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Abstract. Thin walled and open section beams are extensively used as structural
components in different structures in Civil, Aeronautical and Mechanical Engineering
fields. Free vibrations of doubly symmetrical beams or beams with one axis of
symmetry are widely studied, in general by using Bernoulli-Navier theory. However,
results about doubly unsymmetrical beams are rather limited. In this case, triple
coupled flexural-torsional vibrations are observed.
In this paper, a numerical study is presented about natural frequencies of doubly
unsymmetrical thin-walled and open cross-section beams. The equations of motion are
based on Vlasov's theory of thin-walled beams, which is modified to include the effects
of shear flexibility, rotatory inertia in the stress resultants and variable cross-sectional
properties. The formulation is also applicable to solid beams, constituting therefore a
general theory of coupled flexure and torsion of straight beams. The differential
equations are shown to be particularly suitable for analysis in the frequency domain
using a state variables approach. A discussion related to vibration of unsymmetrical
channel cross-section beams is presented. In this sense, relevant topics discussed in
recent works are pointed out.
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1 INTRODUCTION
The determination of natural frequencies and modes of vibration of undamped continuous

beams and shafts is discussed in detail in Pestel and Leckie1, who also describe the calculation
of dynamic response to harmonic excitation. Ebner and Billington2 employed numerical
integration to study steady state vibrations of damped Timoshenko beams. Numerous other
applications can be found in the literature concerning straight and curved beams, as well as
arch and shell structures. On the other hand, the theory formulated by Vlasov3 has been
extensively used in the dynamic analysis of thin-walled, open section beams, as exemplified
by the studies of Christiano and Culver4 and Yoo and Fehrenbach5, in which theoretical
predictions of natural frequencies and displacements induced in curved and straight beams by
travelling loads, closely match experimentally determined values. In slender beams, modelling
the structure with a large number of finite shell elements or other more refined approaches
does not lead to any improvement in the correlation with experimental results, because the
differences between the theoretical models are usually smaller than the experimental errors.

Nevertheless, although Vlasov's theory for open section beams is already firmly
established, it presents some limitations, namely: a) as in the common Bernoulli theory for
flexure, it is assumed that shear strains do not contribute to the beam flexibility.
Consequently, important errors should be expected in the analysis of deep beams or in the
dynamic response associated to higher vibrations modes, even in the case of slender beams
(Timoshenko and Young6). b) The influence of rotatory inertia in the stress resultants is also
neglected and c) Vlasov's fourth-order equations are valid only for beams with uniform cross-
section. In previous papers7,8, the authors proposed a modified theory, which is based on
Vlasov's formulation, but it accounts the effects mentioned above. This formulation, using the
so-called state variables approach in the frequency domain, lends itself to efficient numerical
treatment, which on account of generality and precision can be very useful in a variety of
applications.

Other theories that also account for coupling between bending and torsion in beams are
presented in Gere and Lin9 that derive a simplified equation for uniform open section beams
and Muller10 that formulates a general theory that include all coupling effects between the
equations of motions, but it is not easy to handle in applications. Most other contributions in
the field are restricted to particular cases. For example, Aggarwal and Cranch11 and Yaman12

deal with channel-section beams and Ali Hasan and Barr13 with equal angle-sections.
More recently, Tanaka and Bercin14 extend the approach of Bishop et al.15 to study triply

coupling of uniform beams using Mathematica. The governing differential equations
presented by the mentioned authors14 exhibit a confusion of co-ordinate system that was
clarified by Arpaci and Bozdag16. However, the equations presented in the last paper16

correcting those presented by Tanaka and Bercin14 are verified comparing results with a case
which neglects the same terms of Tanaka and Bercin14 making it impossible to verify the
accuracy of the both theories. In this paper, a numerical study is presented based on the
equations developed in previous papers7,8 and the results of Arpaci and Bozdag16 are
discussed. Moreover, the field matrix of the state variables approach is presented for the case
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in which the warping is neglected. These equations lead to a more simple theory that is used
for comparison purposes in this paper.

