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Abstract. The objective of this work is to present the implementation of topological derivative 
concepts in a standard BEM code. The topological derivative is evaluated at internal points, 
and those showing the lowest values are used to remove material by opening a circular cavity. 
Hence, as the iterative processes evolutes, the original domain has holes progressively 
punched out, until a given stop criteria is achieved. At this point, the optimal topology is 
expected. Several benchmarks of two-dimensional elasticity are presented and analyzed. 
Because the BEM does not employ domain meshes in linear cases, the resulting topologies are 
completely devoid of intermediary material densities. The obtained results showed good 
agreement with previous available solutions, and demanded comparatively low computational 
cost. The results prove that the formulation generates optimal topologies, eliminates some 
typical drawbacks of homogenization methods, and has potential to be extended to other 
classes of problems. More importantly, it opens an interesting field of investigation for 
integral equation methods, so far accomplished only within the finite element methods 
context. 
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1 INTRODUCTION 
 Topology optimization has been a major research subject in many engineering fields 
during the last decades, and a number of numerical methods have emerged to perform this 
type of computational design task efficiently. Among these, homogenization methods are 
possibly the most used approach for topology optimization of structures. Since the early work 
of (Bendsøe & Kikuchi, 1988) these techniques and their variants have been successfully used 
in many structural optimization problems (Bendsøe & Sigmund, 2003). Because the technique 
deals with variable material densities, the finite element method (FEM) has became the 
natural choice for the numerical solution of the equations. Additionally, the technique is able 
to generate globally optimal solutions, i.e. microstrutured designs. Although strictly correct 
from the mathematical standpoint, this type of solution often fails to generate engineering 
designs straightforwardly. In order to render a 0-1 (void-material) solution, suboptimal 
microstructures with penalization like SIMP are used to avoid large areas with intermediate 
results (composite materials). Since the material distribution is related to the finite element 
mesh, results obtained through homogenization methods generally suffer from mesh 
dependency. Another major drawback of the technique arises when the aforementioned 
gradient filters are applied, possibly generating checkerboard instabilities that must be 
controlled in order to attain feasible designs. Another alternative method which has been also 
under development during the last years are the topological derivative (TD) methods 
(Sokołowski & Żochowski, 1997, 2001)(Feijoo et. al, 2002). This family of methods aims the 
elimination of mesh dependency and numerical instabilities, two common drawbacks of 
homogenization methods.  

 Most of the research on topology optimization has been based on FEM methods (see, 
for instance, Mackerle, 2003). The objective of the present work is to apply a recently 
developed TD approach with boundary element methods (BEM). A previous methodology 
developed for heat transfer problems (Marczak, 2005) is extended to elasticity problems. 
Since the BEM does not need domain mesh, its use with TD methods renders a fully 0-1 
approach, thus avoiding intermediary material densities and the associated numerical 
drawbacks. Firstly, a review of the TD formulation adopted herein is addressed, which is 
particularized for 2D elasticity. Next, a numerical methodology is devised to carry out the 
computational design by an iterative BEM procedure. A number of examples are solved with 
the proposed formulation and the results are compared with available solutions. 

2 A REVIEW OF TOPOLOGICAL DERIVATIVE FOR 2D ELASTICITY 
EQUATION 

 The idea behind topology derivative is the evaluation of a cost function sensitivity to the 
creation of a new cavity/hole. Wherever this sensibility is low enough the material can be 
progressively eliminated. 
 The original concept of topological derivative is related to the sensitivity of a given cost 
function ψ when the topology of the analysis domain Ω is changed. The local value of the 
topological derivative at a point  x̂  for this case evaluated by: 
  

     * ( ) ( )ˆ( ) lim
0 ( )TD x

f
ψ Ω − ψ Ωε=

ε→ ε
    (1) 

 

R.J. MARCZAK2770

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

where  ( )ψ Ω   and ( )εψ Ω  are the cost function evaluated for the original and the changed 
domain, respectively, and  f  is a regularizing, problem dependent function. The major 
drawback about this concept is that it is not possible to establish an isomorphism between 
domains with different topologies, making the evaluation of Eq.(1) rather difficult or 
impossible. 
 Feijoo et. al (2002) and Novotny et. al (2003) circumvented this problem introducing the 
mathematical idea that the creation of a hole can be accomplished by simply perturbing an 
existing one, whose radius tends to zero (Fig. 1). Now both domains have the same topology 
and it is possible to establish a mapping between each other: 
 

