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Abstract. In this work, the integration of singular kernels in a specially developed hole or inclusion 
boundary element is accomplished by the direct method. These elements are custom tailored for 
modeling two-dimensional microstructures containing cylindrical holes and/or inclusions, so that each 
micro-heterogeneity is represented by a single element. The traditional discretization in several 
boundary elements is then avoided. Using the direct method, all strongly singular integrals present in 
the element matrices are regularized. The convergence behavior of the proposed scheme is analyzed 
for several quadrature orders. 
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1 INTRODUCTION 

The numerical integration of strongly singular kernels plays a key role in the 
implementation of many integral equation methods, such as the Boundary Element Method 
(BEM). In the last two decades, several methodologies have been proposed to perform the 
task. Nevertheless, only a few of them have generality for use with general fundamental 
tensors and higher order element shape functions. The direct method seems to be one of the 
most general since it imposes no formal restriction on the type of kernel to be integrated and 
enables the use of standard Gaussian quadrature rules (Guiggiani & Casalini, 1987; Guiggiani 
& Gigante, 1990). On the other hand, this method requires the knowledge of the analytical 
asymptotic expansions of the kernels around the singular pole. In the present work these 
expansions are used in the evaluation of strongly singular integrals found in a hole/inclusion 
element formulation. The hole/inclusion element is used in a special boundary element 
formulation (Buroni, 2006) for modeling two-dimensional microstructures containing 
randomly distributed cylindrical holes and inclusions.      

 

2 BOUNDARY INTEGRAL FORMULATION 

In this section, some ideas of the Boundary Element Formulation employed for numerical 
modeling of two-dimensional microstructure is briefly summarized. For details the reader can 
be consult the work of Buroni (2006). 

2.1 Integrals in hole/inclusion element 

A local coordinate system ix)  is defined with its origin coincident with the micro-
heterogeneity center. The notation “ ⋅) ” is used to refer variables in the local system. The 
origin of the local system in the global co-ordinate system  is determined by the vectors ix iz , 
while the axis ix)  are kept parallel to  as is indicated in Fig. 1. Thus, a particular boundary 
point 

ix
ix)  on  can be expressed as function of the angle nΓ θ  according to following equation: 
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Figure 1: Local and global reference system.

In order to solve the displacement boundary integral equation of the problem it is 
necessary to calculate the integrals ( ) ( ),

n ij iF x u x dξ
Γ

Γ∫  for each micro-heterogeneity 
boundary , where i,j denote Cartesian components, iu  are the boundary displacements and 

ij  are the components of the Kelvin fundamental solution at a point 

nΓ
F ξ  due to the unit load 
placed at location x . These integrals are mapped to the local system and the displacement 
field on  is interpolated with special shape functions nΓ iM  so that each micro-heterogeneity 
is modeled with a single element (Buroni, 2006): 
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where iU β  are the displacements of the node β  in the direction i and β  range from 1 to the 
number of nodes of the hole or inclusion element. Analytical expressions for the  f

ijF
)

 tensor 
in the reference system ix)  are developed, resulting in the following expressions, valid for 
plane stress and plane strain hypothesis (Buroni, 2006): 
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where the constants  and  are: 3C 4C

 (3

4

1
4 1

1 2

C

C
π ν

ν

=
−

= −
 (8) 

and ν  is the Poisson’s ratio. The variable  is defined as: r

 ( ) ( ) ( )22
1, , cos senr R R R

2
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The expressions (4)-(7) are written for plane strain hypothesis. For the plane stress case, ν  
must be replaced by /(1 )ν ν ν= + . 

The iM  functions are trigonometric circular functions with unitary value on the n-th node 
and zero on the others. These functions are used to interpolate both geometry and physical 
variables. The present formulation allows for the use of hole elements with 3, 4, 5 and 6 
nodes. The 3-node element employs the functions proposed by Henry & Banerjee (1991): 
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The shape functions of the higher order elements proposed herein are given by: 
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for the 4-node element, 
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for the 5-node element, and 
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for the 6-node element. 
Contrary to the conventional BEM, which requires fine meshing around each hole, the 

present approach allows an efficient analysis, significantly reducing the input data amount 
and the total number of degree of freedom without compromising the overall accuracy. 