2 THEORY

2.1 Equations of motion
Following Vlasov's convention, the left-handed rectangular global coordinates system (x, y,

z) shown in Figure 1 was adopted. The associated displacements are designated ξ, η, and ζ.
The basic concepts needed to introduce the effects of shear strains, rotatory inertia and
variable cross-sectional properties within the framework of Vlasov's theory are described by
the authors in previous papers7,8, in which a complete derivation of the equations of motion
for free and forced vibrations may be found, as well as comparisons with other continuum
formulations and a thorough discussion of the definition of shear coefficients. The present
paper is more oriented to practical applications and only the derivation of the differential
equations for free vibrations in the state variables method is given.

Figure 1: Definition of terms.

In Figure 1 A represents the centroid and O the shear center. For the case of free vibrations,
the physical model is formed by  the following three fourth order partial differential equations
in the generalised displacements ξ, η, and θ:
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In these equations, FT is the cross-sectional area, Jx and Jy are the second moments of area
of the cross-section in relation to the centroidal principal axes, Jϕ the sectorial second moment
of area, Jd the torsion modulus, ax and ay the coordinates of the shear centre. ρ denotes the
mass density of the beam material. E and G are the Young's and the shear modulus
respectively. Finally, γmx and γmy represent the mean values of shear strains over a cross-
section z = constant and

r a a
J J

Fx y
x y

T

2 2 2= + +
+

(2)

The system (1) represents a general model of non-uniform beams that take into account
triply coupled flexural-torsional vibrations. It must be pointed out that the longitudinal
vibration equation related to the generalised displacement ζ (Figure 1) is non-coupled with the
rest of the system (1) and it was not taken in consideration in the analysis. In the case that the
longitudinal vibrations are of interest, this equation can be treated independently.

2.2 State variables method
Using the Fourier transform, an equivalent system with twelve first order partial

differential equations with twelve unknowns, in the frequency domain, is obtained. The
scheme described above is known in the literature as 'state variables approach'. Six geometric
and six static unknown quantities are selected as components of the state vector v: The
displacements ξ and η, the bending rotations φx and φy, the normal shear stress resultants Qx
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and Qy, the bending moments Mx and My, the torsional rotation θ and its spatial derivative θ´,
the total torsional moment MT and the bimoment B.

v(z,ω) = {η, φy, Qy, Mx, ξ, φx, Qx, My, θ, θ’, MT, B}T (3)

in which, MT denotes the total torsional moment given by:

MT = Hϕ + Hk (4)

with Hk  = GJdθ’ = Saint Venant torsion moment. The system is:

Avv =
z∂

∂
(5)
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A (6)

In which A is the system matrix, while xk ′  and yk ′  denote the Cowper’s shear coefficients
and:

Bθ’ = ρJϕω2 - GJd (7)

The components of the 12-dimensional state vector v are designated “state variables”. In
the frequency domain, the state variables depend on the frequency ω and the longitudinal
coordinate z. For simplicity, the same notation is being used for the state variables and their

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
670



Fourier transforms, since the domain can usually be identified by the indication of the function
arguments. For example, η(z, t) and η(z, ω) refer to the y-displacement in the time domain and
to its Fourier transform, respectively. It is important to note that the present formulation
constitutes a general theory of beams applicable to solid as well as thin-walled beams.

2.3 Simplified theory
In order to compare the numerical results to those presented by Yaman12 and Arpaci and

Bozdag16 which was one of the motivations of the present paper, a simplified theory is
presented. This model excludes of the analysis the warping constraint, reducing the system (5)
to ten first order partial differential equations with ten unknowns. In this case, the vector of
state is:

v*(z,ω) = {η, φy, Qy, Mx, ξ, φx, Qx, My, θ, MT*}T (8)

in which, MT* denotes the torsional moment, in this case given by:

MT* = GJdθ’ (9)

The new system is:

**
z
* vAv =

∂
∂

(10)

In which A* is the system matrix given by.
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3 NUMERICAL PROCEDURE AND BOUNDARY CONDITIONS
The system (5) may be easily integrated using standard numerical procedures, such as the

fourth order Runge-Kutta method, the predictor-corrector algorithm or other approaches. In
order to solve the two-point value problem encountered both in the determination of natural
frequencies and in dynamic response calculations, the latter must be transformed to an initial
value problem as shown, for example, by Ebner and Billington2. The procedure is normally
applied in the transfer matrix method (Pestel and Leckie1). Natural frequencies are determined
by mean of the well-known Thomson’s method.

