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Abstract. Pulse Wave Velocity (PWV) in arteries is a valuable marker for the determination of the

vessel stiffness, as it correlates with geometrical and biomechanical parameters of the artery wall. In

addition, the PWV can be obtained non-invasively using Cardiac Magnetic Resonance Imaging. For

straight vessels of constant diameter and thickness, the PWV is given by the Moens-Korteweg (M-K)

equation, which indicates a direct proportionality between the square of the PWV and the elastic modulus

of the wall material, its thickness and the inverse of the vessel diameter. In this work we performed

three-dimensional simulations of flow pulses in straight elastic pipes and we compare the results with

the M-K equation estimations. It was assumed that the flow is incompressible and the pipe wall has a

linear elastic behaviour. A suitable absorbing boundary condition was designed in order to avoid wave

reflections at the outflow border. The coupling between the fluid and structure solvers was carried out

by a Dirichlet-to-Neumann strategy using the IQN-ILS (Interface Quasi-Newton with Inverse Jacobian

from Least-Squares) method. The fluid transport properties and the mechanical properties of the pipe

wall had physiologically realistic values similar to those found in the abdominal aorta, as well as the

geometrical dimensions of the pipe. The PWV was computed as the distance between two transversal

planes divided by the transit time for a given pressure (or flow rate) amplitude level in both planes.

Several configurations were analyzed, including variations in the elastic modulus of the wall tissue, wall

thickness and initial pipe diameter. The results obtained for the PWV are in good agreement with the

M-K prediction.
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1 INTRODUCTION

Cardiovascular diseases are one of the main causes of death worldwide and the early eval-

uation of arterial stiffness has shown to improve risk prevention (Arnett et al., 2019). The left

ventricular ejection produces pulsatile pressure and flow waves that propagate from the heart

and through the aorta to the rest of arterial tree and the body. Since the aorta is the main con-

duit artery of the systemic circuit, that also cushions the waves pulsatility, the assessment of

aortic pulse wave velocity (PWV) as a surrogate of arterial stiffness could bring valuable in-

formation (Milan et al., 2019). PWV can be non-invasively estimated using tonometry as the

ratio between the distance of two simultaneous pressure measurements and propagation waves

transit time (TT) (Davies and Struthers, 2003). Besides ultrasound, recent advances in car-

diac magnetic resonance allow a precise assessment of aortic geometry in the three dimensions

and blood flow at distinct transversal planes to have a better insight of regional aortic stiffness

(Jarvis et al., 2022). During pathological aortic dilatations, such observed in bicuspid patients,

medical treatments are mostly decided based on the vessel size whereas estimations of stiffness

biomarkers are still under debate (Pascaner et al., 2021). A detailed knowledge and understand-

ing of the transmission mechanisms of pressure and flow waves using CFD (Computational

Fluid Dynamics) with FSI (Fluid-Structure Interaction) in idealized tubular models can help to

improve these diagnostic methods. CFD analyses have been successfully employed to study

the hemodynamic impact of aortic aneurysms before and after endovascular treatments (Dot-

tori et al., 2020). In simple straight vessels of constant diameter and thickness, the PWV can

be analytically estimated using the Moens-Korteweg (M-K) equation, which indicates a direct

proportionality between the square root of the PWV and the wall elastic modulus, its thickness

and the inverse of the vessel diameter (Shahmirzadi et al., 2012). The main assumptions of the

M-K equation include an infinite straight and cylindrical tube with elastic, isotropic and homo-

geneous walls, incompressible and non-viscous fluid. Under these idealized conditions, special

attention should be paid to reducing the effects of reflected waves such as to minimize errors in

TT calculations (Segers et al., 2009).

In this work we performed three-dimensional (3D) simulations of flow pulses in straight elas-

tic pipes that modeled the abdominal aorta and we compare the results with the M-K equation

estimations.

2 MATHEMATICAL MODELS

The blood flow is modeled as incompressible, isothermal and with Newtonian behaviour.

