
Mecánica Computacional Vol. XXII
M. B. Rosales, V. H. Cortínez y D. V. Bambill (Editores)

Bahía Blanca, Argentina, Noviembre 2003.

ACCURATE EXPRESSIONS IN C-XSC

Mariana L. Kolberg*, Gerd Bohlender† and Dalcidio M. Claudio*

*Programa de Pós-graduação em Ciência da Computação

Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul
Av Ipiranga, 6681 Prédio 16, sala 106 – 90619-900 – Porto Alegre – RS – Brasil

e-mail: mkolberg@inf.pucrs.br

† Institut für Angewandte Mathematik, Universität Karlsruhe
Kaiserstraße 12 – 76131 Karlsruhe - Deutschland

e-mail: gerd.bohlender@math.uka.de

Key words: Accurate expressions, C-XSC, Scalar products.

Abstract. C-XSC is a programming library for Extended Scientific Compu-ing which support
many data types with high accuracy. However it does not provide the accurate expressions
which are already available in the older language PASCAL-XSC. These expressions have to
be replaced by long loops which are more difficult to understand. Therefore we studied
possibilities how this accurate expressions could be implemented in C-XSC. In this paper we
present possibilities like operator overloading with special result types avoiding rounding er-
rors, and a small pre-processor which converts accurate expressions to functions calls. We
present results about execution times in comparison with C-XSC. Finally we present some
perspectives for future work.

marce
1430

1 INTRODUCTION

This section describes some concepts on Computational Arithmetic (sub-section 1.1),
PASCAL-XSC (subsection 1.2) and C-XSC (subsection 1.3). A small discussion about the
differences in the evaluation of expressions with high accuracy between PASCAL-XSC and
C-XSC is done in the end of the section (subsection 1.4).

1.1 Computational Arithmetic

PASCAL-XSC and C-XSC are programming tools intended for the development of
numerical algorithms with interval arithmetic, providing highly accurate and automatically
verified results. These languages provide many predefined numerical data types and operators.

PASCAL-XSC and C-XSC provide the following data types: real, complex, interval,
cinterval with their appropriate arithmetic, relational operators, and mathematical standard
functions. All predefined operators deliver results with high accuracy of at most l ulp (unit of
last place). Thus they are of maximum accuracy in the sense of scientific computing. All
mathematical standard functions for the simple numerical data types may be called by their
generic names and deliver results with guaranteed high accuracy.

For the scalar data types presented above, vector and matrix types are available in the
following data types: rvector, rmatrix, cvector, cmatrix, ivector, imatrix, civector and
cimatrix. Arithmetic operators are provided only in mathematically meaningful cases. Thus, it
is not permitted to add a vector and a matrix.

In contrast to PASCAL and C/C++, PASCAL-XSC and C-XSC satisfies all demands for a
precisely defined computer arithmetic:

• Access to direct roundings up and down;
• Realization of the optimal scalar product for vectors of all relevant lenghts;
• Interval types with corresponding operators;
• Dynamic and structured numerical data types;
• Predefined standard functions with very high accuracy for numerical base types;
• Rounding control for I/O data;

When evaluating arithmetic expressions, accuracy plays a decisive role in many numerical
algorithms. Even if all arithmetic operators and standard functions are of maximum accuracy,
expressions composed of several operators and functions do not necessarily deliver results
with maximum accuracy5. Therefore, PASCAL-XSC and C-XSC have methods for evaluating
numerical expressions with high and mathematically guaranteed accuracy. The accurate
expressions that are handled by PASCAL-XSC and C-XSC have the form of scalar product
expressions, which are defined as sums of simple expressions like variables, constants or
single products of two such objects. This kind of evaluation can be done both in PASCAL-
XSC and C-XSC, but in each of these programming languages it is formulated in a different
way. In sections 1.2 and 1.3 we describe some characteristics of PASCAL-XSC and C-XSC
respectively.

xyz
M. L. Kolberg, G. Bohlender, D. M. Claudio

xyz

marce
1431

1.2 PASCAL-XSC

The programming language PASCAL-XSC1,4, PASCAL eXtension for Scientific
Computation, was developed to supply a tool for the numerical solution of scientific
problems. The mathematical definition of the arithmetic is an intrinsic part of the language,
including optimal arithmetic operations with direct roundings that are directly accessible in
the language. Further arithmetic operations for interval, complex and complex interval
numbers and even for vector/matrix operations provided by precompiled arithmetical modules
are defined with maximum accuracy.

PASCAL-XSC is an extension of ISO Standard PASCAL with many useful concepts for
scientific computation. However, an extended compiler is required. The main concepts of
PASCAL-XSC are:

• Universal operator concept (user-defined operators);
• Functions and operators with arbitrary result type;
• Overloading of procedures, functions, and operators;
• Access to subarrays;
• String concept;
• Controlled rounding;
• Optimal (exact) scalar product;
• Predefined type dotprecision (a fixed-point data type to cover the whole range of

floating-point products);
• Additional arithmetic built-in types such as complex, interval, rvector, rmatrix, etc;
• Highly accurate arithmetic for built-in types;
• Highly accurate elementary functions;
• Exact evaluation of expressions within accurate expressions (#-expressions);

1.2.1 Accurate Expressions

In many numerical algorithms the exact evaluation of scalar products are extremely
important for the overvall accuracy of results. For this purpose, the new type dotprecision was
introduced into PASCAL-XSC representing a fixed-point format covering the whole range of
floating-point products. This format allows scalar results - especially sums of floating-point
products - to be stored exactly. Furthermore, scalar product expressions (dot product
expressions) with vector and matrix operands with only one rounding per component can be
computed via exact evaluation within accurate expressions (#-expressions).

