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Abstract. A numerical evolutionary procedure for structural optimisation of two-dimensional structures
based on the Biological Growth Method (BGM) is shown and is implemented using two Boundary
Element Method (BEM) formulations: the standard for two-dimensional elastostatics for the stress or
strain analysis, and the Dual Reciprocity Method (DRM) for modelling the swelling/shrinking of the
optimisation domain. Advancing previous work done by the authors on the original stress formulation of
the BGM, tangential strains are used as objective functions in this paper.
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1 INTRODUCTION

Biological Growth Method. Mattheck (1990) introduced the Biological Growth Method
(BGM) based on his observations in Nature. The BGM major hypothesis is that the process of
optimisation in natural structures is carried out through the swelling or shrinking of the soft
outermost layer of material, which yields the levelling of local stresses. On the other hand,
Mattheck defines optimum shape as the one that shows a state of constant stress at part of, or
the whole of, the surface of the component. Consequently, optimisation can be described as the
minimization of the equation

(1)

where vε!  is the volumetric swelling strain rate, σvm is the von Mises stress and σref is a
reference stress, an expected value. This equation holds for each point in the optimisation
domain.
An elegant method to implement eq. (1) is by means of a thermal expansion analogy based on
the generalized Hooke’s law, which gives:

(2)

where θ is the temperature field, α is the thermal expansion coefficient and γ is a units
conversion factor.

The present authors (Wessel et. al, 2004 and 2005) have implemented eq. (2) in previous
works. Given the fact that the BGM is a heuristic method that only considers physical
variables, and also that in some fields strains are required as objective functions (as will be
discussed later), the present work makes use of the following equation instead of eq. (2):

(3)

where εtan and εref  are the tangential strain and a reference tangential strain, respectively.

Eq. (2) has been previously implemented in Finite Element Method (FEM) codes (Tekkaya and
Guneri, 1995 and Li et. al. 1999). However, the fact that optimisation takes place only in the
outermost layer in BGM makes an implementation with the Boundary Element Method (BEM)
computationally cheaper. The boundary-only intrinsic characteristic of the BEM together with
its accuracy in the boundary displacement and stress or strains solutions justifies the use of the
BEM in this work.

BEM for two-dimensional elasticity. The starting point of the BEM formulation for two-
dimensional elasticity is the Navier equation

(4)

where j,k denote Cartesian components, G is the shear modulus,
ν is the Poisson’s ratio, bj are the components of body forces and uk are the displacements.

Following Brebbia et al. (1984) the corresponding boundary integral equation for a domain
Ω confined by the boundary surface Γ is:
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(5)

where * ( ', )u x xlk is the fundamental solution of eq. (4) and * ( ', )p x xlk its corresponding

traction; uk and pk are the displacements and tractions in the boundary Γ, respectively, and
clk(x’) is a jump term related to the boundary geometry.

If there are no body forces present, eq. (5) is reduced to the boundary-only equation
i i *c (x')u (x')+ p (x',x)u (x)d (x)=lk k lk k Γ

Γ
∫

*u (x',x)p (x)d (x)lk k Γ
Γ
∫

(6)

The basic idea behind the BEM is to solve eq. (6) numerically. To accomplish this, the
model contour is discretized into N elements, where displacements uk(x) and tractions pk(x) are
expressed in terms of the nodal values iuk  and ipk  by means of isoparametric interpolation
functions. This process results in an algebraic system of equations from which the unknown
nodal values of iuk  and ipk  can be recovered.

It should be noticed that eq. (6) only involves integrals on Γ. Consequently, a typical BEM
formulation only requires a boundary discretization.

The Dual Reciprocity BEM (DRM) for two-dimensional thermoelasticity. Thermal
effects (as much as body forces) were initially a restriction in the use of BEM as they must be
included in the formulation by means of a domain integral (see eq. (5)), thus losing the
advantage of the method’s "boundary-only" character. Many different approaches have been
developed to overcome this problem, among which DRM has become widely used. The basic
idea behind this approach is to employ fundamental solutions and global approximation
functions, as described in what follows.

Following Partridge and Sensale (1997) the effects produced by changes in temperature θ in
elastic bodies can be represented by initial stresses σ0

jk such that:

jkjk χθδσ =0 (7)
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, so that eq. (5) becomes
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In DRM changes in the temperature θ are expressed in terms of known co-ordinate
functions f j, which are also temperature fields:
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where jβ  is a set of initially unknown coefficients. N points are placed on the contour and
L in the domain, and A augmentation functions are used to improve the approximation.