In order to account for the fluid domain deformation the ALE (Arbitrary Lagrangian-Eulerian)

formulation is applied. The governing equations for this flow are the continuity

∇ · u = 0 in Ωf × [t0, tf ] (1)

and the linear momentum conservation law:

∂u

∂t
+ [(u−w) · ∇]u = −

1

ρf
∇p+

µ

ρf
∇ · (∇u+∇

T
u) in Ωf × [t0, tf ] (2)

where t is the time, u is the flow velocity, p is the pressure, ρf is the fluid density, µ is the

dynamic viscosity of the fluid, w is the moving coordinate velocity in the ALE formulation, Ωf

is the fluid domain, and [t0, tf ] is the time interval.

The vessel wall is assumed as a linear elastic solid governed by the following equation

ρs
∂2
v

∂t2
= ∇ · σs in Ωs × [t0, tf ] (3)
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where v is the displacement of the solid, ρs is the solid density, and σs is the strain tensor given

by the standard Hooke’s law

σs =
E

1 + ν

[

∇v + (∇v)T +
ν

1− 2ν
tr(∇v)I

]

(4)

E being the Young modulus, ν the Poisson coefficient, and I the second order tensor identity.

No external forces are considered. In Eq. (3) the symbol Ωs represents the solid domain.

On the fluid-solid interface Γi the following conditions must be fulfilled:

• Kinematical conditions: continuity of the displacement and velocity on Γi, i.e.

vf = vs

uf = us

(5)

where subscripts f and s refer to the fluid and the solid, respectively.

• Dynamic condition: equilibrium of forces on Γi

n · σf = n · σs (6)

where n is the unit vector normal to Γi and σf = µ(∇u+∇
T
u)− pI.

3 NUMERICAL SCHEME AND SOLUTION ALGORITHM

The mathematical problem previously presented is numerically solved using the FVM (Finite

Volume Method) on a collocated grid. In particular, the solids4Foam toolbox (Cardiff et al.,

2018) is used and compiled with foam-extend-4.1.

A partitioned strategy is applied to solve the equation system (1)-(3), where each equation is

solved one at a time in an iterative process. The governing equations for the fluid are solved in

this work using the PISO (Pressure-Implicit with Splitting of Operators, Issa (1986)) algorithm.

The equations for the solid are solved splitting the surface force term into implicit and explicit

components, and solving for each component of the unknown vector in a segregated way. For

more details, see Cardiff et al. (2018) and the references therein.

3.1 Fluid-structure coupling

As previously said, the fluid and solid problems are solved using a partitioned approach.

Then, a coupling method must be applied in order to enforce conditions (5) and (6) on the

interface. The Dirichlet-to-Neumann coupling methodology is used in the present work, where

the fluid is solved imposing velocities at the interface (Dirichlet condition) whereas the solid is

solved imposing tractions at the interface (Neumann condition).

To improve the coupling convergence, the IQN-ILS (Interface-Quasi-Newton with Inverse

Jacobian from Least-Squares, Degroote et al. (2009)) method is used. The IQN-ILS method

is a matrix-free algorithm which is based on approximating the increment of the fluid-solid

interface unknowns (the product of minus the residual by the inverse of the jacobian matrix) as

linear combinations of the residuals previously computed. This linear combination is updated

as iterations proceeds. The coefficients of the linear combination are calculated solving an over-

determined system applying a least-squares method (Degroote et al., 2009). It was shown that

the IQN-ILS performs equally or better than other interface coupling methods (Degroote et al.,

2010).
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3.2 Outlet boundary condition

The set of governing equations (1)-(2) and (3) have a hyperbolic behaviour when applied

to an elastic tube modeled as a one-dimensional domain, which is a widely used model for

simulating large arteries (Anliker et al., 1971; Olufsen, 1999). If the tube is modeled in 3D,

as in the present work, wave-like solutions are also expected. Nevertheless, since the solution

algorithm is partitioned, in each iteration the fluid is computed as incompressible. This means,

for instance, that a velocity or pressure perturbation at inlet triggers a perturbation at outlet in

the first iterations of the coupling algorithm. Of course, as iterations proceed the algorithm

corrects the solution and, if convergence is reached, the perturbation travels at finite speed.