The classical boundary conditions are considered in this paper: clamped, free or simply
supported.

Clamped Boundary

ξ = η = 0, φx = φy = θ = 0, θ´ = 0 (12)

Free Boundary

Qy = Qx = 0, Mx = My = MT = 0, B = 0 (13)

Hinged Boundary

ξ = η = 0, Mx = My = 0, θ = 0, B = 0 (14)

4 RESULTS AND DISCUSSION
As stated by Arpaci and Bozdag16 in the theory developed by Tanaka and Bercin14 although

the flexural displacement and the offsets of the shear centre are determined with respect to the
axes which are perpendicular and parallel to the web of unsymmetrical channel, the equations
are formulated as if the principal axes are used. Effectively, in the equations (1)-(3) of Tanaka
and Bercin14 the product of inertia terms Ixy are not included.

However, because Tanaka and Bercin14 do not give the value of product of inertia for the
cross-section considered by them in the numerical example, the comparison carried out by
Arpaci and Bozdag16 was not made for the same cross-section. Moreover, although all
properties of the unsymmetrical beams used in the examples 1-2 of Arpaci and Bozdag16 are
given in this reference, only the relative error between both papers was presented and
consequently it was not possible to compare with the theory presented in this paper.

On the other hand, Arpaci and Bozdag16 present another example in order to show the good
agreement between their results and those obtained by Yaman12 using the wave propagation
approach. However, Arpaci and Bozdag16 surprisingly uses the Yaman’s results in which the
product of inertia terms Ixy and the warping constraint are not included. In this way results
make it impossible to verify if the theory presented by Arpaci and Bozdag16 lead to right
natural frequencies in the case of nonsymmetrical open cross-section beams. For this reason,
the complete example presented by Yaman12 is developed next.

The theoretical model used by Yaman12, which cross section is presented in figure 2, has

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
672



the following geometric and material properties:
L = 1.00 m A = 9.68 10-5 m2

Iν = 5.08 10-9 m4 Iξ = 2.24 10-8 m4

Iνξ = 4.25 10-9 m4

Γ0 = 7.11 10-12 m6 J = 5.20 10-11 m4

cz = 9.09 10-3 m cy = 10.43 10-3 m
E = 7.00 1010 N/m2 ρ = 2700 kg/m3

G = 2.60 1010 N/m2

In the notation of Yaman12 L is the length of the beam, A the cross-sectional area, Iν and Iξ
are the second moments of area of the cross-section in relation to centroidal axes
perpendicular and parallel to the web of the channel beam, Γ0 the warping constant about
shear centre, J the torsion constant and cz and cy the eccentricities between the centroid and
the shear centre. The mechanical properties have the same notation that in this paper

 y

  z

νννν

ξξξξ

O

C

 cz

 cy

Figure 2: Cross-section of the beam of the example. Yaman’s co-ordinate system

In order to use the theory presented in this paper the second moments of area of the cross-
section in relation to the centroidal principal axes (Figure 3) must be determined as well as the
coordinates of the shear centre. Then, the well-known following equations are applied

ηξ

ηξα
II

I
tg

−
=

2
2 0 (15)

00
2

0
2 2ααα ηξξη senIsenIcosIJ x −+= (16)
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00
2

0
2 2ααα ηξηξ senIsenIcosIJ y ++= (17)

Moreover, it can be demonstrated that

00 αα senccosca yzx −= (18)

( )00 αα senccosca zyy +−= (19)

