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Abstract. Intermittent flows are common flow patterns in gas-liquid horizontal flow and attract at-

tention and great research effort due to its importance for industrial and engineering applications. The

slug flow is typically modelled based on a unit cell varying from an elongated air bubble with a liquid

film in segregated flow pattern and an aerated liquid plug, the slug region, with remarkable stochastic

characteristics of its alternating regions. In this paper, a two-state Markov chain model is proposed to

represent the stochastic dynamics of developed slug flow in horizontal pipes. Each state represents either

the liquid slug or the elongated bubble regions and the transition probabilities dictate the change of the

given discrete time measurement to stay at a given state or change. This simple but insightful description

of the phenomenon allows an analytical treatment of the statistics of Markov chain stochastic process.

Measurement stations with two double wire resistive sensors are used to obtain the void fraction time

series and a corresponding two-state representation. Each state is classified by a threshold defined by an

unsupervised and non-parametric pattern recognition approach. The state transition matrix is then esti-

mated for each corresponding experimental point. Thus random samples can be synthetically regenerated

with the same statistical features of the corresponding measurements. It is shown that the Markov chain

model can successfully represent second-order statistics of the measurement, such as the autocorrelation

and power spectral density, given an appropriate choice of the chain order.
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1 INTRODUCTION

Multiphase flows are of common occurrence in numerous natural and industrial processes.

One of the most common is the gas-liquid flow, where the phases are distributed in different

geometric arrangements, which are called flow patterns. These patterns depend on fluids prop-

erties (density, viscosity, surface tension) and flow conditions (flow rates, pipe diameter and

slope, etc) (Shoham, 2006; Ishii and Hibiki, 2011). In gas-liquid horizontal flows the stratified,

annular, bubbles and intermittent flows are the most common patterns, each one with its own

characteristics. The correct definition of the flow pattern and its characteristics is of ultmost

importance for industrial purposes, as the presence of an specific pattern may lead to severe

problems. In the case of the oil industry, flow assurance problems are related to the occurrence

of an specific flow pattern (Shippen and Bailey, 2012).

One of the most common and at same time complex gas-liquid flow pattern is the slug flow,

as depicted in the schematic Fig. 1. The slug flow is typically modelled based on a unit cell

varying from an elongated air bubble with a liquid film in segregated flow pattern (considered

stratified flow) of length Lf , to a liquid slug with/without dispersed gas bubbles, of length Ls.

Both patterns compose a whole periodic structure with length LU called a unit cell (Taitel and

Barnea, 1990; Fabre and Liné, 1992; Netto et al., 1999). One remarkable interesting aspect of

the slug flow is its stochastic characteristic of alternating regions (Sarica et al., 2011; Soedarmo

et al., 2019).

Figure 1: Schematic representation of the unit-cell model for the slug flow pattern.

In this paper, a two-state Markov chain model is proposed to represent the stochastic dynam-

ics of developed slug flow in horizontal pipes. Each state represents either the liquid slug or the

elongated bubble regions and the transition probabilities dictate the change of the given discrete

time measurement to stay at a given state or change. This simple but intuitive description of the

phenomenon allows an analytical treatment of the statistics of Markov chain stochastic process.

Consequently, it can be used to investigate the physics of this rather complex flow dynamics and

further comprehend several fundamental aspects of reducing the representation of this system

by a simple stochastic process.

2 TWO-STATE MARKOV CHAIN MODEL

The slug flow is typically modelled as a unit cell varying from an elongated air bubble with

a liquid film in segregated pattern, considered stratified flow, and a dispersed bubble region, the

liquid slug. In this section, we propose that the complex dynamics of such phenomenon can be

approximated by a stochastic process.

Assuming the void fraction measurements are made at a constant sampling rate ∆ and the

void fraction, i.e. αn = α(t = n∆), a very simple model for this process can be cast in

the form of a two-state Markov chain (Norris, 1997; Soize, 2017), which follows closely the
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representation given by Fabre et al. (1989) for the time evolution of the flow structure. Each

state represents either the elongated air bubble with liquid film or the liquid slug and the Markov

chain (MC) is characterised by the probabilities of the sequence maintain, or changing, its state

at the n-th sample given the previous sample, i.e. P (Xn = xn | Xn−1 = xn−1) for a first order

Markov chain and xn = 1 for the air bubble and xn = 0 for the liquid film. This classification is

given from the time series αn and it is discussed in the next section. This model is schematically

represented in Figure 2.

Figure 2: Two-state Markov chain model diagram for liquid slug (Xn = 0) and gas bubble

(Xn = 1). State transition probability from liquid to gas tα and from gas to liquid tβ .

