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email: (rsampaio,mpiovan,gvenero)@mec.puc-rio.br, web page: http://www.mec.puc-rio.br

†Grupo Análisis de Sistemas Mecánicos
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Abstract. In the present work a geometrically non-linear model is presented to study the cou-
pling of axial and torsional vibrations on a drill-string, which is described as a vertical slender
beam under axial rotation. The beam is subjected to distributed loads due to its own weight
and the reaction forces at the lower end. It is known that the geometrical nonlinearities play
an important role in the stiffening of a beam. The objective of this work is to understand the
geometrical stiffening/softening effects of axial-torsional coupled vibrations of drill-strings in
different operative conditions. Here, the geometrical stiffening is analyzed using a non-linear
finite element approximation, in which large rotations and nonlinear strain-displacements are
taken into account. The effect of structural damping is also included in the model. To help
to understand these effects comparisons of the present model with linear ones were simulated
and time responses and operative variables were compared. The analysis shows that linear and
non-linear models differ considerably after the first periods of stick-slip. The behavior is more
evident with the increase of the friction process in the lower part of the drill. One of the main
differences between the models is that the linear model predicts higher rotary speed peaks -in a
stick-slip situation- than the non-linear.
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1 INTRODUCTION

It is well known that flexible beams subjected to axial loads manifest stiffness variations, due
to the presence of the geometric stiffening effect,1 which is inherently non-linear. The problem
of geometrical stiffening in the context of dynamics of structures was analyzed by means of
different schemes such as those reported in the works of Banerjee and Dickens2 and Trindade
and Sampaio.3 The non-linear effects are relevant in the case of drill-strings vibrations and it
deserves some attention in order to develop suitable models, as it was advanced by Trindade,
Wolter and Sampaio.4 Vibrations of drill-strings are often analyzed by means of discrete or
lumped parameter models,5, 6 with certain non-linear expressions to represent the forces/torques
interactions with the rock formation. These models allow the study of a complex problem by
connecting lumped masses, springs, etc, in a conceptually simplified fashion which also fa-
cilitate the implementation of control schemes. Yigit and Christoforou5 developed a lumped
parameter model with the scope to analyze the coupled torsional/flexural vibrations of drill-
strings. They analyzed qualitatively and quantitatively the vibrations of the drill-string. These
authors extended7 their previous work to include also axial coupling by means of a simplified
lumped parameter differential equation in the axial direction. Richard, Germay and Detour-
nay,6 analyzed the self-excited stick-slip vibrations of drill-strings by means of a simplified
lumped parameter model, which accounts for torsional and extensional motions coupled in the
boundary. Recently, Trindade, Wolter and Sampaio4 introduced a non-linear continuous beam
model to study the influence of geometrical non-linearities in coupled axial/transversal vibra-
tions of drill-strings. In this work, it was shown that the non-linear model has strong quantitative
and qualitative discrepancies with respect to a linear one, and on the other hand an effort was
made to show the importance of the use of a continuous model that, by discretization, gives a
scheme of approximation; that is, given the error allowed the number of degrees of freedom
of discrete model is computed. In the present article, the coupled axial/torsional vibrations of
drill-strings are studied by means of a non-linear beam model. The drill-string is subjected to
distributed loads due to its own weight, leading to geometrical softening of its lower part due
to compression. The finite element method is employed to analyze the vibration patterns of
both the non-linear and the linear models in different operative conditions. The linear model
can be obtained from the non-linear, neglecting the geometrical stiffening. In this study it is
possible to see the qualitative and quantitative differences between linear and non-linear mod-
els, especially when the drill-string undergoes stick-slip patterns. These differences are quite
remarkable in the calculation of reactive forces and torques. Whereas in linear models there
is no geometrical coupling between extensional and torsional vibrations, in the non-linear this
kind of geometrical coupling has shown a remarkable effect, specially in long-time stick-slip
simulation.
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2 THEORY FOR THE NON-LINEAR MODEL