In any case, boundary conditions must be imposed at the outlet section for both, pressure and

velocity. A typical boundary condition used at outflows for incompressible flows is to impose

a given value for pressure. However, for the kind of problem considered here this choice will

produce the reflection of waves at the outlet. Therefore, an absorbing boundary condition must

be applied at the outflow in order to avoid wave reflection.

The one-dimensional model of the problem has two characteristic directions with character-

istic velocities λ± = u ± c (Anliker et al., 1971), where u is the axial velocity (z direction in

this work) and c is the local wave speed given by

c =

√

S

ρf (∂S/∂p)z
(7)

S being the cross-sectional area of the pipe.

The M-K equation can be derived from Eq. (7) assuming circular pipe with radius r and

wall thickness h, h/r << 1, axial-symmetry in the problem, and supposing that the change in

the cross-sectional is negligible (William, 1982). Under these hypothesis the M-K equation is

obtained and given by

c =

√

Eh

2ρfr
(8)

Following with the one-dimensional model and assuming that the tube is initially straight,

that there are no inflow/outflow across the wall and neglecting the viscous friction, the compat-

ibility equations are given by (Anliker et al., 1971)

du±
dp

ρfc
= 0 (9)

For a simple wave traveling in the (+) direction (from left to right in the axial direction), the

characteristic variable representing wave components in the (−) direction are null everywhere

in the domain. Then, in that case the following relation holds:

u−
p

ρfc
= 0 (10)

The outlet boundary condition applied in this work is based on the expression (10). For a

simple wave traveling from left to right and an outlet section being the rightmost cross-section

of the pipe, the condition imposed for pressure reads

p = ρfc(u · n) (11)
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where n is the outward unit normal to the outflow section and c is assumed constant and ap-

proximated with the M-K equation (8). Due to the simplifications and approximations involved

in deriving Eq. (11), this condition is not perfectly absorbing and it is called in this work a

quasi-absorbing condition.

4 METHODS

In this work, models and methods presented in sections §2 and §3 will be applied to simulate

blood flow pulses through arteries in order to estimate the PWV. To this end, a fragment of

an artery was modeled as an initially straight cylinder with internal radius r, wall thickness h
and axial length L (see Fig. 1). A base case was defined as reference, for which r = 15 mm,

h = 1.5 mm, L = 500 mm, E = 0.407 MPa and ν = 0.3. The remaining properties of the fluid

and solid were kept constant with the following values: ρs = 1000 kg/m3, ρf = 1060 kg/m3,

and µ = 4 × 10−3 Pa s. From the base case, six additional cases were solved considering

variations of ±10 % in r, h and E, one at a time.

2r

L

h

outlet
Ω

Ω

inlet

y

z
f

s

Figure 1: Sketch of the mid-plane of the problem domain.

At the fluid inlet, a time-varying velocity approximating a physiological measured flow rate

in an aorta was imposed (flow volume of 35.8 ml per heartbeat). Figure 2 shows the resulting

flow rate profile for the base case. At that boundary zero normal gradient was imposed for

pressure. At the outlet section, pressure was computed applying the quasi-absorbing boundary

condition described in section §3.2 and zero normal gradient was imposed for velocity. The

cylinder wall was fixed at both ends and zero traction was imposed on its external boundary. For

the initial condition, the fluid was at rest, the pressure was set to zero and the solid undeformed.

The fluid mesh has 125000 cells with 250 equidistant cells along the axial direction and

grading towards the pipe wall. The solid mesh also has 250 equally-spaced cells in the axial

direction and 3 cells in the wall thickness, totalizing 30000 cells. The mesh dynamics of the

fluid was solved applying the Laplacian technique for the mesh velocity using a diffusion co-

efficient proportional to the inverse distance to the pipe wall. The final simulation time was

1 s, corresponding to one heartbeat according to the available data, and the time step used in all

cases was 0.001 s.

