 3D vs. modelo simplificado 1D.

Respuesta estructural	Modelo 3D	Modelo 1D	Diferencia [%]
Deformación vertical máxima [mm]	82.0	81.3	0.9
Esfuerzo normal máximo en larguero [kN]	46.8	46.9	0.2
Esfuerzo normal máximo en diagonal [kN]	7.5	7.5	0.0
Periodo flexional [s]	0.185	0.184	0.5

3.3. Pórtico empotrado

Se presenta el caso de un pórtico de un vano y un nivel. La separación entre ejes de columnas es de 9.5 m, mientras que la altura al eje de la viga es de 7.0 m. Las columnas presentan una sección transversal de 0.3x0.5 m, en tanto que la viga, una sección de 0.3x0.7 m. Tanto las columnas como la viga presentan un patrón de reticulación del tipo "patrón 3"(Fig. 7). El pórtico se encuentra sujeto a una excitación dinámica, utilizando para ello la componente horizontal 000 del terremoto de Kobe (Japón, 1995) registrada en la estación KJM, con un PGA de 0.821 g. En Tabla 8 se indican los parámetros mecánicos y geométricos de los elementos que constituyen el pórtico reticulado, en tanto que en Tabla 9 se comparan los resultados obtenidos en las respectivas modelaciones 3D y 1D.

Figura 7: Pórtico reticulado. Modelos 3D y 1D sujetos a un registro sísmico.

Parámetro	Notación	Valor	Unidad
Lado B de columna	В	0.30	m
Lado D de columna	D	0.50	m
Lado B de viga	В	0.30	m
Lado D de viga	D	0.70	m
Sección de los largueros en columna y viga	A_l	2.011×10^{-4}	m^2
Momento de inercia de los largueros en columna y viga	$J_{ly} = J_{lz}$	3.217×10^{-9}	m^4
Separación de diagonales en columna	Δ	0.5	m
Separación de diagonales en viga	Δ	0.9	m
Sección de las diagonales del lado B en columna y viga	A_{dB}	5.027×10^{-5}	m^2
Sección de las diagonales del lado D en columna y viga	A_{dD}	1.131×10^{-4}	m^2
Módulo de elasticidad	$E_l = E_d$	200000	MPa
Densidad de masa	$\rho_l = \rho_d$	7850	kg/m ³

Tabla 7: Parámetro	s geométricos	y mecánicos del	pórtico	reticulado	considerado.
			P		

Tabla 8: Resultados numéricos obtenidos. Modelo 3D vs. modelo simplificado 1D.

Respuesta estructural	Modelo 3D	Modelo 1D	Diferencia [%]
Deformación horizontal máxima [mm]	4.8	5.1	5.3
Periodo flexional [s]	0.133	0.135	1.5

4. CONCLUSIONES

En el presente trabajo de investigación, se han implementado las propiedades equivalentes necesarias para la representación simplificada propuesta, modelo 1D, para el caso de reticulados espaciales de sección transversal rectangular.

A fin de evaluar el desempeño de dicha modelación, se analizaron tres casos de estructuras reticuladas de uso habitual en la práctica profesional. De lo evaluado, se permiten obtener las siguientes conclusiones:

. La implementación del modelo simplificado 1D no sólo reduce significativamente el tiempo necesario para la construcción del modelo numérico, sino que también, reduce considerablemente el costo de procesamiento computacional.

. La máxima diferencia porcentual encontrada entre los resultados obtenidos con el modelo 3D y los obtenidos con el modelo simplificado 1D, resultó del orden del 5 %, considerando a dicha diferencia como aceptable en el campo de la practica profesional.

. El adecuado desempeño numérico, sumado al bajo costo computacional de modelación y procesamiento, permiten inferir que el modelo simplificado 1D es una estrategia válida y conveniente para el análisis de estructuras reticuladas espaciales de sección transversal rectangular.

AGRADECIMIENTOS

El autor agradece a la Secretaría de Ciencia y Tecnología de la Universidad Tecnológica Nacional por el financiamiento al proyecto UTI6619TC, y al Centro Regional de Desarrollos Tecnológicos CeReDeTeC, Facultad Regional Mendoza, Argentina.

REFERENCIAS

- Guzmán A. y Roldan V. Equivalent properties for analysis as beam-column of steel spatial lattices of rectangular cross-section. *Advanced Steel Construction*, 17:95–103, 2021.
- Guzmán A., Rosales M., y Filipich C. Continuous one-dimensional model of a spatial lattice. deformation, vibration and buckling problems. *Engineering Structures*, 182:290–300, 2019.
- Kahla B. Equivalent beam-column analysis of guyed towers. *Computers and Structures*, 55, 1995.
- Madugula M., Wahba Y., y Monforton G. Dynamic response of guyed masts. *Engineering Structures*, 20, 1998.
- Salehian A. *Micropolar Continuum Modeling of Large Space Structures with Flexible Joints and Thermal Effects: Theory and Experiment.* Ph.D. thesis, Virginia Polytechnic Institute and State University, 2008.
- SAP2000. *Analysis Reference Manual v11*. Computers and Structures, Inc., CSi., Berkeley, California, USA, 2007.
- Wahba Y., Madugula M., y Monforton G. Evaluation of non-linear analysis of guyed antenna towers. *Computers and Structures*, 68:207–212, 1998.