2.1 Displacements and Strain Measures

Let us consider an initially straight slender beam with annular cross-section ( Ro and Ri are
the outer and inner radii), and of length L in the undeformed state, which undergoes large
displacements and small deformations as shown in the following Figure 1. In this beam model
only the coupling between axial and torsional deformations in the dynamics of drill-strings is
analyzed. In this context the displacements field vector p, of a given point whose coordinates
are represented by the vector X, is given by:

X =


x

y

z

 7→ p =


u(x, t)

y(Cos[θ(x, t)]− 1)− zSin[θ(x, t)]

ySin[θ(x, t)] + z(Cos[θ(x, t)]− 1)

 (1)

Figure 1: Drill String Scheme. (a) Description (b) Undeformed Configuration (c) Deformed Configuration

the variables x, y and z are such that x ∈ [0, L] and
√

y2 + z2 ∈ [ Ri, Ro]. The Lagrangian
strain tensor is described by:

E =
1

2

[(
dp
dX

)
+

(
dp
dX

)T

+

(
dp
dX

)T (
dp
dX

)]
(2)

therefore the components of strain are:
εxx

εxy

εxz

 =


∂u
∂x

+ 1
2

[(
∂u
∂x

)2
+

(
∂θ
∂x

)2
(y2 + z2)

]
−1

2
z ∂θ

∂x
1
2
y ∂θ

∂x

 (3)
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2.2 Variational Formulation

The variational form of the strain energy accounting only for axial and torsional effects can be
expressed in terms of strains as follows:

δH =
1

2
δ

∫ (
Eε2

xx + 4Gε2
xy + 4Gε2

xz

)
dV (4)

Where E is the longitudinal modulus of elasticity and G is the transverse modulus of elas-
ticity. Now, introducing the strain components into the Equation (4), one gets:

δH =
δ

2

∫ L

0

[
EA

(
u′2 + u′3 +

1

4
u′4) + EI0

(
u′θ′2 +

1

2
u′2θ′2

)
+ EI02

θ′4

4
+ GI0θ

′2]dx (5)

A and I0 stand for the cross sectional area and polar moment of inertia, whereas I02 is a
generalized cross-sectional constant, defined by:

I02 =

∫
A

(
y2 + z2)2dA (6)

The variational form of the strain energy can be decomposed in two components, i.e. linear
and a non-linear contributions, which can be written as:

δH = δHL + δHNL (7)

where

δHL =

∫ L

0

[δu′ (EA u′) + δθ′ (GI0 θ′)] dx (8)

δHNL =

∫ L

0

δu′
[
EA

2

(
3u′2 + u′3) +

EI0

2

(
θ′2 + u′θ′2

)]
dx+∫ L

0

δθ′
[
EI0

2

(
2u′ + u′2) θ′ +

EI02

2
θ′3

]
dx

(9)

The virtual work done by inertial forces can be written in the following form:

δT = −
∫

ρδpT p̈dV (10)

Now, replacing the displacement vector into then above Equation (10), it is possible to obtain:

δT = −
∫ L

0

[
δu

(
ρAü

)
+ δθ

(
ρI0θ̈

)]
dx (11)

The beam is subjected to its own weight
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δW =

∫ L

0

δu
(
ρgA

)
dx (12)

The virtual work of damping is taken into account as a Rayleigh damping proportional to the
mass. Then it is possible to write:

δD = −
∫ L

0

[
δu

(
Cuu̇

)
+ δθ

(
Cθθ̇

)]
dx (13)

where Cu and Cθ are the axial and torsional damping constants calculated from the considera-
tions of Spanos et al.8

2.3 Non-linear Finite Element Formulation

A Finite Element model can be constructed through discretization of virtual work components
of strain, inertia, damping and applied forces. The discretization is carried out using Lagrange
linear shape functions for both axial displacements and torsional rotations, that is:

u = Nuqe

θ = Nθqe

(14)

where defining the element length with le, and the non-dimensional element variable ξ = x/le:

Nu = {1− ξ, 0, ξ, 0}
Nθ = {0, 1− ξ, 0, ξ}
qT

e = {u1, θ1, u2, θ2}
(15)

replacing the discrete expressions of displacements into the virtual work expressions, leads to:

δHe
L = δqT

e Ke
e qe

δHe
NL = δqT

e Ke
g qe

δT e = δqT
e Me q̈e

δDe = δqT
e De q̇e

δW e = δqT
e Fe

g

(16)

where Ke
e, Ke

g, Me and De, are the elementary matrices of elastic stiffness, geometric stiffness,
mass, and damping, respectively, whereas Fe

g is the vector of elementary loads due to the gravity
field. These matrices and vector are given by the following expressions:

Ke
e =

∫ 1

0

(EA

le
N′T

u N′
u +

GI0

le
N′T

θ N′
θ

)
dξ (17)
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Ke
g =

∫ 1

0

[
EA

2l3e

(
3leN′T

u N′
uqeN′

u + N′T
u N′

uqeqT
e N′T

u N′
u

)]
dξ+∫ 1

0

[
EI0

2l3e

(
leN′T

u N′
θqeN′

θ + N′T
u N′

uqeqT
e N′T

θ N′
θ

)]
dξ+∫ 1

0

[
EI0

2l3e

(
2leN′T

θ N′
uqeN′

θ + N′T
θ N′

θqeqT
e N′T

u N′
u

)]
dξ+∫ 1

0

[
EI02

2l3e

(
N′T

θ N′
θqeqT

e N′T
θ N′

θ

)]
dξ

(18)

Me
e =

∫ 1

0

(
ρAle NT

u Nu + ρI0le NT
θ Nθ

)
dξ (19)

De
e =

∫ 1

0

(
Cule NT

u Nu + Cθle NT
θ Nθ

)
dξ (20)

The elastic rigidity, inertia, damping and geometric rigidity matrices can be written in the
following form:

Ke
e =

[
A -A
-A A

]
with A = 1

le

[
EA 0

0 GI0

]
(21)

Me
e =

[
2B B
B 2B

]
with B = ρle

6

[
A 0

0 I0

]
(22)

De
e =

[
2C C
C 2C

]
with C = le

6

[
Cu 0

0 Cθ

]
(23)

Ke
g =

EA

2l3e
(3leβu + β2

u)


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 +
EI02

2l3e
β2

θ


0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

 +

EI0
2l2e


0 βθ 0 −βθ

βθ βu −βθ −βu

0 −βθ 0 βθ

−βθ −βu βθ βu

 + EI0
2l3e


0 βθβu 0 −βθβu

βθβu 0 −βθβu 0

0 −βθβu 0 βθβu

−βθβu 0 βθβu 0


(24)

where βθ = θ2 − θ1 and βu = u2 − u1.

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional

866



Now, taking into account the virtual work matrix Equation (16) and, operating and assem-
bling in the usual way, one gets the discretized equations of motion:

M q̈ + D q̇ + [Ke + Kg (q)] q = Fg (25)

where M, D, Ke and Kg are the global matrices of mass, damping, elastic stiffness and geomet-
ric stiffness, respectively, whereas Fg is the global vector of gravity forces. The force vector in
the discrete Equation (25) can be extended to account for other force contributions, like impacts,
etc.

2.4 Analysis about an initially deformed configuration

In order to analyze the dynamics of the coupled axial/torsional vibrations of the drill-strings,
it is important to consider previously some aspects of the drilling process with the scope to
characterize the FEM procedure. Drill-strings, such as the ones employed in oil well drilling can
be represented by a vertical cylinder with prescribed axial motion at the top position and sliding
down due to own weight. When the drill-bit reaches the rock formation, acts a reaction, which is
considered time-invariant in this work. At this stage the drill-string starts its rotational motion.
Figure 1(b) and Figure 1(c) represent, respectively, the idealized undeformed and deformed
configurations of the drill-string. In these circumstances two ”a posteriori” forces are included
in the finite element model. Then, in addition to the gravity force vector Fg present in Equation
(25), in the bottom node is applied a time-independent force Ff to simulate the axial reaction due
to rock formation. In addition a reactive torque Tbit is applied through the external generalized
force vector FT . This reactive torque is applied at the bottom node N, i.e. in the (2N)th degree of
freedom, and it can be modeled combining different interaction models (for example: Kreuzer
and Kust,9 and Yigit and Christoforou7), in the following form:

Tbit = FT2N
= µWobfi(θbn)

[
Tanh[θ̇bn] + α1θ̇bn

1+α2θ̇2
bn

]
with

fi(θbn) =

{
f1(θbn) = 1

2
(1 + Cos[θbn])

f2(θbn) = 1

(26)

where Wob is the axial reaction of the rock formation, µ is a factor depending on the drill cutter
characteristics, α1 and α2 are constants depending on rock properties, fi(θbn) is introduced to
exploit different modeling options and θbn and θ̇bn are the rotational angle and speed at the drill
bit respectively.

Therefore, considering the aforementioned background, Equation (25) can be rewritten in
the following form:

M q̈ + D q̇ + [Ke + Kg (q)] q = Fg + Ff + FT (27)

In this work, it is supposed that after the quasi-static lowering and when the reaction force
reaches a prescribed value the axial displacement of the drill bit is locked as it is suggested in
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Figure 1(c). Then further motions take place around this initial deformed configuration, which
is obtained from the following equation:

qs = K−1
e (Fg + Ff ) (28)

It has to be pointed out that Equation (28) was obtained assuming that the geometric stiffness
is negligible compared to the elastic stiffness for the initial axial loading, as it was explained
in Trindade, Wolter and Sampaio.4 Then, defining a new displacement vector q̄ relative to the
static qs, as

q̄ = q− qs (29)

substituting q from Equation (29) into Equation (25) and taking into account Equation (25), it
is possible to obtain the following equations of motion (30) in terms of q̄, i.e in terms of the
relative displacement vector:

M ¨̄q + D ˙̄q + [Ke + Kg (q̄ + qs)] q̄ = FT (30)

Then, the axial displacement of the drill bit it locked into its static value, that is: ūL = 0 or
u = uL

s . On the other hand the top position of the drill-string is subjected to a constant rotary
speed ω.

3 NUMERICAL RESULTS AND ANALYSIS

In the present section, the dynamics of typical drill string configuration is simulated in order to
identify the influence of the geometric axial/torsional coupling. The geometrical and material
properties of drill string are those presented in Table 1. The drill string consists of two parts,
the upper portion is composed of slender drill pipes normally subjected to large traction forces;
on the other hand, the lower portion is subjected to compressive forces due to the action of
own weight of the upper part and the reactive forces, consequently the lower part has larger
diameters.

Table 1: Geometrical and Material properties of the drill string

Property Section 1 Section 2
Longitudinal Elastic Modulus E (GPa) 210 210
Transversal Elastic Modulus G (GPa) 80 80
Mass density ρ (kg/m3) 7850 7850
Internal Diameter (m) 0.09718 0.05715
External Diameter (m) 0.11430 0.16510
Length (m) 2250 250
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Since in the present study the axial displacements are supposed to be initially at their static
configuration, they can be excited by means of the coupling with the torsional vibrations. In
these circumstances while the rock reaction is supposed constant (the drill string is lowered
until it reaches a prescribed value), the only axial/torsional structural-interaction comes from
the non-linear strain-displacement relations, not present in the linear model. The family of
Matlab ode-solvers was employed to obtain numerical approximations of the solution, for this
reason (30) has to be written as a first order equation.

3.1 Convergence Studies

In this section a convergence study is carried out. The Matlab solver ode15s was employed to
integrate the discretized equation. A relative tolerance error of εr = 10−8 was adopted in the
solver. The rock-bit interaction parameters α1 = α2 = 1 are employed in Equation (26). The
drill-bit parameter has the value µ = 0.04. The drill-string is subjected to a prescribed rotary
speed of 10 rad/seg at the top. The torque was modeled with function fi(θbn) = f1(θbn), that is
the form varying with the rotation angle.