 

3 DIRECT EVALUATION OF STRONGLY SINGULAR KERNELS 

The accuracy of the BEM for elastostatic is critically depending on the correct evaluation 
of boundary integrals. In this work, the integrals of the hole/inclusion element formulation are 
evaluated numerically using the well known Gauss-Legendre rules (Stroud & Secrest, 1966): 

 ( ) ( )
1

1
1

n

i i
i

x dx w xψ
−

=

=∑∫ ψ  (14) 

where ( )ixψ  is the value of the kernel evaluated on the Gauss’s point i , and i  are the 
corresponding weights for the Gauss’ points. Using equation (14) implies in the mapping of 
the integrals (3) to a normalized space. The integrals of the fundamental solutions may 
present various singularity degrees, not being convenient to apply the formula (14) directly 

x w
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when the load point is over the element being integrated. This occurs because the integration 
is not convergent or presents very slow convergence. In these cases, are using special 
integration techniques. 

 The integration of equation (3) involves strongly singularities. The rigid body 
displacements technique is not used in this case due to its imprecision when applied to 
curvilinear elements (Banerjee, 1994; Guiggiani & Casalini, 1989). The work of Henry & 
Banerjee (1991) proposed an outer domain collocation (fictitious domain) to calculate the 
singular integrals of the hole element. In the present work, the integration of the strongly 
singular kernels is carried out by the direct method (Guiggiani & Casalini (1987), Guiggiani 
& Gigante (1990), Guiggiani et al. (1992) and Guiggiani (1998)). The solution of a strongly 
singular integral is given as a regular integral plus one scalar term evaluated on the pole.  

 

3.1 The direct method 

The formulation of the direct method is well documented in the literature. Only some basic 
results that are necessary throughout this work are presented here. The main goal is the 
accurate computation of the kernel ( ) ( ) ( ), ,ij ij kK x F x xξ ξ φ=  over the singular element, 
where kφ  is a interpolation function of the displacement field.  

Let a boundary element  be mapped into a normalized domain nΓ [ ]1, 1η ⊂ − + , and 
( )p η ξ=  the image of the load point on the domain η  (Figure 2).  The general form of a 

strongly singular integral in the BEM can be written as follows: 

 ( ) ( ) ( ) ( ) ( )
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where aφ  are the physical shape functions associated to node a and J is the determinant of the 
Jacobian. Hence, the kernel ij  already accounts for the interpolation rule used for the 
physical variables on the referred boundary element. The key point in the direct method is to 
expand asymptotically the kernel  using Laurent series around the image of the load point 
(Guiggiani, 1998): 
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where pρ η= −  is the image of  in the normalized domain. The expansion 1−F  accounts for 
the strongly singular contributions of the kernel, while the expansion 2−  accounts for the 
hypersingular contributions and so forth. Higher order singularities can be considered 
increasing the quantity of terms in the series. Then, a regular or weakly singular kernel has 

1 2 . The expansion  vanishes in the case of a strongly singular kernel, but not for 
hypersingular kernels. 

r
F

0− −= =F F 2−F

When the collocation point lies within only one boundary element, the final formula of the 
direct method is given by (Guiggiani, 1998): 
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One should note that the expression (17) contains all the information regarding the shape 
functions used for the physical variables ( aφ ) and geometry (J) enabling a rather general 
application. The integral in (17) stands for the original kernel from which the singular part 
around the load point has been subtracted, resulting in a regular integral. Another two terms 
in equation (17) correspond to analytical integration of the singularity through a criteriously 
limit process (Guiggiani, 1998). Then, the singular integral is obtained as a regular integral 
plus two scalar terms evaluated in the pole. The derivation of the expression (17) does not 
have any approximation in relation to the original integral (15). Thus, the generic application 
of the direct method implies only in the knowledge of the expansions 1−F and  for equation 
(16).  

2−F

For the case of two-dimensional elasticity, Marczak & Creus (2002) have derived a 
general expression for the Laurent’s expansion 1−F and 2−F  obtaining: 
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where nα  and tα  are the normal and tangential vector on the point ξ  respectively. It is 
interesting to note in equation (18) that only the off-diagonal terms are strongly singular while 
in the diagonal ones (α β= ) , which means that the integral is regular (contrary 
to what can be suggested by the expressions (4) and (7)). That is, the simple presence of r in 
the denominator of a fundamental solution must not be taken as a sufficiency condition to 
qualify a kernel as strongly singular (Marczak & Creus, 2002).  Also observed from equation 
(18) is the necessity of taking into account the asymptotic behavior of the whole kernel, 
including the interpolation function (

1 2 0− −= =F F

aφ ) and the determinant of the Jacobian (J) (Marczak & 
Creus, 2002). In the studied case, the interpolation functions used to approximate the 
displacement fields in the hole have unitary value in the referring node and zero in the others. 
This means that only the integrals containing non-null shape functions on the image of the 
collocation node are strongly singular. 

