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Abstract.

In this article, the run-times associated to a Monte Carlo simulation are studied from a stochastic

perspective for a problem consisting of an oscillator with uncertain dry friction that can exhibit stick-slip

vibrations. Some of the novelties of the paper are that the run-times are modeled as random variables,

which is not a common approach; and that a comparison of the run-times obtained with two different

simulation strategies is included to assess their performance. In one of the simulations, the Monte Carlo

(MC) is used in combination with a Runge-Kutta numerical integration scheme. In another, the MC

method combined with an analytical approximation obtained with the Multiple Scales method is used.

The hypotheses that some characteristics of the friction force and the stick-phase duration may have a

direct influence on the run-time are investigated. The dependency of the run-times on the magnitude

of the dynamic friction and the first stick-duration is explored, and the histograms for the run-times are

constructed. The results, for 5 · 105 realizations, show that the run-times where an analytical approxi-

mation was used are, in mean, 3.8 times faster than those of the numerical integration, and they are also

less sensitive to variations considering that the standard deviation is 2.7 times smaller. The improve-

ment observed in the run-time obtained with the analytical approximation can be a determining factor

for the feasibility of a stochastic study, given that the Monte Carlo approach requires a large number of

realizations to calculate a statistical model with accuracy.
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1 INTRODUCTION

A mathematical model is, in general, composed by some inputs, a transformation (e.g. an

equation or an initial value problem), and some outputs, that are objects of interest. When some

of the inputs are random, characterized as for example random variables, the outputs become

random too. In these cases, given the probabilistic models of the inputs, one of the objectives

could be to determine the probabilistic models of the outputs.

However, for a great number of stochastic problems, to determine the probabilistic models

of the outputs is not a simple task. It can be a challenge, especially when the problem involves

differential equations. In these situations, an option to deal with the problem is to construct

approximations to the probabilistic models of the outputs using statistical models.

One of the most common tools used to construct such statistical models is the method of

Monte Carlo (MC), as shown in Sobol (1994). To construct the statistical models, the method

transforms the stochastic problem into many deterministic ones. In each one of them, a realiza-

tion of the random input is used. First, a random sample of the input is generated. Then, each

realization of the sample is transformed according to the given mathematical transformation.

The obtained results, which are samples of output, are stored and used to construct a statistical

model.

Even though each realization is deterministic in nature, neither the inputs, the outputs, or

the computational costs are. Moreover, the elevated number of calculations required to assure

an accurate statistical model makes the MC method a big data problem, especially when the

transformation is given by a differential equation that is solved by numerical integration, as

shown in Lima and Sampaio (2017, 2021). Given that the computational resources are limited,

the computational costs, such as the total run-time, can be of the utmost importance.

In this paper, an analysis of the computational cost associated to the simulation run-time of

a random oscillator is tackled from a stochastic perspective. A comparison is made consider-

ing two cases where 1) the MC method is combined with a Runge-Kutta numerical integration

scheme; and 2) the MC is combined with an analytical approximation based on the Multiple

Scale method. Up to the authors’ knowledge, this study is a novelty given that most papers con-

cerning stochastic simulations ignore the fact that the run-times are also of stochastic nature,

Wilhelm et al. (2008); Lee et al. (2009). Eventually, the run-times play a role in determin-

ing whether a stochastic analysis is feasible or not, and their behavior could have an impact

regarding the efficient assignment of the available resources.

In the context of the dry friction oscillator that can exhibit stick-slip vibrations, the accuracy

of the response in the numerical integrations is related to time-step used, as it influences the ac-

curacy with which the transitions are captured. In other words, an improvement in the accuracy

of the numerical integrations is usually linked to a decrease in the integration time-step, but the

smaller the step, the higher the amount of data generated and the higher the run-time required.

For this reason, the hypothesis that the stick-phase duration and the magnitude of the dry fric-

tion have a direct influence on the run-time is explored, especially when numerical integrations

are used. Also, the MC with analytical approximations is employed as a means to improve the

computation costs, and the results of both approaches are compared.

