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Abstract. The piezoelectric actuator and sensor, have received lot of attention by researcher. 
The reason for this, it is because these devices present the piezoelectricity effect. This effect is 
the conversion between mechanical energy in electric energy and vice versa. So this effect is 
very useful in active vibration control, AVC, and its results are more effective than passive 
vibration control. The intelligent structures are the units compound by: actuator, sensor, 
controller and structures (Lima Jr, 1999). Intelligent structure good design, the actuators and 
sensors placement are a fundamental part, because misplacement can cause lack of system 
controllability and observability. So this paper intends to propose actuators placement 
technique, through index obtained from singular value decomposition of control matrix [B]. 
The structure about the study is a cantilever plate and the results check with the simulation 
done in finite elements. 
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1 INTRODUCTION 

Vibrations control new aim of the flexible structures has been received more attention by 
many researchers. According to new aim, the control is more effective if we use active 
elements. So integrating elements such as: sensor, actuator and controller, the mechanical 
vibrations could be minimized better than the use of passive elements. Nowadays these 
systems joining sensors, actuators, controllers and structures, are called as intelligent 
structures (Lima Jr, 1999). 

Several technologies were proposal and investigated by researchers. Among these 
technologies are the piezoelectric elements. These elements, present the piezoelectricity effect 
that permit the conversion between electric and mechanical energy and vice versa The 
piezoelectric direct effect was discovered by Curie brothers and piezoelectric inverse effect 
was deduced by Lippman (Rao & Sunar, 1994). Among these elements, there are the 
piezoelectric materials, especially the ceramics, PZT – piezoelectric lead zirconate titanate 
and polymer films, PVDF – piezoelectric vinylidene fluoride (Lima Jr. & Arruda, 1999). The 
ceramics have high stiffness, therefore they are used as actuators. While that the polymer 
films are more handler than ceramics and can be produced in complex geometric shapes, for 
this reason, they are used as sensors. (Lima Jr, 1999). Piezoelectric materials are small, 
lightweight and resilient against adverse working environments. Moreover piezoelectric 
materials have been used as both actuators and sensors, (Wang, 2001). 

One of the pioneers in using piezoelectric actuators as elements of intelligent structure was 
(Crawley & De Luis, 1987). He worked with an aluminum beam with piezoelectric actuator 
attached and he worked also, with graffiti/ epoxy beam and glass/epoxy beam. It was used, 
velocity proportional feedback controller in his work 

The intelligent structure design is divide in three areas, such as: Modeling in finite element 
method (FEM); Actuators and sensors placement; System controller. In a good intelligent 
structure design, actuators and sensors placement study is a fundamental part to avoid 
undesirable effects in structure under active control, such as: Lack of observability and 
controllability system. This paper purpose is to suggest, optimum piezoelectric actuators 
placement, in a flexible structure, using modal and spatial controllability measurements. To 
quantify the controllability index, we intend to use the singular value analysis of the [B] 
control matrix. 
 

2 KIRCHHOFF PLATE 

According to Kirchhoff hypothesis, showed in the figure 1, the field displacement u, v, and 
w can be express such as (Lima Jr, 1999): 
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Where: x and y are cartesian system coordinator placed in the plate medium surface and z is 
direction along of plate thickness. 
 

 

b 

b a 

a 

1 

2 

3 

4 

z, w 

x, u 
y, v 

pzt 1 

pzt 2 

φ1 

φ2 

∂
∂
w
y

 ∂
∂
w
x

 

θx4
 

θy4
 

w  

hpe  

h / 2  

 
 

Figure 1: Plate Elements (Lima Jr, 1999). 

Due the fact of shear effect isn’t taken in to consideration, the deformation field can be 
write in function of displacement such as: 
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3 FINITE ELEMENTS APROXIMATION 

We considerate four nodes in the rectangular plate element, according to plate classic theory 
(Bathe, 1996), in each node it has three degrees of freedom such as: w  displacement in 
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direction z, θ x  rotation in relation to axe x and θ y  rotation in relation to axe y. So the 
displacement function, w, is: 
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In the matrix form, the equation (4) is: 

{ } { }w P dT=                                                                                                            (5) 

The vector {qi} is defined such node displacement field, in the rectangular element, such as: 

{ } { }q w wi x y x y

T
= 1 41 1 4 4

θ θ θ θK                                                           (6) 

 