3.2 Laurent’s expansions for the hole/inclusion element 

In order to found the functions 1−F  and 2−F  in a systematic manner for the hole and 
inclusion elements some useful relations of the normal and tangential vectors are presented 
(Marczak & Creus, 2002): 

 i
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Jn
J

=  (19) 

 i
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At
J

=  (20) 

The determinant of the Jacobian can be expanded in Taylor series as:  

 ( ) ( )2
1 2

dx dxJ J
d d

α α 2Jη η
η η
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where   
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The boundary  is mapped to a normalized space nΓ [ ]1, 1η ⊂ − +  with the following 
transformation:  

 ( )1λ θ η π+ = +  (26) 

Note that λ  could have any value, but if this value is zero it happens a particular situation 
where the collocation point is the node 1 (see Figure 2). Since the element is closed, this point 
presents double-pole singularity (on 1η = −  and 1η = ), corresponding to the angles 0θ =  and 

2θ π= , respectively. The direct method is not able to eliminate both singularities 
simultaneously, so the parameter λ  must be different to zero. It is proposed the mapping (26) 
with 1

3λ π= , 1
4λ π= , 1

5λ π=  and 1
6λ π=  for the 3, 4 ,5 and 6-node element respectively. 

Thus the poles are displaced by λπ  as is showed in Figure 2. 

0λ =p 

 

Figure 2:  Mapping of the 3-node element to the normalized space η  with 0λ =  and 1
3λ π= .  

Taking into account this mapping and the geometry in the system ix) , the expressions (19)-
(25) are particularized to the form: 
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 1 2 0B B= =  (29)                       

 1 cosJ Rπ θ=  (30)  

 2 senJ Rπ θ=  (31) 

Neglecting the high order terms:  

 ( ) ( )2 2cos senJ R R Rπ θ π θ= + π=  (32)                       

With these expressions the equations (19) and (20) became: 
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n
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θ
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Finally the terms in the Laurent’s expansion (equation (18)) which regularize the integrals for 
the hole or inclusion element result: 

 ( )
( ) ( )12

1

1 2
4 1 aF

ν
π ν−

−
= −

−
M p  (35) 

 ( )
( ) ( )21

1

1 2
4 1 aF M

ν
π ν−

−
=

−
p  (36) 

It worth noting that the mapping (26) used in this deduction implies that the direction of 
travel on the boundary n  is counterclockwise (corresponding to external normal of the 
inclusion domain). However, the expressions (35) and (36) remain the same if the element 
orientation is clockwise (corresponding to external normal of the matrix domain).  

Γ

One should also note that the direct method allows the regularization of the strongly 
singular contribution only, with the visualization of the kernels helping to verify the overall 
behavior of the regularized kernels. 

 

4 NUMERICAL EXPERIMENTS 

In order to provide a verification of the efficiency of the integration for the proposed 
hole/inclusion element some numerical experiments are presented in this section. Figures 3 
and 4  show the singular behavior of the functions  and 21 1  in the normalized 
space when collocation is performed on the 

12 1F M J F M J
( ) (1 2, ),0Rξ ξ =
) )

 co-ordinates. In these figures the 
effect of the regularization of the kernels as well as the asymptotic expansions can be 
visualized. The regular integral (see equation (17)) is calculated with the standard Gauss-
Legendre quadrature technique using  points. The effectiveness of the proposed integration 
technique can be examined in the Table 1 where results for all singular integral in the 3-node 
hole element are presented.     

