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Abstract. This work presents a numerical comparison of stabilized finite element 
formulations to solve slightly compressible immiscible two-phase flows and miscible 
displacements in porous media. The coupled set of partial differential equations is 
approximated in space by the Streamline Upwind Petrov-Galerkin (SUPG) or the Algebraic 
Subgrid-Scale (ASGS) stabilized finite element formulations. Shock-capturing operators are 
added to the formulations to improve stability around the moving sharp fronts. Both 
formulations are evaluated numerically regarding their accuracy and computational 
performance. 
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1 INTRODUCTION 

Oil recovery from a reservoir can be greatly improved by injection of water or other fluids 
that can be immiscible or miscible with oil. When simulating such processes a variety of 
methods have been employed such as finite differences, pseudo-spectral and the modified 
method of characteristics combined with mixed finite elements. Finite differences are adopted 
in most commercial reservoir simulators, despite its difficulties to handle complex 
geometries. Therefore, there is an renewed interest in unstructured grid approaches based on 
control volumes of finite elements to allow more geometric flexibility. However, one of the 
main difficulties when simulating numerically these processes is the advective-dominated 
transport in porous media. Several approaches can be used when solving properly such 
problems. Classical numerical methods either lacks stability, resulting nonphysical 
instabilities, or accuracy, when excessive numerical diffusion is produced. Despite the 
attention to this fundamental problem has received in the past decades, there is still need for 
better numerical techniques1.  

Here we adopt a classical Galerkin method to compute pressure and a post-processing 
technique2 to evaluate velocities with equal interpolation order. When solving the advection 
dominated saturation/concentration equation, we are interested in stability and accuracy. 
Stabilized finite element methods are particularly interesting for those cases. We employ two 
distinct stabilized methods to solve the saturation/concentration equation. One is the 
Streamline Upwind Petrov-Galerkin (SUPG), developed by Brooks and Hughes3 to control 
spurious numerical oscillations plus a discontinuity capturing technique known as Consistent 
Approximated Upwind (CAU) developed by Galeão and do Carmo4. The other is a Multiple 
Scale formulation as described in Juanes and Patzek1 with an Algebraic approximation to the 
Subgrid-Scale (ASGS) plus a subscale-driven artificial diffusion to capture shocks near sharp 
fronts. 

In this work we compare numerically the SUPG plus the CAU discontinuity capturing 
formulations with the ASGS plus the subscale-driven discontinuity operator in order to 
evaluate good and bad aspects concerning both formulations.  

The remainder of this paper is organized as follows. In the next section we briefly review 
the immiscible and miscible flow mathematical formulations. Section 3 presents the SUPG 
and the ASGS finite methods for both cases, with velocity post processing and time 
integration remarks. Two numerical examples are studied to examine robustness, accuracy 
and behavior of both formulations. One is the immiscible two-phase flow in a five spot 
configuration and is a miscible displacement flow in a homogeneous channel with 
nonmonotonic viscosity profile. The paper ends with the summary of main conclusions 
observed. 

2 GOVERNING EQUATIONS 

2.1 Immiscible displacement 

The mathematical model of the immiscible displacement of two slightly compressible 
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fluids through a rigid porous medium can be described by a system of partial differential 
equations5. These equations, in a domain 2RΩ∈  with a contour Γ at a time interval [0, T], 
can be written as 
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where the subscripts w and o refer to the water and oil phases respectively. In eq. (1) p is the 
average pressure of the water and oil phases, φ  is porosity, ct is the total compressibility of 
rock-fluid system, owT vvv +=  is the total velocity of the system and Qt = Qw+ Qo is the 
total volumetric injection rate. In eq. (2) sw is the saturation of water, pc is the capillary 
pressure, ρw and ρo are the density of water and oil respectively. The phase mobilities of the 
phases λj are given by 
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where krj are the relative permeabilities and µj is viscosity. K is the position-dependent 
absolute permeability tensor and zg∇=g  where g is gravity and z is depth. The tensors Λp, 
Λm are defined as 
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In eq. (3) the apparent fluid velocity  is defined as av
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The tensor D is given as 
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where fw is the fractional flow of water defined as 

xyz


xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

marce
370



 

 
ow

w
wf

λλ
λ
+

=  (9) 

and Qw is the water injection rate. 
We assume proper initial and boundary conditions for the pressure and saturation 

equations. Please refer to Coutinho et al.6 for a more detailed presentation. 