The PWV was computed using the TT of the pulse wave between two successive cross-

sectional planes dividing the distance among them by the TT. The pulse signal was obtained

from the 3D solution integrating the flow variables in each cross-section. The ascending part of

the pulse was considered in order to define values of pressure or flow rate for the TT calcula-

tion. These threshold values were adopted as percentages of the pulse maximum (peak). The

corresponding TT was identified with the percentage as subscript. For instance, Fig. 2 shows

the TT for the 50 % of maximum flow rate between two different cross-sectional planes. Tran-

sit times for a given value of pressure or flow rate were computed for adjacent cross-sectional

planes, which were separated by 10 mm in the analysis presented in the following section and
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Figure 2: Flow rate profile imposed at inlet in the base case and definition of TT.

then represented in the z − t plane. Finally, these points were approximated by a linear fitting

and the PWV was estimated as the slope of that line.

5 RESULTS

As an example of the computed solutions, Fig. 3 shows the pressure field in the fluid (left)

and the magnitude of the pipe wall displacement (right) for the base case at t = 0.2 s. At this

time instant the peak of the pressure wave is located at z = 170 mm from the inlet, while the

maximum displacement of the solid wall is below 1 mm.

inlet

outlet
propagation propagation

Figure 3: Solution at t = 0.2 s for the base case r = 15 mm, h = 1.5 mm, and E = 0.407 MPa. Left: pressure

field in the fluid. Right: magnitude of displacement of the solid wall.

For the base case, Fig. 4 presents space-time developments of the flow rate and mean axial

pressure. The TT50 (50% threshold) of the flow rate wave for cross-sectional planes distant

10 mm from each other are shown as red dots together with its linear fitting (Fig. 4, left). The

slope of this line is 4.4052 m/s, which differs from the theoretical value of M-K (4.3816 m/s)

in 0.54 %. Analogous data are shown for the pressure wave in Fig. 4 (right), using in this case

the TT90 (90% threshold) and resulting a slope of the fitting line of 4.3303 m/s (difference of

1.17 % with respect to the M-K value).
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Figure 4: Space-time maps of flow rate (left) and mean axial pressure (right) for the base case. Red dots represent

TT50 for the flow rate and TT90 for the pressure wave at different locations, linearly fitted with the white line.

Tables 1 and 2 present the results obtained extending the previous analysis to the remaining

cases varying r, h and E. In general, the numerical results capture qualitative and quantitatively

well the expected variations in the PWV due to modifications in the parameters affecting it. The

percentage differences with respect to the M-K value are below 2 % except for the case with

r = 13.5 mm, which reaches differences below 4 % using the flow rate wave and below 3 %

using the pressure wave.

r [mm] h [mm] E [MPa] M-K [m/s] PWV [m/s] Dif. [%]

15.0 1.50 0.4070 4.3816 4.4052 0.54

15.0 1.50 0.4477 4.5954 4.5257 1.52

15.0 1.50 0.3663 4.1567 4.1790 0.54

15.0 1.65 0.4070 4.5954 4.5038 1.99

15.0 1.35 0.4070 4.1567 4.1991 1.02

16.5 1.50 0.4070 4.1777 4.2240 1.11

13.5 1.50 0.4070 4.6186 4.4531 3.58

Table 1: PWV and porcentual difference with respect the M-K value obtained for the 7 simulated cases using the

flow rate wave and TT50 (transit-time using 50 % threshold).

r [mm] h [mm] E [MPa] M-K [m/s] PWV [m/s] Dif. [%]

15.0 1.50 0.4070 4.3816 4.3303 1.17

15.0 1.50 0.4477 4.5954 4.6577 1.36

15.0 1.50 0.3663 4.1567 4.1313 0.61

15.0 1.65 0.4070 4.5954 4.6468 1.12

15.0 1.35 0.4070 4.1567 4.1426 0.34

16.5 1.50 0.4070 4.1777 4.1738 0.09

13.5 1.50 0.4070 4.6186 4.7428 2.69

Table 2: PWV and porcentual difference with respect the M-K value obtained for the 7 simulated cases using the

pressure wave and TT90 (transit-time using 90 % threshold).
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6 DISCUSSION

In this study, the propagation of pulsatile pressure and flow waveforms through compliant

cylindrical tubes has been simulated to assess a PWV as a surrogate for a vessel stiffness. Using

the M-K equation as a theoretical reference, the simulation confirmed that an increase in the

tube wall thickness or the elastic modulus proportionally increased the PWV squared and the

relationship with radius was inverse. The application of CFD and dynamic FSI might now be

extended to evaluate vessel stiffness under more complex arterial geometries.