K
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Figure 3: Behavior of on normalized space 12 1F M J η when collocation is doing on 1 Rξ =
)

 and 2 0ξ =
)

 co-
ordinates (3-node hole element).   
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Figure 4: Behavior of on normalized space 21 1F M J η when collocation is doing on 1 Rξ =
)

 and 2 0ξ =
)

 co-
ordinates (3-node hole element).  
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K  
1

12 11
F M J dη
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−∫  1

21 11
F M J dη

+

−∫  1

12 21
F M J dη

+

−∫
1

21 21
F M J dη

+

−∫
1

12 31
F M J dη

+

−∫  1

21 31
F M J dη

+

−∫
2 -0,0906830057 -0,0420223859 -0,0128691349 -0,0128691349 -0,1699279990 -0,2185886188

4 -0,0100886758 -0,0120556646 0,0954351670 0,0954351670 -0,1134493895 -0,1114824007

6 -0,0001553394 -0,0001378292 0,1029515549 0,1029515549 -0,1032361530 -0,1032536637
8 -0,0000007553 -0,0000000219 0,1030978737 0,1030978737 -0,1030982842 -0,1030990176
10 -0,0000000153 0,0000000145 0,1030982620 0,1030982620 -0,1030982477 -0,1030982776
16 0 0 0,1030982623 0,1030982623 -0,1030982622 -0,1030982624 

Table 1: Results of the singular integrals of the 3-nodes hole element with the direct method. The variable K  is 
referred to the number of Gauss – Legendre points. 

 
The method of collocation over a fictitious boundary proposed by Henry & Banerjee 

(1991) to evaluate the singular integral is now analyzed for the present 3-node hole element. 
Figure 5 shows the kernel 12  in the normalized space with 1F M J ( ) ( )1 2 1,ξ ξ ξ= ,0

) ) )
. Note that 

this integral is singular when 1 Rξ =
)

 (see Figure 3). In Figure 5 one can be observe that using 
the collocation on the fictitious boundary the integral becomes regular, as expected, although 
becoming less smooth as the collocation point approaches the boundary of the hole element. 
This behavior is also observed in the Figures 6 and 7, revealing a difficult numerical 
integration. Table 2 presents the integrals 1

12 11
F M J dη

+

−∫  in the normalized space η  for the 3-
node hole element with collocation on ( ) ( )1 2 1,ξ ξ ξ= ,0

) ) )
 by the standard Gauss-Legendre 

quadrature technique using  points. The row M refers to the integration performed with 
Maple (2003) program, which uses more efficient integration techniques. These results reveal 
that in the present case Gauss-Legendre quadrature is not convenient when collocation is 
carried on a fictitious boundary. It is worth to mention that in the work of Henry & Banerjee 
(1991) the collocation is carried on a fictitious boundary with radius 25% smaller than the 
hole.  

K

As can be deduced from the direct method, the kernel 22 1  is regular because 22  is a 
diagonal term, and the kernel 21 3  is also regular since the shape function 3

F M J F
F M J M  becomes 

null when it is evaluated on the pole (see equation (18)). However, Figures 6 and 7 show that 
the collocation on a fictitious boundary turn these kernels less smooth, and more difficult to 
integrate. According to the results shown in Tables 3 and 4, while these integrals are easily 
evaluated with 8 Gauss points, in many cases 64 points are not sufficient when the collocation 
is performed on a fictitious boundary. 
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Figure 5: Kernel on the normalized space 12 1F M J η  when collocation is doing on 1ξ
)

 and 2 0ξ =
)

 co-
ordinates (3-nodes hole element).  

Table 2: Results of integrals 
1

1

12 1F M J dη
+

∫−  for the 3-nodes hole element with collocation on 1ξ
)

 and 2 0ξ =
)

 by 
the standard Gauss-Legendre quadrature technique with points K points.  

1

12 11
F M J dη

+

−∫  

K  1 0,55ξ =
)

 1 0,65ξ =
)

 1 0,75ξ =
)

 1 0,85ξ =
)

 1 0,95ξ =
)

 

2 0,4996274853 0,5735158877 0,5068130807 0,1009152246 -0,4689180337

4 -0,1002672434 -0,0832486298 -0,0466133316 -0,00851649 0,0132779673

6 -0,0069769269 0,0182694658 0,0592049376 0,1673348176 1,1397498933

8 0,0270281486 0,0223166112 0,0089186448 -0,0040539271 -0,00923141485

10 -0,0255006629 -0,0466853398 -0,0868154614 -0,2072715589 -0,674246733

16 0,0000000008 -0,000000211 -0,0000754613 -0,0065360969 -0,1558334228

20 0,0004056231 0,0047222951 0,0308300392 0,1206006627 0,0536906454

24 0,0000122533 0,0008807299 0,0118965367 0,0844295122 0,1942318955

32 -0,0000022819 -0,0000467012 -0,0000028392 0,0097769609 0,1747858787

40 -0,0000000354 -0,0000073850 -0,0004063562 -0,010461151 -0,1797103976

48 0,0000000008 0,0000000008 -0,0000754613 -0,0065360969 -0,1558334228

64 0 0,0000000001 0,0000016898 0,0003037949 0,0094003974

M 0 0 0 0 0 
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Figure 6: Kernel  on the normalized space 22 1F M J η  when collocation is doing on 1ξ
)

 and 2 0ξ =
)

 co-
ordinates (3-nodes hole element). 