2 SYSTEM DYNAMICS AND DEFINITION OF THE STICK AND SLIP PHASES

The system analyzed in this paper is composed of a spring, a damper, and a mass that slides

over a constant-speed moving belt, as shown in Fig. 1. The dry friction between the two

surfaces in contact can induce stick-slip vibrations. When this occurs, the system’s response is
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characterized by two different behaviors, called stick and slip phases. These phases alternate

with an abrupt transition and have a non-zero duration, that is, they are not instantaneous.

Figure 1: Mass-spring-damper system with dry friction.

The initial value problem (IVP) for the system is given by

m ÿ(t) + µ ẏ(t) + k y(t) = fat(V ) , (1)

with initial conditions y(0) and ẏ(0). In the previous equations, y is the position of the mass m,

µ the damping coefficient, k the spring constant, fat the friction force between the mass and the

belt and V the relative velocity between them. For V ̸= 0, the friction force is modeled as

fat(V ) =
1

3
a V (V 2 − 3) + fd sign(V ) (2)

where V = (v − ẏ), a is constant, v is the speed of the belt, and fd is the dynamic friction

force. For V = 0, the dry friction force can assume values between [−fe, fe], where fe is the

magnitude of the static friction. Fig. 2 shows how the friction force varies with V .

-2 -1 0 1 2

-1

0

1

Figure 2: Friction force model with a = 0.1 and fd = 0.5.

Due to the discontinuity in the transition between static and dynamic frictions, the dynamic

is discontinuous and the solution is expressed with a piece-wise switch as

y(t) =

�

yj(t) , if stick conditions are met

yp(t) , otherwise
(3)

where yj(t) is the solution corresponding to the stick phases, yp(t) is the solution to the slip

phases, with

j ∈ [1, ..., Nsticks], p ∈ [1, ..., Nslips], l ∈ [1, ..., Nsticks +Nslips] (4)

In the previous, Nsticks and Nslips are the total number of sticks and slips phases, respectively.

The conditions to predict whether the current phase is a stick or a slip will be obtained in what
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comes next. In all cases, the notation t0,l f t f te,l is used to refer to the beginning and ending

instant of each phase l, whether a stick or slip.

The stick phase exhibits the following properties: a null relative velocity, V = 0, and a

friction force that lies within the interval −fe f fat f fe . During a stick phase, the velocity

of the mass equals the belt velocity, ẏj(t) = v, therefore the mass acceleration is zero, ÿj(t) = 0.

Using these observations in combination with Eq. (1), one obtains

µ v + k yj = fat , (5)

that, together with −fe f fat f fe give an expression limiting the values that y can take for

stick phases to occur. These limits are given by

−fe − µ v

k
f yj f fe − µ v,

k
. (6)

During this phase the mass exhibits uniform motion with an analytical solution given by

yj(t) = yj(t = t0,l) + v(t− t0,l) for t0,l f t f te,l, (7)

where t0,l and te,l are the instants associated to the start and the end of the j-th phase, in this

case, a stick, respectively. Thus, yj(t = t0,j) represents the position of the mass at the instants

of initiation of the stick phases. These values also coincide with the position of the mass at the

end of the immediately previous slip phase.

If the system is not in a stick phase, then it is in a slip phase. In this case, the relative velocity

between the mass and the belt is different from zero and the friction forces are defined by Eq.

(2), so Eq. (1) becomes

m ÿp(t) + µ ẏp(t) + k yp(t) =
1

3
a V (V 2 − 3) + fd sign(V ) . (8)

As we can observe from the equation above, the slip phase is governed by a nonlinear IVP with

an unknown analytical solution. For each slip phase we will compute an analytical approxima-

tion using the Multiple Scale method. A detailed derivation of the previous equations can be

found in Gomes et al. (2021).