A measure of convergence can be obtained by means of the relative error (between a coarse
and the finest discretizations) calculated by expressions (31) and (32) for angular velocity and
rotation angles, respectively. These expressions are computed in a given point xg and at given
integration instant tg.

ε% = 100

∣∣∣∣∣ θ̇(xg, tg)coarse − θ̇(xg, tg)finest

θ̇(xg, tg)finest

∣∣∣∣∣ (31)

e% = 100

∣∣∣∣∣θ(xg, tg)coarse − θ(xg, tg)finest

θ(xg, tg)finest

∣∣∣∣∣ (32)

Figure 2(a) shows a convergence of the angular velocity in the drill-bit calculated at instants
tg = 5 sec. and tg = 15 sec. for models with different number of elements. Figure 2(b) shows
the relative error for the rotation angle in the drill-bit at the same instants.

In Figure 2(b), one observes a fast convergence of the rotation angle measured at the instant
tg = 15 sec in comparison to the case measured at instant tg = 5 sec. This is reasonable due to
the fact that as the drill-bit evolves the rotation angle becomes larger, whose effect is to reduce
the relative error (see for example Figure 3(a) for a measure of the magnitude of rotation angle).
Consequently, coarser models reach acceptable convergence for the rotation angle. However, in
practical drilling process there is more interest in the behavior of angular velocity than rotation
angles. Now, in Figure 2(a), it is possible to see a slow convergence of angular velocity for the
coarser models (10 and 18 elements) at the beginning instants (i.e. tg = 5 sec). Models with
more than 22 elements give better responses and a faster convergence for tg = 5 sec. But, to
reach a good convergence at instant tg = 15 sec one needs discretizations with more than 18
elements, and to reach reasonable convergence at instants tg ≥ 15 sec. it is imperative to employ
the finest mesh possible. However, the use of finer meshes demands greater computational
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Figure 2: Convergence of approximation at drill-bit (a) angular velocity (b) rotation angle

effort. In other word, the total calculation time required for the model at points (1) and (3) in
Figure 2(a) were 420 and 660 seconds, respectively; however the calculation time required at
points (4), (5) and (6) in the same Figure were 1100, 3220 and 8900 seconds, respectively. The
calculations were carried out on a Pentium M (1.7 GHz) with RAM of 1.0 Gb.

3.2 Comparison of Matlab solvers

As it was mentioned in the previous subsection the integration was carried out employing the
Matlab solver ode15s, which is an implicit solver for ”stiff” systems. However, with the aim
to evaluate the efficiency and performance of other solvers available in Matlab, a comparison
between implicit and explicit solvers is presented in this section. Models with 22 elements were
tested employing two implicit solvers for ”stiff systems” (ode15s and ode23s) and other two for
”non-stiff systems” (ode113 and ode45). Figure 3(a) shows the variation of the drill-bit angular
rotation calculated with the four solvers with a relative error tolerance of εr = 10−8. Figure
3(b) shows the difference of the responses of ode45, ode113 and ode23s with respect to ode15s.
Figure 4 shows the same results but for the rotation velocity (where ∂tθ(t) means the rotary
speed, i.e derivation with respect to the time). The absolute error of solver-responses presented
in Figures 3(b) and 4(b) are calculated with expressions (33) and (34) respectively.