 
1

22 11
F M J dη

+

−∫  

K  1 0,55Rξ =
)

 1 0,65Rξ =
)

 1 0,75Rξ =
)

 1 0,85Rξ =
)

 1 0,95Rξ =
)

 1 Rξ =
)

 

2 0,6544569211 0,9415202291 1,3124938877 1,500233656 0,9272763187 0,3927711795

4 0,7157020404 0,6803904348 0,6016911575 0,4845903435 0,3512584301 0,2873830534

6 0,4358738207 0,4334965656 0,4513181780 0,5567690033 1,5722486092 0,2857990867

8 0,6485691854 0,7280318858 0,7570033652 0,6596240653 0,4230954335 0,2857145100

10 0,5548558685 0,5598308865 0,5510520606 0,5941668872 1,4174691308 0,2857142859

16 0,5821428582 0,6273813806 0,6726505367 0,7180423354 0,7849876626 0,2857142857

20 0,5817657263 0,6259344381 0,6717446408 0,7390321328 0,7704249468 0,2857142857

24 0,5820524686 0,6263580410 0,6662137031 0,6989334415 0,8793821755 0,2857142857

32 0,5821419504 0,6272907099 0,6701842342 0,6870751694 0,6738938507 0,2857142857

40 0,5821429032 0,6273809527 0,6723746529 0,7071040271 0,7007284870 0,2857142857

48 0,5821428582 0,6273813806 0,6726505367 0,7180423354 0,7849876626 0,2857142857

64 0,5821428572 0,6273809520 0,6726204717 0,7186825791 0,8193213854 0,2857142857

M 0,5821428572 0,6273809525 0,6726190477 0,7178571430 0,7630952382 0,2857142858 

Table 3: Results of integrals 
1

22 11
F M J dη

+

−∫  for the 3-nodes hole element with collocation on 1ξ
)

 and 2 0ξ =
)

 by 
the standard Gauss-Legendre quadrature technique with points K points.  
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Figure 7: Kernel  on the normalized space 21 3F M J η  when collocation is doing on 1ξ
)

 and 2 0ξ =
)

 co-
ordinates (3-nodes hole element). 

 
1

21 31
F M J dη

+

−∫  

K  1 0,55Rξ =
)

 1 0,65Rξ =
)

 1 0,75Rξ =
)

 1 0,85Rξ =
)

 1 0,95Rξ =
)

 1 Rξ =
)

 

2 0,0633211216 0,0132709361 -0,0234557166 -0,0171949043 0,0223215849 0,0255811226

4 -0,0311281851 -0,0085957102 0,01154883782 0,0238127932 0,0242360241 0,0202787449

6 0,0590163752 0,0649659139 0,0658870503 0,0607482422 0,0380897305 0,0206196647

8 -0,0110969181 -0,0130757548 -0,0043853567 0,0132490408 0,0232252332 0,0206196524 

10 0,0211723316 0,0313640255 0,0399001428 0,04005423308 0,0138006206 0,0206196524 

16 0,0113408084 0,0134026753 0,0154602646 0,01752666859 0,0188876608 0,0206196524 

20 0,0114449175 0,0136551751 0,0153835071 0,01516896084 0,0169477101 0,0206196524 

24 0,0113696751 0,0136340597 0,0164836958 0,01968690216 0,0163524927 0,0206196524 

32 0,0113412171 0,0134260660 0,0158839898 0,02083706671 0,0267519208 0,0206196524 

40 0,0113407956 0,0134029664 0,0155107639 0,01867844978 0,0238278769 0,0206196524 

48 0,0113408084 0,0134026757 0,01546026469 0,01752666859 0,0188876608 0,0206196524 