     
0
0

( ) ( )
ˆ( ) lim

( ) ( )TD x
f fε→

δε→

ψ Ω − ψ Ωε+δε=
ε + δε − ε
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Figure 1: Modified concept of topological derivative. Original (a)  and perturbed (b) domains. 
 
where  δε   is a small perturbation on the hole's radius. It is important to note that Eq.(2) is 
formally rendering a shape sensitivity character to the original expression, but it can be proven 
that the Eqs.(1) and (2) are equivalent . The evaluation of TD  is, however, much easier than 
its original counterpart *

TD . 
 In the present work, the interest rests on the evaluation of  TD   for problems governed 
by the elasticity operator. Following the work of Novotny et. al (2003), the topological 
derivative equations for linear elasticity will be reviewed. The direct problem is stated as:  
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Let a general form for cost function be written as total strain energy function:  
 

   
( )

( ) ( )

1
2
1 ,
2

t

d d d

a l

τ τ
τ τ τ τ τ τ τ τ τ τΩ Ω Γ

τ τ τ τ τ
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where τ is the perturbation parameter associated to the shape change velocity (i.e.  

( ) ( )xτ = + τx x v x ). The sensibility of the cost function with respect to τ can be obtained from 
the Gâteaux derivative of the perturbed configuration given by Eq.(4).: 
 

          ( )
( ) ( )| 0

0 0
lim 0 ond

d
τ τ τ=

τ ετ= τ→

Ψ Ω − Ψ Ω
Ψ Ω = = ∂Γ

τ τ
   (5) 

 
After an intensive analytical work, the topological derivative results, in absence of body loads: 
 

     ( ) ( )0

1 1ˆ lim
2

tt
TD d

f Eε
ε εΓε→

= − σ Γ
′ ε ρ∫x  

 
Using an asymptotic analysis of the solution εu , the following expression is found: 
     

     ( ) 2

2 3 1ˆ tr tr
1 2(1 )TD ν −

= ⋅
+ ν − ν

x σ ε + σ ε  

 
which can be particularized for plane strain problems as 
 

    ( ) 2 (1 )(4 1)ˆ tr tr
(1 )(1 2 ) 2(1 2 )TD − ν ν −

= ⋅
+ ν − ν − ν

x σ ε + σ ε    (6) 

 
A similar expression can be derived for the plane stress case. 

3 NUMERICAL METHODOLOGY 
 In order to evaluate Eq.(6), the BEM was used in its direct version (Brebbia et. al, 1984) 
(Brebbia & Dominguez, 1989). Since the evaluation of physical variables on internal points 
with the BEM is a post-processing step, the recovery of local values for TD  can be easily 
implemented. Furthermore, because the BEM shows better accuracy for the evaluation of 
boundary variables than other popular methods like the FEM, it is expected a good 
performance of the approach for boundary points (which is an important issue in shape 
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changes). 
 The optimization process is carried in four basic steps (see Fig. 2): 
 

1. The standard BE problem is solved, and the variables are evaluated on a suitable grid 
of interior points. 

2. The points with the lowest values of  TD   are selected. 
3. Holes are created by punching out disks of material centered on the previously selected 

points. 
4. Check stopping criteria, rebuild the mesh, and return to step 1, if necessary. 

At this point, the desired topology is expected. It is important to stress that, strictly speaking, 
the punching strategy here adopted is a type of hard-kill method for material elimination. This 
can be an issue in some non-convex problems, when material creation (filling) may occur 
simultaneously with material elimination. 
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Step 1                                                              Step 2
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Figure 2: BEM iterative procedure for material removal. 
 