The conditional probabilities of state transition can be defined as tlg =
P (Xn = 1|Xn−1 = 0) and tgl = P (Xn = 0|Xn−1 = 1) with 0 ≤ tlg,gl ≤
1. The discrete probability density function at the n-th sample πn can be

given from the marginal probabilities for each state, given as P (Xn = 0) =
P (Xn = 0 | Xn−1 = 0)P (Xn−1 = 0) + P (Xn = 0 | Xn−1 = 1)P (Xn−1 = 1)
and P (Xn = 1) = P (Xn = 1 | Xn−1 = 0)P (Xn−1 = 0) +
P (Xn = 1 | Xn−1 = 1)P (Xn−1 = 1). Rearranging in matrix form, yields

πn = πn−1
P, (1)

where the state transition matrix is given in terms of the conditional state transition probabilities.

The chain is stationary when πn = πn−1 which yields an eigenproblem πn = πn
P

n with

eigenvalue λ1 = 1 and corresponding eigenvector φ1 = [tgl tlg]
T/(tlg + tgl). Consequently, its

steady-state distribution is

π =

�

π0

π1

�

=

�

tgl
tlg+tgl

tlg
tlg+tgl

�

(2)

By increasing the order Markov Chain model, the state of m previous samples other than

the immediately previous are also taken into account at the probabilities of the sequence, i.e.,

P (Xn = xn | Xn−1 = xn−1, Xn−1 = xn−2, . . . Xn−m = xn−m) (Katz, 1981). This introduces a

finite memory to the chain closely related to its order. Although it can, in principle, improve the

Markov Chain model, it also significantly increases the number of parameters for estimation,

with the increasing number of possible transition probabilities. It might require significantly

longer measurements times which limits its practical uses and imposes a parsimonious approach

for the order selection of the model. Ideally, a first order model should succeed in adequately

representing a certain phenomenon even with longer time dependency (Rafteryt, 1985).

2.1 Statistical moments of the first order MC model

Some relevant statistical moments can be analytically derived for the proposed steady-state

two-state first order MC model. The mean value of the series is given by
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E (Xn) =
1

�

n=0

xnπn =
tlg

tlg + tgl
, (3)

where E(·) stands for the mathematical expectation. Note that this statistical moment is identical

to the intermittent factor, i.e., β.

E (Xn) = β, (4)

The variance V ar (Xn) is given by

Var (Xn) = E
�

X2
n

�

− E (Xn)
2 =

1
�

n=0

x2
nπn −

1
�

n=0

(xnπn)
2 =

tlgtgl
(tlg + tgl)2

, (5)

The autocorrelation E (XnXn+τ ) can be evaluated as

E (XnXn+τ ) =
1

�

n=0

xnxn+τP (Xn+τ = xn+τ ∩Xn = xn) , (6)

from which P (Xn+τ = xn+τ ∩Xn = xn) = P (Xn+τ = xn+τ | Xn = xn)P (Xn = xn).
Bearing in mind that the only non-null terms of the sum are given when Xn = 1, thus

E (XnXn+τ ) = P (Xn = 1 | Xn+τ = 1)P (Xn = 1). Recalling that P (Xn = 1) = E (Xn),
then recursively from the chain using Eq. 1, term P (Xn = 1 | Xn+τ = 1) = P

τ
2,2, which is

second row and second column term of the matrix P
τ . Finally, it yields

Cov (Xn, Xn+τ ) = ab|τ |, (7)

where a = tlgtgl (tlg + tgl)
−2

and b = (1− tlg − tgl), and normalised by the variance gives

Cov (Xn, Xn+τ ) /Var (Xn) = b|τ |.

Moreover, the power spectral density (PSD) can be obtained from the Fourier transform of

Eq. 7 as

F (ω) =
1

2π

+∞
�

τ=−∞

ab|τ |e−jω∆τ =
a

2π

+∞
�

τ=−∞

b|τ |e−jω∆τ =
a

2π

�

1 + 2
+∞
�

τ=1

bτ cos(ω∆τ)

�

. (8)

By definition, |b| < 1 thus the infinite series converges to

F (ω) =
a

2π

�

1− b2

1− 2b cos(∆ω) + b2

�

=
a

2π

�

1− b2

1 + b2 − 2b cos(2πω/ωs)

�

. (9)

This is a periodic function in −ωs/2 < ω < ωs/2, where ∆ω = 2πω/ωs, ωs is the sampling

frequency in rad/s. This periodicity is expected due to the discrete nature of the MC sequence.

Finding the similar analytical expressions of the proposed higher order two-state Markov Chain

is beyond the scope of this paper.