εθ = θ(xg, t)odeXX − θ(xg, t)ode15s (33)

εθ̇ = θ̇(xg, t)odeXX − θ̇(xg, t)ode15s (34)

One observes that although in Figures 3(b) and 4(b) there are absolute differences between
two solvers, the relative errors are insignificant in relation to the values of the rotation angle and
angular velocity.
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Figure 3: Performance of Matlab Solvers (a) rotation angle at drill-bit (b) difference with respect to ode15s

Table 2: Computing-cost (in seconds) of Matlab solvers for different prescribed relative error tolerances

Solver εr = 10−8 εr = 10−12

ode15s 1692 6956
ode23s 7123 27456
ode113 359 1508
ode45 1270 4953

The Table 2 presents the time demanded for each solver to calculate the response of a 60
seconds period, for different cases of internal error tolerance adopted in the ode solvers. One
can see huge amount of time demanded to obtain the response for internal error tolerance of
εr = 10−12 instead of εr = 10−8. As it can be inferred the selection of a particular solver
involves the decision of the computing cost which, for this problem may vary between few
minutes and more than seven hours.

The selection of Matlab solvers instead of the Newmark’s family of solvers to integrate
the discrete equations has two connected reasons. The first reason is related to the numerical
performance of the Newmark’s method, which depends on the selection of certain parameters
that can lead to an unstable numerical behavior. Although, it is possible to add numerical
damping with the scope to stabilize the method, not always this alternative gives good results.
The second reason is connected with the fact that for strong non-linear problems (specially
when the excitation force directly depends on the speed and displacement) the time-step has to
smaller, consequently demanding more computational effort. The authors also have carried out
a calculation -not shown here- with the Newmark’s Method (with 20 finite element, parameters
γ = 0.5 and β = 0.25) for the problem studied in this section, that demanded more than twelve
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Figure 4: Performance of Matlab Solvers (a) angular velocity at drill-bit (b) difference with respect to ode15s

hours to calculate a period of thirty seconds without numerical instabilities.

3.3 Comparison of Torque Modeling

The Equation (26) offers two alternatives to model the perturbation torque. Kreuzer and Kust9

employed a form which depends on the rotation angle and the rotary speed at the drill-bit, other
authors such as Yigit and Christoforou5 among others employed a torque on bit which only
depends on the rotary speed at the drill-bit. The ode15s solver was used to integrate a model
with 22 finite elements.
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Figure 5: Effect of perturbation torques (a) angular velocity at drill-bit (b) difference of responses
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Figure 5(a) shows the angular velocity at the drill-bit for both perturbation torques defined
in (26). Figure 5(b) offers the absolute difference between the angular velocity due to both
torques, i.e. θ̇(t, Tnf1(θbn)

) − θ̇(t, Tnf2(θbn)
). The stick-slip pattern is obviously modified. The

use of fi(θbn) = f2(θbn) instead of fi(θbn) = f1(θbn) in equation (26), leads to a reduction of
the quantity of stick-slip periods, giving uniform angular velocity peaks.

3.4 Simulation and Analysis of Stick-Slip Behavior

In order to understand the stiffening/softening effects and axial/torsional interactions in the
drilling process, a set of comparisons between linear and non-linear models are performed. The
following rock-bit interaction parameters α1 = α2 = 1 and fi(θbn) = f1(θbn) are employed
in Equation (26). The drill-bit parameter can have the values µ = 0.04 or µ = 0.06. The
drill-string is subjected to a forcing rotary speed of 10 rad/seg at the top. The drill-string was
modeled with 22 finite elements (3 in the lower segment and 19 in the upper segment), and
as explained in the previous section, the axial displacement of the drill bit is locked when a
reactive axial force of 2.55 × 105 N due to the rock formation is reached. The equations of
motion (30) for the discretized equations were numerically integrated with the aid of Matlab
ODE algorithms based on implicit schemes (ode15s).
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Figure 6: Axial displacement at u2490 m from the top position (a) Comparison of models (b) Difference of models