Summarizing the results obtained so far, the solution of this problem can be written as a

piece-wise response in the form of

y(t) =

�

yj(t) = yj(t = t0,l) + v(t− t0,l) , if − fe f fat f fe and −fe − γ v

k
f y f fe − γ v,

k

yp(t) , otherwise

(9)

where the condition to check if the current state corresponds to a stick or a slip phase have been

is now stated explicitly.

3 THE ANALYTICAL APPROXIMATION

The perturbation method used in this paper is the Multiple Scale method. The central idea of

this technique is to transform the often complex IVP with an unknown analytical solution into

a family of linear IVPs with known analytical solution, by introducing a perturbation parameter

Kevorkian and Cole (1996). To do this, a solution in the form of a power series of the perturba-

tion parameter is proposed. When the proposal is introduced into the equation, by application
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of the Fundamental Theorem of Perturbation Theory, a new set of IVP is obtained Simmonds

and Mann (1988). To compute a solution all these linear IVPs should be solved hierarchically,

but this is an impossible task, as it would involve solving an infinite number of IVPs. For this

reason, we produce an N-order approximation by truncating the series. The number of terms is

related to the quality of the approximation, i.e. the domain of validity . The details to computing

an analytical approximation to the solution of Eq. (8) are explained in Gomes et al. (2021). A

first-order approximation is given by

yp(t) ≈ ez (t−t0,l) [C1,p cos(
√
k (t− t0,l)) + C2,p sin(

√
k (t− t0,l))] +

fd
k
, (10)

where ϵ is a perturbation parameter that was included in Eq. (8) as a factor multiplying ẏp,

z = ϵ(a− µ)/2, C1,p = yp(t = t0,l)− fd/k e C2,p = [ẏp(t = t0,l))− zd]/
√
k. The value of the

expressions yp(t = t0,l) and ẏp(t = t0,l) vary. At the beginning of the simulation, they match

the initial conditions y(0) and ẏ(0), respectively. After that, they coincide with the value at the

ending of the previous phase, that is, if the current phase is a slip: yp(t = t0,l) = yj(t = te,l−1)
and ẏp(t = t0,l) = ẏj(t = te,l−1). Otherwise, yj(t = t0,l) = yp(t = te,l−1) and ẏj(t = t0,l) =
ẏp(t = te,l−1).

One of the features of the Perturbation Theory is that the perturbation parameter should

assume small values, i.e., ϵ << 1 Simmonds and Mann (1988). Thus, once the value of z
depends on ϵ, the value of z is also small, i.e, z → 0 and consequently ez t → 1. With these

assumptions and using trigonometric transformations, Eq. (10) can be rewritten as

yp(t) ≈ C3,p cos(
√
k (t− t0,l) − C4,p) +

fd
k

(11)

where C3,p =
�

C2
1,p + C2

2,p and C4,p = atan(C2,p/C1,p). This rewriting of Eq. (11) is used as

an aid to calculating an expression for the transition instants between phases.

4 TRANSITION INSTANTS BETWEEN STICK-SLIP PHASES

As already described, this system exhibits a dynamics characterized by two highly distinctive

phases. The mass during stick phases has a uniform motion given by Eq. (5). While during

slip phases, the movement is given by a nonlinear expression as in Eq. (8). The principal

information about this dynamic is the transition instants between phases.

When numerical integrations are used, a small time-step is often needed to resolve each

phase as well as to accurately capture the transition instant between phases. But the smaller the

time-step, the more calculations are required, and the more costly the problem is. This can be a

decisive factor for the feasibility of the problem. In addition, the conditions of the stick and slip

phases must be tested at every single time-step. All these details influence the run-time of the

numerical integrations. In contrast, an analytical approximation is valid for the whole duration

of the current phase, and from it the transition instants can be calculated directly, reducing the

computation cost.