3 RESULTS

The experimental campaign was performed at the Multiphase Flow Research Center of the

Federal University of Technology of Paraná (Brazil) and it is described in detail by Rodrigues

et al. (2020). For estimation of the two-state Markov chain model, it is important to establish

a threshold for classifying a measurement sample as either elongated bubble or a liquid slug.
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This threshold is dependent on the experimental point thus a completely data-driven approach

is proposed. The Otsu’s approach (Otsu, 1979) is used to find the best threshold for every

experimental point. It is a non-parametric and unsupervised method of automatic threshold

selection.

3.1 Statistics of the Markov Chain model

In this section, the estimation of the first order Markov chain model and some statistical

moments for each experimental point are investigated. The time series of each experimental

point is used to estimate the state transition matrix. A Maximum Likelihood Estimator (MLE)

is used (Billingsley, 1961; Teodorescu, 2009).

Figure 3 shows the autocorrelation estimated for all the 7 experimental points using the

original measurement, Otsu threshold, a sample realisation of the first order Markov chain, the

analytical first order MC model, Eq. 7 and the periodic model. It can be seen that the autocovari-

ance from the Otsu threshold presents a very good agreement with the original measurements,

which indicates that very little information is lost by the thresholding in a second-order sense.

It indicates that the proposed approach captures the second-order statistical features of the orig-

inal time series. The Markov chain model presents a good agreement only for a short lag, i.e.

only short term variations of the time series are well represented by this model. The oscilla-

tions on the autocorrelation for higher lags matches those of the periodic model, which indicate

the level of periodicity on the signals. Note that for every experimental point, different levels

of oscillations are present. In contrast, the Markov chain analytical model does not present

these oscillations, i.e. it does not capture periodic fluctuations of longer periods. This effect is

emphasised on the analysis of the PSD.

Figure 4 presents the PSD estimate for all the experimental points, estimated by using a

Welch’s segment and average approach (Shin and K Hammond, 2008), with Nb = 20 segments

and 1/3 overlap. It can be noticed a very good agreement between the results from the original

measurements and the Otsu threshold while the MC model presents a good agreement only

for higher frequencies. This is expected from the inspection on the autocorrelation results.

Shorter correlation lags τ on the autocorrelation are represented by higher frequencies on the

PSD. Similarly, longer correlation lags are associated to lower frequencies on the PSD. These

results also show that reducing the signal to a two-state representation does not causes a great

loss on its spectral content. However, the first order MC model does not capture the main

peak, which typically represents the frequency of passage of the unit cell, fU . The estimation

of this parameter is discussed in detail in the following section of this paper. In other words,

the first order MC model does not capture the fundamental component of periodic content of

the signal. This effect is highlighted by the amplitude value of the coefficients of the Fourier

series from the periodic representation of the slug flow, as presented by Vieira et al. (2021).

The Fourier series presents a discrete spectrum due to its periodic nature. The amplitude of

the coefficients are normalised such that they can be compared to a PSD. The fundamental

component of the periodic representation matches that of the PSD peak because this is set as

the fundamental period of the Fourier series. Notice that the higher frequency content decays

following a different amplitude decay when compared to the Markov Chain model and the

experimental results, both with a significant reduction on the power density compared to the

periodic case. This result suggests that the actual stochastic process representing the slug flow

is somewhere between these two representations. Following the principle of a parsimonious

and physically interpretable model, ideally the stochastic process representing the slug flow

has to be as simple as possible. However, the first order MC model clearly fails to capture
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Figure 3: Normalised autocorrelation from each original measurement point (black full line),

time series from Otsu threshold (black dashed line), a MC sample (red dash-dotted line), the

MC analytical model (green dashed line) and the periodic model (blue dotted line).

the long term behaviour indicating the need of increasing the order of the MC model. In the

next section the appropriate choice of the order of the MC model is investigated aiming at the

simplest stochastic representation for the features of interest.

The Akaike Information Criterion (AIC) (Akaike, 1974), originally proposed as a means of

selecting competing models, can be used to determine the order m of the Markov Chain (Tong,

1975) that best suits the data by minimises the function (Rafteryt, 1985) AIC(m) = −2LL +
2m, where LL =

�

i nti log ti is the log-likelihood function of the transition probabilities and

nti is the number of transitions occurring in a sequence and ti is the corresponding transition

probability. Similarly, the Bayesian Information Criterion (BIC) also establishes a metric for

model selection (Schwarz, 1978) and has been proposed as a consistent estimator (Katz, 1981),

unlike the AIC. The selected order m is such that it minimises (Rafteryt, 1985) BIC(m) =
2LL +m logNT , where NT is the sample size.

It is not presented here, but both AIC and BIC criteria fails to give a clear consistent minima

for all of the experimental points, which indicates that both information criteria might not be

suited for this particular problem. The main objective of order identification is to include the

long term effects of the chain and, consequently, to represent the behaviour of the passage of

the unit cell. From the previous section, it was discussed that this is closely related to the zero-

crossing of the autocorrelation function shown in Figure 3. Consequently, it can be argued that

the order of the Markov Chain must be such that it can capture the lags at the first autocorrelation

zero-crossing. Following this rational, the order of the chain is chosen that it is twice the number

of lags until the first zero-crossing, summarised in Table 1.