Figure 6 shows the axial displacement at a point 10 m from the bottom (that is u2490), for
both linear and non-linear models. It is possible to see that the axial displacement in the linear
model do not vary with respect to the time (Figure 6(a)). This is due to the fact, that in the linear
model the axial displacement is not coupled with the rotational degree of freedom (which is the
only one perturbed via the generalized force vector FT ) and due to the fact that the axial reaction
is assumed constant in this study. On the other hand it is possible to see that in the non-linear
model, the axial displacement is indeed perturbed by the rotational degree of freedom. The
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effect of the variation of axial displacement of the non-linear model with respect to the linear is
smaller as it is possible to see in Figure 6(b) (which shows the difference of both responses), and
that is why it is normally neglected in static analysis. However this effect can be qualitatively
appreciated in the calculation of forces, which will be showed in the next paragraphs.
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Figure 7: Difference of non-linear and linear responses in the angular speed at bit, for the case of µ = 0.04

Figure 7(a) depicts the rotary speed at bottom position for both models with drill parameter
µ = 0.04 (in the Figures ∂tθ(t) means the rotary speed, whereas sub indexes L and NL corre-
spond to linear and non-linear models, respectively). The forcing rotary speed at the top position
is also depicted for comparison purposes. In Figure 7(b) is possible to see a divergence of both
models, characterized by the difference between their corresponding rotary speeds. This differ-
ence starts to be sensible after the first 30 seconds of the evolution. The following Figures 8(a)
and 8(b) show the homonymous information of the previous Figures 7(a) and 7(b) but with drill
parameter µ = 0.06. In this case the divergence of linear and non-linear models commences
being evident after the first 25 seconds of evolution. In Figs. 7(a) and 8(a), the vibration pattern
of linear and non-linear models corresponds to a stick-slip situation. In these circumstances the
linear model predicts higher peaks of rotary speed that the non-linear model. The rotary speed
at the drill-bit shows peaks which can reach more than twice the value of forcing rotary speed
at the top position. Also the increase of factor µ leads to an increase in the level of speed peaks,
as seen in Fig. 7(a) and Fig. 8(a).

In Figure 9 the axial reaction at the top position for both linear and non-linear models is
shown. In this Figure is possible to see that the qualitative differences of both models are
sensible. In fact the employment of a non-linear model leads to an modification in the axial force
behavior due to torsional vibration. In other words, the presence of torsional displacements
geometrically coupled to axial displacements, induce an increase of the last ones, leading to an
qualitative variation of the axial deformation.
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Figure 8: Difference of non-linear and linear responses in the angular speed at bit, for the case of µ = 0.06

4 CONCLUSIONS

In this article a non-linear model for simulation of the axial/torsional interactions in drill-strings
dynamics was introduced. Other aspect of this article was the qualitative study about integra-
tion schemes in order to characterize and identify the features that facilitate the analysis of the
non-linear model developed. Four ode solvers of Matlab were tested. These results suggest
that for the case of extensional/torsional vibrations of drill-strings the use of a particular inte-
gration method may lead to a sensible spare of time preserving the accuracy of the numerical
approximation. The use of Matlab solvers can offer a good alternative to well known solvers of
Newmark’s family methods which can have numerical instabilities and requires a lot of comput-
ing effort. The effect of torque modeling was also analyzed. The perturbation torque depending
only on the angular velocity (i.e. with fi(θbn) = f2(θbn)) has the effect to reduce the quantity
of stick-slip periods in the drill-bit. The axial/torsional interactions were analyzed by means of
a comparison between the responses of linear and non-linear models, in operative conditions.
Normally, the axial/torsional interaction of a linear model is only related to the bit torque, which
has a non-linear form depending on rotation speed and rotation angle at the bit. However, the
non-linear model has, in addition to the non-linear bit torque, the consideration of a geometric
coupling due to non-linear strain-displacements relations. As was stated in the previous para-
graphs, the introduced non-linear beam model can be reduced to a linear one leaving out the
non-linear strain-displacements effects. The linear and non-linear models differ considerably
after the first periods of stick-slip not only in the drill-bit rotary speed. Also the linear and
non-linear models differ qualitatively in the calculation of forces and torques in general, but
particulary for the reactive axial forces. This observation is crucial in order to simulate a long-
time analysis of drilling process, as well as to consider some control methodologies. However
the consideration of control methodologies based on the present model is the matter for future
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research.
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