2.2 Miscible displacement 

The mathematical model of the miscible displacement of one incompressible fluid by 
another, in a rigid porous medium can be described by a system of partial differential 
equations5. These equations in a domain 2RΩ∈  with a contour Γ at a time interval [0, T], can 
be written as: 

 q=⋅∇ v  on Ω × [0, T] (10) 
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where v is the total Darcy velocity, p is the fluid pressure, c is the concentration of the fluid 
mixture, φ  is the porosity of the porous medium, and D(v) is the diffusion-dispersion tensor 
given as 
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where v1, v2 are the cartesian velocity components, D// and D┴ are respectively the 
longitudinal and transverse dispersion coefficients. The wells are represented by source and 
sink terms denoted by q. The function c  is specified at the sources and is equal to the resident 
concentration at the sinks. We assume proper initial and boundary conditions for the pressure 
and concentration equations. Please refer to Coutinho and Alves.

ˆ

7,8 for a detailed presentation. 
The tensor A(c) is given as 
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where K is the position-dependent absolute permeability tensor in porous media flow and µ(c) 
is the viscosity of the fluid mixture, which is a nonlinear function of the concentration. 

3 NUMERICAL FORMULATION 

In this section we present the semi-discrete stabilized finite element formulations applied 
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to the governing equations for immiscible and miscible displacements. The semi-discrete 
formulation is characterized by a finite element discretization in space followed by a finite 
difference discretization in time. The SUPG formulation is applied to the saturation and to the 
concentration equation respectively and the Galerkin formulation is applied to the pressure 
equation in both of cases. 

3.1 Immiscible displacement 

We consider the space domain Ω divided in nel elements, Ωe, e=1, 2,…,nel, where Ω=  
Ω

nel
e 1=∪

e and Ωi∩Ωj=ø. Given the spaces for the test functions for the pressure ph and the water 
saturation sh and the space of admissible variations wh respectively defined as 
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where hh(Ω) is a space of finite dimension functions over Ω, P1(Ωe) represents polynomials of 
first order in Ωe. Considering a standard discretization of Ω into finite elements the Galerkin 
formulation for the pressure equation is written as 
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The weak variational approximation for the saturation equation is written as 

 

nel

e 1
nel

e 1

( ( , )) * ( , )

( ) 0

e

e

h h h h h h h
w a w a

h h h
w w

w L s v d L L s v d

s w s d

τ

δ

Ω
=

=

Ω

Ω

Ω + Ω

+ ∇ ∇ Ω =

∑∫ ∫

∑ ∫
 (19) 

where the differential operator  is given by, ),( vsL h
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and the differential operator L* is defined as 

  (21) hh
a wvL ∇⋅=*

The first integral in eq. (19) is the Galerkin term, the first summation of element-level 
integrals is the advection stabilization term and the second is the shock-capturing term. The 
particular forms of stabilization and shock-capturing terms will be defined later. 
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3.2 Miscible displacement 

We consider the space domain Ω divided in nel elements, Ωe, e=1, 2,…,nel, where Ω=  
Ω

nel
e 1=∪

e and Ωi∩Ωj=ø. Given the spaces for the test functions for the pressure ph and the 
concetration ch and the space of admissible variations wh respectively defined as 
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where hh

Ω

(Ω) is a space of finite dimension functions over Ω, P1(Ωe) represents polynomials of 
first order in Ωe. Considering a standard discretization of Ω into finite elements the Galerkin 
formulation for the pressure equation is written as 
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The weak variational approximation for the concentration equation is written as 
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and the differential operator  is given by, *L

  (28) h
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h
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The discrete residual is defined as 

  (29) qccLcR hhh ˆ)()( −=

Similarly to the immiscible case, the first integral in eq. (26) is the Galerkin term, the first 
summation of element-level integrals is the convection stabilization term and the second is the 
shock-capturing term, needed to add stability around the moving sharp concentration fronts. 
The particular form of these operatores will be defined below.  