In the following subsections, the characteristics and physical interpretation of the slug flow

represented by the proposed two-state MC model is further investigated.
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Figure 4: Power spectral density from each original measurement point (black full line), time

series from Otsu threshold (red dashed line), a first order MC sample (blue dotted line), the first

order MC analytical model (green full line) and the periodic case (yellow dot).

Table 1: Estimated Markov chain order for every experimental point.

Experimental point #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Markov chain order 20 46 68 16 36 8 22 18 12 28 38

3.2 Model validation

In this section, slug flow features are calculated for validation and discussion of the proposed

approach. The intermittent factor β and the unit cell frequency fu are calculated from the

two-state time series generated from the experimental measurements, classified by the Otsu’s

threshold, and from the from the higher order Markov chain random sample, generated from

the corresponding estimated transition matrix. The transition between two consecutive states is

used to calculate the time tXn=0 at Xn = 0, the liquid slug, and the time tXn=1 at state Xn = 1,

the gas bubble. Assuming the the same velocity for the unit cell, the intermittent factor is then

estimated by β = tXn=1/(tXn=0 + tXn=1). In addition, the frequency of passage of the unit cell

can be estimated by fu = 1/(tXn=0 + tXn=1). Note that this approach estimates both β and fu
for each unit cell, thus providing a probability distribution for both variables as a consequence

of the stochastic assumption about the nature of the void fraction α.

Figure 5 presents the histogram of the intermittent factor with 100 bins obtained from the

measured time series and classified by the Otsu’s threshold (Experimental - MC) and also from

synthesised time series generated by a random sample of the Markov Chain (Sample - MC).

Notice that for most experimental points, a good agreement between the estimates from exper-

imental and simulated is found. This indicates the proposed two-state Markov chain model is

representing well the statistics of the slug flow. The histogram of the experimental data can
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present a single dominant mode in the middle of the domain. In this cases, the mean values

have a very good agreement. On the other hand, when the distribution presents some spikes of

more than a single dominant mode outside the regions close to 0 and 1, the mean values present

a greater divergence. But, in general, a very good representation is obtained for all cases.

Figure 5: Histogram of the intermittent factor from the experimental data (grey) and from the

Markov Chain model (blue). Vertical lines show the mean value for the experimental data (red

full vertical line, the Markov Chain model (cyan dashed vertical line) and the slug fraction

(black dotted vertical line) based on the local mean of the Otsu threshold.

Figure 6 presents the histogram of fu with 100 bins obtained from the measured time series

and classified by the Otsu’s threshold (Experimental - MC) and also from synthesised time series

generated by a random sample of the Markov Chain (Sample - MC). Similar to the previous

case, the histograms in both cases present a very good agreement. The mean value for each case

is also shown in the figure. In addition, the frequency of the peak value from the corresponding

experimental PSDs, as shown in Figure 4, correspond to the dominant peak of histogram. Some

experimental points present histograms well distributed around a prominent peak, e.g. #1, #2,

#3, #4 and #7, while others present a flatter distribution, such as #5, #6, #8, #9, #10 and #11.

In addition, the fu distribution is clearly not unimodal for all of the cases. The peak frequency

value of the PSD typically matches the peak of the fu distribution, i.e., the most frequent case,

rather than the mean value, as given for both the experimental and sampled two-state time series.

4 CONCLUSIONS

In this paper, a two-state Markov chain model was proposed to represent the stochastic dy-

namics of developed slug flow in horizontal pipes aiming at a simple but intuitive description of

the phenomenon. Consequently, analytical expressions of the mean value, autocorrelation and

power spectral densities were derived.

It is shown that this two-state representation is a reduced order representation that is suitable
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Figure 6: Histogram of the unit cell frequency estimated from the experimental data (grey) em

from the Markov Chain sample (blue). Vertical lines show the median value of the experimental

data (red full vertical line), the Markov Chain sample (cyan dashed vertical line) and the maxi-

mum PSD value.

to describe second-order statistics of the two-phase flow. Moreover, the proposed model leads

to the representation of the intermittent factor and unit cell frequency as random variables, with

given probability distribution. It is also shown that the distribution of the frequency of passage

of the unit cell is clearly not unimodal for some experimental points. It is further shown that the

proposed Markov Chain model can provide a good estimate of some slug flow features, such as

the intermittent factor and the unit cell frequency.

Finally, the proposed approach opens the way for further physical interpretation and insights

on the complex dynamics of the slug flow.
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