In most cases, differences between theoretical PWV values and simulation measurements

remained below 2%. These differences were relatively small considering that the variation of

the parameters proposed in our study was around ±10%, much smaller than in other reports

where detectable variations ranged from -50% to +100% (Shahmirzadi et al., 2012). Increased

differences were observed when the tube was shrank 10% and are supposed to be due to a higher

ratio S/S0, where S0 is the initial cross-sectional area of the pipe. Although the theoretical value

given by the M-K equation is used to compare the results of the simulation, it must be pointed

out that this comparison is only a reference, since the goal was not to simulate cases under the

hypothesis assumed in the M-K analysis.

The absorbing boundary condition adopted in our simulation at the tube outlet was effective

to minimize backward wave reflections and helped to accurately assess the transit times.The

estimation of PWV is based on the assessment of the TT between two pressure or flow waves at

two locations separated by a known distance. The clinical method to estimate TT differs if sig-

nals are based on pressure or flow acquisitions. To avoid invasive pressure measurements using

a catheter, non-invasive tonometric techniques are clinically employed (Davies and Struthers,

2003). The tonometric technique is based on placing a pressure sensor on the skin over su-

perficial arteries (carotid-femoral or carotid-radial) and recording the signals simultaneously or

synchronized by ECG (Electrocardiogram). The main limitations of this method are the esti-

mation of an accurate distance between the two distinct sites and the fact that the biomarker

represent regional and not local stiffness values. The assessment of 4D-Flow MRI (Magnetic

Resonance Imaging) acquisitions are currently tested because they allow for a simultaneous as-

sessment of blood flow curves at 2 distinct locations together with the exact 3D distance between

the sites through the vessel centerline (Jarvis et al., 2022). Usually, the onset of the pressure or

flow waves is used to determine TT but other methods including cross-correlation, maximum

derivative or the peak time were also reported (Dogui et al., 2011). Backward wave reflections

could interfere with the wave peak or even with the wave up-slope and also a physiological

wave widening along the vessel path is usually expected (Grotenhuis et al., 2009). Accordingly,

a 50% threshold was set in our study to determine TT using flow rate waves and a 90% thresh-

old using pressure waves. Probably, pressure waves were less prone to noise around the wave

peak. This decision was mostly justified as a good compromise thinking in our 4D-Flow MRI

applications (Pascaner et al., 2021), where small velocities are noisy to accurately determine

the foot of the flow wave and peak flow time might be contaminated by strong wave reflections.

Further simulations in patient specific configurations should be investigated to choose the best

TT measurement method, particularly in cases where a dilatation is observed such in patients

with aortic aneurysms.

Some limitations of this work should be mentioned. The model assumed linear elastic walls

when vessel elasticity is mostly non-linear. The idealized model could be somehow justified

by the small observed deformations but more complex non-linear elastic models might also

be evaluated in future numerical simulations. The geometry of a straight pipe was adopted to
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match the conditions of the M-K equations. Even if some aortic regions, such as the thoracic de-

scending or abdominal regions are mostly cylindrical, arterial morphology and flow patterns are

extremely complex and particular locations like the the aortic arch include several bifurcations

where our simplified model might not be valid. Moreover, arteries dilate and collapse, produc-

ing geometrical changes associated with variations in PWV that could interfere with the M-K

stiffness association (Pascaner et al., 2021). Further simulations could be improved building 3D

meshes from patient specific models based on computed tomography images.

7 CONCLUSION

Three-dimensional simulations of pressure/flow pulses propagation through elastic tubes

with arterial dimensions were performed to evaluate PWV as an indirect marker of the tube

stiffness. The most important parameters affecting the PWV were varied in the simulations,

including the tube radius, the wall thickness and the Young modulus, obtaining the correct ten-

dencies in the PWV values relative to the M-K equation with percent differences below 4 %.

Based on these results we gained confidence on the methods and solvers applied in the present

work, allowing its use in cases with more complex geometries such as those including regional

variations in the radius, in the wall thickness, and/or patient-specific configurations.
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