4 PIEZOELETRIC VARIATIONAL EQUATION 

The behavior of piezoelectric material, there are mechanics and electric effects which can be 
written in the matrix form, (Lima Jr e Arruda, 1997) and (Lima Jr., 1999) such as: 
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The linear piezoelectricity constructive equation is: 
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Where: 
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Where: {σ}- stress tensor; {ε}- deformation tensor; {E}- electric field vector; {D}- electric 
displacement vector; [CE]- elasticity matrix for constant electric field; [e]- piezoelectric 
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constants matrix; [ξε]- dielectric constants tensor for constant deformation [ξσ]- dielectric 
constant matrix for constant stress; [d]- constant matrix of piezoelectric deformations. 
The variational principle equation for piezoelectric material (Lima Jr, 1999), is obtained put 
equation (8) in (7), so it is given by: 
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From of Hamilton principle and eletromechanic variational principle to piezoelectric 
materials and applying it in the rectangular plate, we obtain the mass matrix of structure 
without or with the piezoelectric element attached, given by: 

[ ] [ ] [ ][ ]m h N h N dAst st w
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Where: [mst] is the structure mass matrix and [mpe] is the piezoelectric mass matrix. 
The structural and piezoelectric stiffness matrixes are: 
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Finally the force and electric loads outside vectors are: 

{ } [ ] { }f N f dAs w
A

T
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Each one of these matrixes the elements are assembled in order to obtain a global matrixes 
system, that is given by: 
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In the piezoelectric sensor there isn’t voltage apply (Qs = 0). So the electric potential yield by 
sensor is: 

{ } [ ] [ ] { }φ φφ φs q iK K q= −
−1

                                                                                      (19) 

Replace the Eq. (19) in the Eq. (18), we get the equation global system for a beam with 
actuator attached, that is: 
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Where: 
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5 CONTROLLABILITY INDEX 

The system controllability comes origin from the modern control theory. It is used to 
determine if a system can be controlled there being a controller. The decomposition of 
singular matrix [S] yields a measure quantity of system controllability. This index shows the 
energy that is need in the actuator to control a given input. The Eq. (18) can write in the state 
space: 
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The rank of state space matrixes, depend of modes numbers that are considered and the 
actuators number in the structure. From Eq. (23), the control force applied can be written, 
such as: 

{ } [ ]{ }f B uc =                                                                                                          (25) 
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Where {u} is the electric potential vector, we have that: 
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Writing: 
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Using singular analysis value, where: 
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The biggest value σi, show the optimum place for actuator. 
 

6 NUMERIC SIMULATION 

We simulated a cantilever plate according to following table 1: 
Table 1: Properties of simulated cantilever plate 

Parameters Value Unit 
Length 1.5 m 
Width 1.0 m 

Thickness 0.075 m 
Elasticity 

Module (E) 
210 GPa 

Specific 
density (ρ) 

7800 kg/m3 

 
At first place, we simulated, figure 2, the 1o and 2o mode shape of cantilever plate and we 
showed also its singular values between 1o and 2o mode, figure 3. So we can see the optimum 
place to actuators are the ends of the plate, because there the singular values are bigger than 
others places. According to 1o and 2o mode shape, the maximum displacement is the ends of 
the plate, therefore in agreement with the singular value. 
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Figure 2: Cantilever in 1o and 2o mode shape. 

 

 
Figure 3: Controllability Index - singular values between 1o and 2o mode. 

Then simulated, figure 4, the 2o and 3o shape mode of cantilever plate and showed singular 
values between 2o and 3o mode, figure 5. The optimum place to actuators are the ends of plate 
yet and the valley is the nodal line according to 2o and 3o shape mode. This area isn’t suitable 
to place actuators. 
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Figure 4: Cantilever in 2oand 3o mode shape. 

 

 
Figure 5: Controllability Index - singular values between 2o and 3o mode. 

After, we simulated, figure 6, the 3o and 4o shape mode of cantilever plate and showed the 
singular values between 3o and 4o mode, figure 7. The optimum places to actuators are the 
ends of plate and valley is nodal line according to 30 and 40 mode shape. 
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Figure 6: Cantilever in 3oand 4o mode shape. 

 

Figure 7: Controllability Index - singular values between 3o and 4o mode. 

At last, we simulated, figure 8, the 40 and 5o shape mode of cantilever plate and showed the 
singular values between the 4o and 5o, figure 9. The optimum place to actuators, have been 
continuing the ends of the plate. The two valley areas, in the singular values graphic, are the 
nodal lines according to 4o and 50 mode shape. These areas aren’t suitable to place actuators. 
 
 

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
1182



 

 
Figure 8: Cantilever in 4oand 5o mode shape. 

 
Figure 9: Controllability Index - singular values between 4o and 5o mode. 

 

7 CONCLUSIONS 

We showed an index to quantify controllability system of the cantilever plate with 
piezoelectric attached, in this paper. With this index, it is possible to determine the optimum 
place to actuators, this way we minimizing the controller effort. We showed that the singular 
value decomposition, of the control matrix, could be used like measurement to quantify the 
energy supplied to actuators. The performance of this index was good and the contribution of 
this paper is extending of work of Wang 2001 from one dimension to two dimensions 
structure, that is, a cantilever plate. 
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