To calculate the transition instants analytically, the parameter t is isolated in the right side of

the Eq. (7) and (11) accordingly to the condition of each phase. First, we calculate the transition

instants from of the stick-to-slip phases using Eq. (7). The stick phase is defined by the relative

velocity between the mass and the belt being equal to zero and the mass position being in the

range of (ymin , ymax). The sign of the belt velocity determines if the mass position is either

ymin or ymax at the stick-to-slip transition instant. So, we have
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yj(t = t0,l) + v (t− t0,l) =

�

ymax, if v > 0

ymin, if v < 0
(12)

and depending on the sign of the belt velocity, the transition instants for the stick-to-slip phases

are given by

t =



















ymax − yj(t = t0,l)

v
+ t0,l, if v > 0

ymin − yj(t = t0,l)

v
+ t0,l. if v < 0

(13)

To calculate the transition instants from slip-to-stick phases, Eq. (11) is derivated

ẏp(t) ≈ −C3,p sin
ø√

k(t− t0,l)− C4,p

ø√
k , (14)

and the condition that the mass velocity should be equal to the velocity of the belt is checked

−C3,p sin(
√
k(t− t0,l)− C4,p)

√
k = v. (15)

Thereby, the parameter t is isolated as

t =

ø

asin

ø

−v

C3,p

√
k

ø

+ C4,p

ø

√
k

+ t0,l. (16)

It should be noted that the condition that leads to Eqs. (15) and (16) (the mass velocity equals

the velocity of the belt) is a necessary but not sufficient condition to determine the transition

instants for the slip-to-stick phases. This condition is completed with the verification that the

position of the mass must be within interval [ymin , ymax].

5 STOCHASTIC APPROACH - MONTE CARLO METHOD

The Monte Carlo method permits to construct statistical models for random objects. The

principal idea of the MC is the tackle the stochastic problem by solving several deterministic

ones for different realizations of the random input variables. The first step is to obtain a sample

of the input random object with known distribution. Then, each realization is transformed

according to the deterministic problem. Lastly, the outputs of interest are saved to construct

their statistical models. The resolution procedure is stopped after some convergence criterion

is met, otherwise more realizations are simulated. The elevated amount of data required to

construct an accurate statistical model falls under the classification of a big data problem.

In this paper, the dynamic friction force was modeled as a random variable Fd. The authors

expect an influence of this parameter in the response, affecting the transition instants and the

start and end position between phases, the number of sticks, the duration of each phase as well

as the computational run-time. The force Fd was modeled as a random variable with uniform

distribution and its probability density function (PDF) is

pFd
(x) =

�

1
ls−li

, li f x f ls

0, to any other value .
(17)
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Parameter Value Unit Parameter Value Unit

m 1 Kg k 0.1 N/m

v -2 m/s y(0) 1 m

µ 1 (N s)/m ẏ(0) 4 m/s

a 0.1 (Kg s)/(m2) fe 2 N

ϵ 0.0001 - g 9.81 m/s2

Table 1: Parameters used in the analytical and numerical simulations.

where li is the inferior limit of the PDF range and ls is the upper limit. The limits of this

distribution were chosen to assure two features: the range must be positive and the upper limit

must not exceed the static friction force, fe. Thereby, the support was defined as [0.8N, 1.8N ].
The relation between the friction forces and friction coefficients is given by fe = µe mg e

fd = µd mg.

6 RESULTS AND DISCUSSIONS

With the distribution for the random variable representing the dry friction Fd defined, the

stochastic problem is tackled with two different strategies: 1) a ‘numerical’ case that com-

bines the Monte Carlo method with a Runge-Kutta numerical integration and 2) an ‘analyti-

cal’ case that combines Monte Carlo with an analytical approximation based on the Multiple

Scale method. The numerical and analytical approximations were simulated using the same

parameters values shown in Tab. 1 and time interval of [0 s , 2000 s]. A total number of 5 · 105
realizations was used.
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-1
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1

2

3

4

1 2 3

1 2 3 4

4

Figure 3: The speed ẏ(t) for one of the realizations until the 4th stick and slip phase.