αααα0

 y

  x

ηηηη

ξξξξ

O

A

 ax

 ay

Figure 3: Cross-section of the beam of the example. Principal centroidal axes

Then, the geometric and mechanical properties used in order to apply the theory presented
in this paper are:

l = 1.00 m FT = 9.68 10-5 m2

Jx = 4.09 10-9 m4 Jy = 2.34 10-8 m4

Jxy = 0
Jϕ = 7.11 10-12 m6 Jd = 5.20 10-11 m4

ax = 6.50 10-3 m ay = -12.22 10-3 m
E = 7.00 1010 N/m2 ρ = 2700 kg/m3

ν = 0.346
The boundary condition for this example is considered simply supported. Three cases were

analysed
a) Stiffness coupling terms and effects of warping constraint are ignored.
Due to the product of inertia terms couples the flexural vibration in the two directions

considered, Yaman12 named the product EIνξ as coupling stiffness and, in first place, it
presents the natural frequencies for the case in which the stiffness coupling terms and
additionally the effects of warping constraint are ignored. In this case, the same error of
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Tanaka and Bercin14 is made. Obviously, these results cannot be used to verify a theory of
nonsymmetrical thin walled beams.

In the context of this paper, the simplified theory presented in point 2.3 was used.
Moreover, in order to ignore the stiffness coupling and to compare the results with those of
Yaman12, the following values were considered: Ix = Iν, Iy = Iξ and Ixy = 0. Table 1 shows the
results obtained.

Table 1: Natural frequencies (Hz) of the beam of the example. Case a

ModeReference
1 2 3 4 5 6

Arpaci et al16 47.00 73.39 102.36 145.34 154.53 206.70
Yaman12 45.49 69.91 101.73 149.82 154.79 207.43
This paper 45.47 69.88 101.72 149.47 154.80 207.25

The frequencies corresponding to the modes 1, 3, 5 and 6 are torsion dominated resonance
frequencies and those corresponding to the modes 2 and 4 are bending dominated resonance
frequencies. There are complete agreement, for this case, between the simplified theory
presented in this paper and the wave propagation theory12.

b) Only effects of warping constraint are ignored.
In this case, the simplified theory presented in point 2.3 was used. Moreover, the values of

Ix and Iy that correspond to centroidal principal axes were considered. Table 2 shows the
results obtained.

Table 2: Natural frequencies (Hz) of the beam of the example. Case b

ModeReference
1 2 3 4

This paper. Case a 45.47 69.88 101.72 149.47
This paper. Case b 45.28 60.27 102.18 155.10

As demonstrated by Yaman12 the consideration of the coupling stiffness is found to affect
the bending dominated resonant frequencies but it has not significant effect on the values of
the torsion dominated frequencies.

c) General case. All couplings and warping constraint effects are considered
In this case, the general theory presented in points 2.1 was used. Table 3 shows the results

obtained. The frequencies corresponding to the modes 1 and 3 are torsion dominated
resonance frequencies and those corresponding to the modes 2 and 4 are bending dominated
resonance frequencies.

Table 3: Natural frequencies (Hz) of the beam of the example. Case c
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ModeReference
1 2 3 4

Yaman12 51.87 114.79 207.41 263.88
This paper 51.39 96.48 188.84 204.81
Difference (%) 0.9 16.0 9.0 22.4

It may be seen that the first natural frequency is in close agreement. There are some
discrepancies, however, in the higher modes especially in the flexural dominated ones. In this
context, it would be useful to check the values in table 3 against experimental observations

5 CONCLUSIONS
In this paper, the equations of motion for thin-walled, variable open cross-section beams

have been presented within the so-called state variables approach in the frequency domain.
The equations take into account the influence of shear flexibility and rotatory inertias which
are neglected in the original Vlasov's theory. The equations enable the analysis of practical
problems using direct numerical integration in conjunction with techniques routinely applied
in transfer matrix analyses. In addition, they may be resorted to in order to numerically
evaluate transfer matrices or stiffness matrices for open section beam elements. Moreover, the
proposed theory can also be used for solid beams in which coupling between bending and
torsion occurs. Moreover, the field matrix of a simplified model which excludes the warping
constraint is also presented.

A discussion related to vibration of doubly unsymmetrical channel cross-section beams is
presented. In this sense, relevant topics discussed in recent works12,14,16 are pointed out.
Further studies, specially related to experimental tests of this type of nonsymmetrical sections
are necessary.
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