It is worth to comment some aspects regarding the step 2. A common drawback in many shape 
and topology optimization methods is the progressive lost of symmetry in originally 
symmetric problems. This is related to the numerical evaluation of sensitivities, which are 
always prone to round-off and truncation errors. The material removal strategy also has 
influence on the final results, since symmetric topologies demand symmetric elimination of 
material. And of course the removal rate has a heavy influence on the computational cost of 
the analysis. These issues was faced in the early stages of the present work (Marczak, 2005), 
and three strategies were successively devised to overcome it: 
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A. Creation of a single hole per iteration: This is a very crude form of material removal, and 
computationally very inefficient. The point with the lowest  TD   value is used to create 
the hole. Besides being unable to create more than one hole at each iteration (with 
obvious lost of symmetry), a large number of iterations is necessary to achieve a solution. 

B. Creation of  hN   holes per iteration: This is an improvement over method A, where a 
preset number of holes is allowed to be created at each iteration. Although 
computationally more efficient than method A, there is no simple way to guarantee 
symmetric solutions. 

C. Cut-off method: This method was devised to try to remove larger areas of material in 
each iteration. The ideal solution would be to remove all areas inside the isolines at a 
given level of topological derivative, for each iteration. A simpler shortcut is to define a 
cut-off value: 

    ( ) ( ) ( )cutoff min max mini i i
T T TD D D D = + ρ −     (7) 

 where i = 1..number of sampling points (internal and boundary points). Therefore, all 
points with  cutoffTD D≤   are used to remove material. 

 After a number of preliminary tests, the methods B and C were found to be the best ones, 
and it was used throughout this work. By selecting suitable values of ρ, the rate of material 
removal can be controlled, provided it is not very large. Values in range 0.2% 5%≤ ρ ≤  
proved to be sufficient for most applications. 

4 RESULTS 
 This section shows a number of cases analyzed using the proposed formulation. These are 
very preliminary results, used to test the formulation. Traction free boundary conditions were 
employed on the holes. In all cases, the total potential energy was used as the cost function. 
The total amount of material removed was checked at the end of each iteration and compared 
to a reference value until the desired volume is achieved. All cases used linear discontinuous 
boundary elements integrated with 8 Gauss points. The regularly spaced grid of internal points 
was generated automatically, taking into account the radius of the holes to be created during 
each iteration. The radius was taken as a fraction of a reference dimension of the domain ( 

refr l= α  ). They may vary in order to accelerate or decelerate the material removal rate, but 
usually ref min( , )l H L=  was adopted, where H and L are the height and length of the domain. 
The material volume is to be minimized in all cases. The current area of the domain ( fA  ) 
was checked at the end of each iteration until a reference value is achieved ( 0fA A= β  , where 
 0A   is the initial value). The examples shown in this section employed circular holes 
discretized with six boundary elements. 
 

4.1 Benchmark 1 
 In this case a square domain has its left edge clamped and is subjected to a load on its 
upper right corner (Fig. 3). Holes with fixed radius were used throughout the process 
( 0.025r a= ). 
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Figure 3: Illustration of benchmark 1. 
 

The evolution history is shown in Fig. 4, for 4hN = . The process stopped when 00.4fA A=  
was reached. Figure  5 shows the results obtained for this case when 8hN = . Both cases 
delivered the same topologies, but evidently the solution was much faster in the latter one. 
 

 

Iteration 0 Iteration 40 Iteration 20 

Iteration 60 Iteration 88 Iteration 80  
 

 Figure 4: Optimization history of benchmark 1 – Method B with 4hN = . 
 
4.2 Benchmark 2 
 In this case rectangular cantilever structure has its left edge clamped and is subjected to a 
load on its upper right corner (Fig. 6). Three different solution strategies were used to solve 
this problem.  
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Figure 5: Optimization history of benchmark 1 - Method B with 8hN = . 
 

 The first solution used 0.04r a=  and method C with a fixed value of ρ in Eq. 7. The 
evolution history is shown in Fig. 7. Because a larger hole was used, the algorithm eliminated 
material very fastly, resulting a slender design after 57 iterations with 00.15fA A= . The 
second solution used 0.03r a=  and method B with 12hN = . As shown by the evolution 
history of Fig. 8, in this case the smaller radius of the holes and the more controlled material 
removal provided by method B allowed the formation of internal reinforcement bars, very 
similar to those also found in FEM homogenization solutions (Bendsøe 1995)(Bendsøe & 
Sigmund, 2003). The process was halted in the 40th iteration, when 00.35fA A= . The third 
solution repeated the last one, but using a slightly more dense internal points grid. As a 
consequence, the TD  sampling space was enriched and a more refined reinforcement pattern 
was found (Fig. 9). 
  