In Fig. 3 one of the simulated realizations is shown. The first four stick phases of the

simulation computed using the numerical and analytical approximations are displayed. Fig. 4

shows three scatter plots. Fig. 4 shows three scatter plots. Fig. 4 (a) relates the magnitude of

the dynamic friction with the first stick duration for each realization; Fig. 4 (b) relates the first

stick duration with the second one; and Fig. 4 (c) relates the second stick duration with the third

one. In this graph the hypothesis that friction affects the duration of the sticks is confirmed. On
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top of that, a dependency between the first and second sticks is observed, while all subsequent

stick durations are invariant, as depicted in Fig. 4 (c) for the second and third stick durations.

This is expected since the first stick duration depends on the initial conditions and the duration

of the next stick phases depends on the first stick duration.
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a) b) c)

Figure 4: A scatter plot shows the relation between: a) the duration of the first stick and the magnitude of the

friction force Fd; b) the duration of the first and the second stick; c) the duration of the second and the third stick.

The results for the computation run-time taken by the numerical integration and the analyt-

ical approximation, considering 5 · 104 realizations, are shown in Fig. 5. The support of the

histogram of the numerical integration run-time is about [30.3, 49.8] while the support of the

histogram of the analytical approximation run-time is about [7.8, 15.1]. The mean values are

41.71 s and 10.94 s, and the standard deviations are 3.11 s and 1.17 s, for the numerical and

the analytical methods, respectively. These results show that the computation run-time with the

analytical approximation are, in mean, 3.81 faster than the numerical ones, and also that they

are less sensitive to variations, considering that the standard deviation is 2.66 smaller than that

of the numerical integrations.

The standard deviation of the run-time with the analytical approximation is smaller than that

of the numerical one. This indicates that the numerical integration is more affected by the value

of the dynamic friction, which is the only input random variable taken into consideration in

this study. This result agrees with the observations depicted in Fig. 6, that shows how the

computational run-times are influenced by the value of the dynamic forces, Fd. A tendency is

observed in Fig 6, showing that the numerical run-time increases appreciably with an increase

of Fd, while the tendency of the analytical ones is be less prone to those variations with Fd,

remaining the realizations confined to a band region that is closer to being horizontal. This

validates the second part of the hypothesis that friction not only affects the duration of the

sticks, but that it also has an effect over the computation run-times.

Finally, Fig. 7 depicts the tendency when the stick duration is plotted against the compu-

tational run-time. In this graph it is observed that the longer the stick duration, the faster the

computation run-time is.
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Figure 5: Normalized histograms of the computing time to simulate the Monte Carlo method using the numerical

integration (red) and analytical approximation (blue).
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Figure 6: Scatter plot of the computing run-time to simulate the Monte Carlo method using the numerical integra-

tion (red) and analytical approximation (blue) for each value of Fd.
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Figure 7: Scatter plot of the computing run-time to simulate the Monte Carlo method using the numerical integra-

tion (red) and analytical approximation (blue) for first stick duration.
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7 CONCLUSIONS

The results confirm that the run-times are affected by the magnitude of the dynamic friction

force and the first stick duration, in all cases. On top of that, MC combined with an analytical

approximation was found to be 3.81 times faster in the mean, what can be a decisive factor to

the feasibility of a stochastic study. These results are consistent with the fact that numerical

integration schemes require relatively small integration time-steps to resolve each phase and

capture the abrupt transitions between stick-slip phases, making the problem computationally

costly. In contrast, with analytical strategies an approximation for the entire phase is obtained

at once, and the transition instant is calculated from this approximation, resulting in a cheaper

computation. Given that the computational resources are limited, this computational advantage

of using analytical approximations is an important factor to consider when trying to obtain

accurate statistic models that need a large amount of realizations.
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