64 0,0113408088 0,0134027741 0,0154644804 0,017443313 0,0170441945 0,0206196524 

M 0,0113408088 0,01340277411 0,01546473936 0,01752670461 0,0195886698 0,0206196524 

Table 4: Results of integrals 
1

1

21 3F M J dη
+

−∫  for the 3-nodes hole element with collocation on 1ξ
)

 and 2 0ξ =
)

 by 
the standard Gauss-Legendre quadrature technique with points K points.  
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5 CONCLUSIONS 

The integration of strongly singular integrals in a hole and inclusion element have been 
accomplished by the direct method, resulting in a regularized element. A critical study of the 
direct method allows recognizing in integrals of the form 

1 ij a( ) ( ) ( ) ( )
1

,F x p J dη ξ φ η η η
+

⎡ ⎤⎣ ⎦∫−  
which ones are effectively singular. The analytic expressions for the terms 1  of the 
Laurent’s expansion have been derived in a systematic manner, which is the main result of 
this work. These terms are valid for both hole and inclusion elements, regardless the order of 
the element shape functions. The numerical experiments have shown that the regularized 
integrals can be evaluated effectively by standard Gauss-Legendre quadrature rules. Another 
way of avoid the singularity is to perform the collocation on a fictitious boundary. However, 
the kernels become less smooth and much more difficult to integrate when the load point is 
approaching to the element. 

−F

 

ACKNOWLEDGEMENTS  

The first author wishes to express his thanks to CNPq for the financial support and is also 
grateful to Prof. Adrián P. Cisilino for very useful discussions. This work was partially 
financed by PROSUL 490185/2005-3 and CAPES/SETCIP 048/03 projects. 

 

REFERENCES 

P. K. Banerjee. The Boundary Element Methods in Engineering. Mc Graw-Hill Book 
Company, 1994. 

F. C. Buroni. Modelagem e Projeto Computacional de Materiais Micro-Porosos com 
Distribuição Aleatória Utilizando uma Formulação de Elementos de Contorno. Master 
thesis, Universidade Federal de Rio Grande do Sul, Porto Alegre, Brazil, 2006.  

C. A. Brebbia & J. Dominguez. Boundary Elements. An Introductory Course. Second Edition. 
Computational Mechanics Publications. Southampton Boston – Mc Graw-Hill Book 
Company, 1992.  

M. Guiggiani. Formulation and Numerical Treatment of Boundary Integral Equations with 
Hypersingular Kernels. V. Sladek and J Sladek, eds. Singular Integrals in B. E. Methods, 
Computational Mechanics Publications, Chapter 3, pp. 85-124, 1998.    

M. Guiggiani & P. Casalini. Direct Computation of Cauchy Principal Value Integrals in 
Advanced Boundary Elements. International Journal of Numerical Methods in Engineering. 
vol. 24, pp. 1711-1720, 1987. 

M. Guiggiani & P. Casalini. Rigid –body Translation with Curved Boundary Elements. 
Applied Mathematical Modeling. vol. 13, pp. 365-368, 1989.  

M. Guiggiani & A. Gigante. A General Algorithm for Multidimensional Cauchy Principal 
Value Integrals in the Boundary Element Method. Journal of Applied Mechanics, vol. 57, 
pp. 906-915, 1990. 

M. Guiggiani, G. Krishnasamy, T. J. Rudolphi & F. J. Rizzo. A General Algorithm for the 
Numerical Solution of Hypersingular Boundary Integral Equations. Journal of Applied 
Mechanics, vol. 59, pp. 604-614, 1992.  

D. P. Henry & P. K. Banerjee. Elastic Stress Analysis of Three-Dimensional Solids with 
Small Holes by BEM. International Journal for Numerical Methods in Engineering, vol. 
31, pp. 369–384, 1991. 

Mecánica Computacional Vol XXV, pp. 2835-2850 (2006) 2849

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

Maple. User’s Guide version 9.01. The Maplesoft, Waterloo Maple Inc, 2003. 
R. J. Marczak & G. J. Creus. Direct Evaluation of Singular Integrals in Boundary Element 

Analysis of Thick Plates. Engineering Analysis with Boundary Elements, vol. 26, pp. 653–
665, 2002. 

A. H. Stroud & D. Secrest. Gaussian Quadrature Formulas, Prentice-Hall, 1966. 

F.C. BURONI, R.J. MARCZAK2850

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