3.3 SUPG and ASGS stabilized formulations 

The SUPG and the ASGS formulations for immiscible and miscible displacements are very 
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similar. In the case of advection-dominated flows with no gravity effects and using linear 
elements we have: 

 
Immiscible case 
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Miscible case: 

 SUPG: andh
c

h
p

h
c wwL ∇⋅= v*

1

2

−














=

h
c

h
av

τ  (33) 

 ASGS1: andh
c

h
p

h
c wwL ∇⋅= v*

1

221

−











+=

h
c

h
c

h
avD

τ  (34) 

where h is the element geometric parameter and c1 and c2 are constant coefficients. 
The shock-capturing capture operators added to the stabilized formulations are very 

similar. In general they are defined as: 

  (35) Ω∇∇∫Ω duwu hhh
e )(δ

where u is the transported quantity, and δ is a nonlinear diffusion parameter. For the SUPG 
formulation we add the CAU shock-capturing, introduced by Galeao and do Carmo4, which 
has the form: 
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where α is a parameter that depends on the Peclet number. Note that in CAU operator, the 
shock-capturing term is nil when hu∇  is zero. For the ASGS formulation the shock-
capturing parameter has the form, 
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where Csc is a constant coefficient and Usc is a characteristic value of the solution near the 
shock. 

3.4 Velocity Post-processing  

In the case of immiscible as well as miscible displacements the velocity computed directly 
from Darcy’s law is less accurate than the other variables. Post-processing schemes may be 
used to obtain satisfactory results. Here we adopted the global post-processing scheme of 
Malta et al.2. This scheme is based in the combination of Darcy’s law variational formulation 
and the residue of the mass conservation equation. Given the pressure ph and the saturation sh 
(or concentration ch) and defining 
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where  is the post-processed velocity vector and the parameter σ is a mesh geometry 

parameter. In the miscible case 

h
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while in the immiscible case 1
1

−= AB , 2 =B I 3, =B 0 . Using this technique the problem 
variables pressure, velocity and saturation (concentration) are approximated by equal order 
interpolations. 

3.5 Time-marching algorithm 

The saturation and the concentration time-derivatives for immiscible or miscible 
displacements are approximated by the generalized trapezoidal rule (Hughes9).Thus, we 
obtain the following block-iterative predictor-multicorrector algorithm 
 

• Block 1: Solve Pressure Equation 
• Block 2: Compute Velocity field 
• Block 3: Solve Saturation or Concentration Equation 
• Perform the Updates 
 

The iterative process continues up to some convergence criteria are satisfied. In this 
algorithm the linear system of equations corresponding to the pressure equation is solved by 
preconditioned conjugate gradients while that corresponding to the saturation (or 
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concentration) equation is solved by the preconditioned GMRES algorithm. An element-by-
element Gauss Seidel preconditioner is used in both of cases. The systems of equations 
corresponding to the velocity post-processing is solved using simple Jacobi iterations. Here 
we use variable time step due to the strong nonlinear coupling between the pressure and 
saturation or concentration equations. We use an automatic time-step selection strategy based 
on the feedback control theory as presented in Coutinho and Alves7,8. 

4 NUMERICAL RESULTS 

4.1 Immiscible case 

This numerical example intends to compare both stabilized formulations by solving a five 
spot problem described in Durlofsky10. The computational domain is a 1 by 1 square with 
20x20 cells, each subdivided into 2 triangles, generating the finite element mesh shown in 
Figure 1a. Material properties of the porous media are porosity 0.2 and permeabilities kx = ky 
= 1 and kxy = 0. Oil and water viscosities are 4 and 1 respectively. Gravitational, capillary 
pressure and dispersion/diffusion effects are neglected. Initial conditions and constant in time 
boundary conditions for the pressure equation are given in Figure 1b and for the water 
saturation equation in Figure 1c. Initial conditions are P=0 for the pressure equation and a oil 
saturated reservoir for the saturation equation. A fixed time step of 0.005 PVI (pore volume 
injected) and a total simulation time of 4 PVI were adopted. Actually, the injected pore 
volume corresponds to a dimensionless time unit10. At time 0.8, which corresponds to 1 PVI a 
steady state solution is achieved, although more time steps were used to asses the behavior 
and vanishing effects of both formulations. 
 

Figure 1: Finite element mesh(a); Boundary and initial conditions for Pressure(b) and Water Saturation(c). 