Next, a particular solution j
mkû to eq. (4) corresponding to the generic function f j is found.

Then, replacing eq. (9) into (8) results in a boundary-only equation:
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(10)

where j
mkp̂  are the particular traction solutions corresponding to particular displacements

j
mkû . The procedure for numerical solution of eq. (10) follows that described for eq. (6).

The choice of approximation functions in eq. (9) is somewhat arbitrary. Generally a radial
basis function is used, such as thin plate splines or multiquadrics. These have shown to
interpolate only in the neighbourhood of a particular point (local behaviour), so that global
functions are also needed. For these, terms in the Pascal triangle or global sine Pascal triangle
are often employed.

2 IMPLEMENTATION

The process described by eq. (3) was implemented using a standard BEM and a multi-
region DRM formulations in the following manner:

 i. An appropriate BEM discretisation is generated for the original (and subsequent)
models using quadratic isoparametric elements. In addition to the boundary nodes,
internal collocation points are set.

 ii. Tangential strains are computed on the model boundary nodes and on all of the
internal points by means of the standard formulation of BEM.

 iii. A thermal expansion analysis is performed using the DRM formulation with a
temperature field θ given by eq. (3). In order to limit the swelling to the outermost
layer of material, a non-zero temperature field is specified only on the optimisation
boundary nodes and the optimisation internal points. In this work, the thin plate
spline r2log(r) was applied and terms up to the second degree in the Pascal (TAPT3
combination) triangle were chosen as augmentation functions (Bridges and Wrobel,
1996 and Partridge and Sensale, 1997).

 iv. The optimisation boundary geometry is smoothed using local cubic splines for mid-
point relocation (see Das Bhaumik, 2005).

Steps ii to iv are repeated until acceptably low values of (εtan - εref ) are obtained.
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Figure 1. Bone tissue structure subject to
tensions σx y σy, that may grow into a slot.

3 EXAMPLE

The problem presented herein consists of a structure of bone tissue which may grow into a
slot, as shown in Fig. 1. This problem was also solved by Sadegh et al.(1993).

Models for the architectural changes that occur in bone tissue around or near an implant are
developed based on the assumption that bony changes are an adaptive response and that bone
surface strains control this adaptive response.

For example, Lanyon and coworkers (1984 and 1987) have evaluated the relationship
between bone tissue response and tissue level peak strain magnitude in strain-gauged animal
experiments for a number of species. They have shown that bone resorption occurs for tissue-
level peak compressive strains less than about 0.001, and bone deposition occurs for tissue-
level peak compressive strains greater than about 0.003. For this reason we have set εref =-
0.002 in this work.

The selected material properties are a Young’s modulus of 17.12 GPa and a Poisson’s ratio
of 0.28, while σx=8 MPa and σy=80 MPa. Only one half of the structure was considered for
symmetry reasons. The optimization domain, limited by BC and with a surface of 0.001 mm2,
includes 26 quadratic elements.

During the optimization process bone tissue grows into the slot (for these values of applied
stresses), lowering the difference (εtan - εref ). This can be seen in Fig 2, where the initial and
final configurations of the optimisation domain are shown.
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Finally, Fig. 3 and 4 show the smooth evolution of the position and difference (εtan - εref ) for
point B

Figure 2. Initial and final geometry of the
optimization domain and their
corresponding values of (εtan - εref )
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Figure 3. Evolution of (εtan - εref ) for point B during
the optimisation process.
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Fig. 4 shows the smooth evolution of the position of point B to a value of 0.0250 mm, in
complete agreement with the results reported by Sadegh et al.(1993).

4 CONCLUSIONS

A novel numerical evolutionary procedure for the structural shape optimisation of two-
dimensional problems based on the Biological Growth Method was presented in this work. The
versatility of the proposed methodology has been illustrated with one example that shows
complete agreement with existing results.

Results obtained using von Mises stresses as objective functions (not presented herein) also
show excellent agreement with analytical results. The change of objective function is simple to
implement in the programme developed by the authors.

Finally, the implementation using boundary elements makes the algorithm simple and
computationally inexpensive.
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