 

a

b

 
 

Figure 6: Illustration of benchmark 2. 
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Figure 7: Optimization history of benchmark 2 - Method C with 0.04r a= . 
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Iteration 0 Iteration 10 

Iteration 19 Iteration 25 

Iteration 30 Iteration 35 

Iteration 40  
 

Figure 8: Optimization history of benchmark 2 - Method B with 0.03r a=  and 12hN = . 
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Iteration 0 Iteration 05 

Iteration 10 Iteration 15 

Iteration 23 Iteration 29 

Iteration 32  
 

Figure 9: Optimization history of benchmark 2 - Method B with 0.03r a=  and 12hN = . This 
case used a more refined internal grid than the one depicted in Fig. 8. 
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The final design took 32 iterations to reach 00.45fA A= . This dependence is deeply rooted in 
the existence of a global optimum, which is microstructured. As the internal mesh is refined 
(and the holes radius decreased) the likelihood of finding a microstructured solution also 
increases. This is in perfect agreement with similar results obtained with the  FEM (Sigmund 
& Petersson, 1998). However, the BEM has the clear advantage of not dealing with 
intermediary material densities. 
 
4.3 Benchmark 3 
 
 In this case refers to the popular Michell truss (Michell, 1904)(Ostoja-Starzewskiy, 2001). 
The geometry, boundary conditions and loading for this benchmark are depicted in Fig. 10a. 
Two possible optimal solutions are shown in Fig. 10b. The theoretical solutions of Fig. 10b 
have their configurations limited by the number of bars used.  
 This is the case was firstly analyzed with the proposed formulation using method B with 

0.04r a=  and 2hN = . These parameters were found to be rather exaggerated to successfully 
generate a genuine Michell truss, as shown in the evolution history of Fig. 11, but the 
algorithm was able to detect their presence during intermediary iterations. This benchmark 
was reanalyzed using method B and 0.02r a=  and 8hN = . The corresponding optimization 
history is depicted in Fig. 12. Here, the reinforcements are more clearly generated, resembling 
more closely the structure of Fig. 10b. Evidently, the use of smaller holes leads to a more 
representative design. 
 
 
 

 

a

b
R

           
 

(a)                  (b) 
 

Figure 10: (a) Illustration of benchmark 3. (b) Theoretical optimal solution (Michell truss). 
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Figure 11: Optimization history of benchmark 3 - Method B with 0.04r a=  and 2hN = .  
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Iteration 0 Iteration 10 

Iteration 20 Iteration 30 

Iteration 39 Iteration 48  
 

Figure 12: Optimization history of benchmark 3 - Method B with 0.02r a=  and 8hN = .  
 

5 CONCLUSIONS 
    The present work introduced a topology optimization strategy for 2D elasticity problems 
using a topological derivative approach and the boundary element method. The relevant 
expressions for topological derivative evaluations are reviewed, aiming their implementation 
for problems governed by plane stress or plane strain equations. The formulation is derived by 
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introducing a specially devised iterative material removal procedure in a BEM framework. 
Some classical benchmark cases are solved in order to verify the feasibility of the proposed 
procedure. Because the BEM does not employ domain meshes in linear cases, the resulting 
topologies are completely devoid of intermediary material densities. The obtained results 
showed good agreement with previous available solutions, and demanded comparatively low 
computational cost. 
    It is important to mention that the topological derivate approach presented herein is not a 
well posed problem from the optimization point of view. The cost function (potential energy 
density) is not explicitly given, and extensions of the formulation to other types cost function 
will demand elaborate analytical derivations. The imposition of constraints also deserves 
further investigation. 

    The presented results proved that the formulation generates optimal topologies, eliminates 
some typical drawbacks of homogenization methods, and has potential to be extended to other 
classes of problems like plates and 3D elasticity. The simplicity of the expressions used to 
estimate the sensitivities makes the extension of the method to other types of PDEs rather 
straightforward, the difference being only in the type of physical variables and sensitivities. 
More importantly, it opens an interesting field of investigation for integral equation methods, 
so far accomplished only within the finite element methods context. 
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