Sw = 1 

IC: Sw(t=t0)=0 IC: P(t=t0)=0 

qi = 0.25 

qp = -0.25 

P = 0 

P = 0 

(a) (b) (c) 

Numerical solutions for water saturation(a), SUPG_CAU(b) and ASGS(c) shock capturing 
terms per element are presented in Figure 3 for several time steps. By analyzing those results, 
one can verify that the ASGS follows very well the saturation fronts while the CAU 
formulation is a bit more dispersive. It is also observed that both formulations vanish after a 
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steady state solution pattern is attained (i.e. 1 PVI). On the other hand, when having a further 
insight its clear that the CAU formulation does provide a smoother solution at the sharp front, 
while the ASGS technique looks very similar to the SUPG without shock capturing 
stabilization. Actually, as diffusion was neglected, the ASGS intrinsic time parameter is the 
same as the SUPG stabilization parameter. By that we can conclude that the CAU shock 
capturing is providing a smoother solution treatment in a proper manner the discontinuity 
effects at fronts. Those observations were made by analyzing the graph presented in Figure 2, 
which is the oil saturation at the producing well with PVI dimensionless time unit. Similar 
tests comparing different choices for the SUPG stabilization term were driven in the work of 
Coutinho et al.6 solving the same five spot problem. It is known that in its definition the 
ASGS formulation has a controlling constant parameter Csc. When taking such constant as 1 
a poor stabilization was obtained. When using Csc=5 a better stabilization was observed, but 
still not as smooth as the CAU stabilization, as can be observed in Figure 2. We consider that 
the need for a constant makes the ASGS approach not very robust for practical simulations, 
what does not happen with the CAU operator. For this example, both approaches had a very 
similar behavior, taking only 2-3 iterations to achieve non linear convergence (with 0.05 
tolerance), as shown in Figure 4. 
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Figure 2: Comparison of métodos for oil saturation at the producer well. 
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Figure 3: Sw(a), SUPG_CAU(b) and ASGS(c) parameters for time steps 1, 30, 60, 90 and 120. 
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Figure 4: Non linear iterations within each time step: for 1PVI. 

4.2 Miscible case 

We analyze a miscible displacement flow with nonmonotonic viscosity law as investigated 
by Manickam and Homsy11 and also by Coutinho and Alves8. The resulting governing 
equations were scaled in the same manner as in the previous works11,8 Velocity, length, time 
and viscosity are scaled with U, D/U, D/U2 and µ1, respectively. The diffusion is of the form 
D = DI and D is assumed unitary. The nonmonotonic viscosity law relationships are also 
given in Manickam and Homsy11 and Coutinho and Alves8. Here, the same computational 
domain, mesh, initial and boundary conditions were employed. The maximum simulation 
time was 3100 time units for a fixed time step of 0.5. Although adaptive time stepping based 
on a PID stepsize control algorithm was already implemented, a fixed time step approach was 
adopted for comparison of the stabilization formulations. Figure 5 shows the finite element 
mesh and a detail of the solution at the final time of the analysis. 
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Figure 5: Numerical solution for time steps 1, 1600 and 3200. 

 

 
Figure 6: Comparison of shock capturing stabilizations. 
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Figure 7: Concentration along the channel for time step 3200. 
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Numerical solutions for concentration, SUPG_CAU and ASGS shock capturing terms per 
element are presented in Figure 5 and 6 respectively for time steps 1, 1600 and 3200. By 
comparing the results for both cases, it is once again noticed that the ASGS plus the subscale-
driven discontinuity capturing follows very well the saturation fronts while the CAU 
formulation is a bit more diffusive. It is also observed that the ASGS shock capturing operator 
numerical value is smaller than the CAU. This can be adjusted by the Csc parameter.  

Figure 7 shows the concentration along the channel for time step 3200. As a whole, both 
stabilizations had a good stabilization of the discontinuity and a good agreement on the 
number of non linear and solver iterations. 

 

5 CONCLUSIONS 

In this paper we presented a numerical comparison between two distinct numerical 
approaches to the saturation equation, when solving two-phase immiscible porous flow and 
miscible displacement problems.  

The numerical results for the immiscible case points out that the shock capturing terms in 
both formulations have significant values at the saturation fronts and null values elsewhere. 
We have observed by numerical experiments that the CAU operator leads to more robust, 
consistent and smoother solutions at the saturation fronts. Moreover, it does not need control 
parameters to improve the stabilization, which makes it more practical to be used. Both 
required a very similar number of non linear iterations. That shows that several techniques 
and studies exists and could be used with caution to their good and bad properties. 

For the miscible case similar results were obtained. Both formulations have a similar 
behavior, distinguishing only in the amount of stabilization, that was more for the CAU than 
the other. Despite that, as a preliminary analysis both seemed to achieve almost the same 
numerical result.  
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