Accurate expressions (#-expressions) can be formed based on dotprecision data type by an
accurate symbol (#,#*,#<,#>, or ##) followed by an exact expression enclosed in parentheses.
The exact expression must have the form of a dot product expression in scalar, vector or
matrix structure and is evaluated without any rounding error. The final result can be stored
without rounding error or rounded to a floating-point result (scalar, vector or matrix,
respectively). Because of this, the result of an accurate expression is of maximum accuracy in
the sense that in every component of the result there is no floating-point number between the
exact value and the computed one. That is, the rounded and the exact result differ at most by l

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz

marce
1432

unit in the last place of the mantissa.
To obtain the unrounded or correctly rounded result of a dot product expression, you need

to parenthesize the expression and precede it by the symbol #, optionally followed by a
symbol for the rounding mode.

Table 1: Symbols for rounding mode.

Symbol Expression Form Rounding Mode
#* scalar, vector, or matrix nearest
#< scalar, vector, or matrix downwards
#> scalar, vector, or matrix upwards
scalar, vector, or matrix smallest enclosing interval
scalar only exact, no rounding

1.3 C-XSC

C-XSC2,3, C for eXtended Scientific Computation, is a programming tool for the
development of numerical algorithms providing highly accurate and automatically verified
results.

The programming language C++, an object-oriented extension of the programming
language C, does not provide better facilities than C to programming numerical algorithms,
but its new concept of abstract data structures (classes) and the concept of overloading
operators and functions provide the possibility to create a programming tool.

In contrast to PASCAL-XSC, C-XSC is not an extension of the standard language, but a
class library which is written in C++. Therefore, no special compiler is needed. With its
abstract data structures, predefined operators and functions, C-XSC provides an interface
between scientific computing and the programming language C++. Besides, C-XSC supports
the programming of algorithms which automatically enclose the solution of given
mathematical problem in verified bounds. Such algorithms deliver a precise mathematical
statement about the true solution. The main concepts of C-XSC are:

• Real, complex, interval, and complex interval arithmetic with mathematically
defined proprierties;

• Dynamic vectors and matrices;
• Subarrays of vector and matrices;
• Dot precision data type;
• Predefmed arithmetic operators with highest accuracy;
• Standard functions of high accuracy;
• Dynamic multiple-precision arithmetic and standard functions;
• Rounding control for I/O data;
• Numerical results with mathematical rigor;

1.3.1 Evaluation of Expression with High Accuracy
When evaluating arithmetic expressions, accuracy plays a decisive role in many numerical

algorithms. Even if all arithmetic operators and standard functions are of maximum accuracy,
expressions composed of several operators and functions do not necessarily deliver results

xyz
M. L. Kolberg, G. Bohlender, D. M. Claudio

xyz

marce
1433

with maximum accuracy. Therefore, methods have been developed for evaluating numerical
expressions with high and mathematically guaranteed accuracy.

A special kind of such expressions are called dot product expressions, which are defined as
sums of simple expressions. A simple expression is either a variable, a constant, or a single
product of two such objects. The variables may be of scalar, vector, or matrix type. Only the
mathematically relevant operations are permitted for addition and multiplication. The result of
such an expression is either a scalar, a vector, or a matrix. To obtain an evaluation with l ulp
accuracy, C-XSC provides the dotprecision data types dotprecision, cdotprecision,
idotprecision and cidotprecision.

In C-XSC the user has to transform vector products in one loop and matrix products in
three loops to compute each component as simple scalar products. Intermediate results of a
dot product expression can be computed and stored in a dotprecision variable without any
rounding error. For all dotprecision types, a reduced set of predefined operators is available to
compute results without any error. The overloaded dot product routine accumulate() and the
rounding function rnd() are available for all reasonable type combinations.

1.4 Comparison of PASCAL-XSC and C-XSC

PASCAL-XSC and C-XSC both provide the possibility of evaluation of dot products
expressions with high accuracy, but the way it can be calculated using PASCAL-XSC and C-
XSC is very different.

Using PASCAL-XSC to obtain the unrounded or correctly rounded re-sult of a dot product
expression, you need to parenthesize the expression and precede it by the symbol #, optionally
followed by a symbol for the rounding mode. The expression must have the form of a dot
product expression in scalar, vector or matrix structure and is evaluated without any rounding
error.

Using C-XSC to obtain the solution for the same dot product expression, you need to write
loops, use the function accumulate, use dotprecision variables for intermediate results, and in
the end of the calculation of each element, you should round it.

Supposing that we want to calculate the following expression with high accuracy: y0 = b -
A * x1 - A * x0 , and y0, b, x1, x0 are rvectors and A is an rmatrix. The solutions using
PASCAL-XSC and C-XSC are shown in algorithms l and 2 respectively.

Algorithm l Solution using PASCAL-XSC
y0:= #*(b-A*xl-A*x0);

Algorithm 2 Solution using C-XSC
for (i=Lb(A,l);i<=Ub(A,l);i++)
{
accu = b [i];
accumulate(accu,-A[Row(i)],xl); accumulate(accu,-A[Row(i)],x0); y0[i]=rnd(accu);
}

The accurate symbol # could not be implemented in C-XSC due to several reasons. Some

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz

marce
1434

of them are:
• The symbol # has a different meaning in C++. It is used to include libraries, files

and for other purposes in the pre-processor.
• In C++, no symbols are available which could be used for accurate expressions. In

contrast in PASCAL-XSC new symbols were introduced for this purpose.
• It is not possible to change the semantics of expressions like in PASCAL.
• C-XSC was implemented as a C++ class library, different from the implementation

of the PASCAL-XSC where the programmers could modify the compiler.

2 AIMS AND IDEAS

As it is shown in section 1.4, it is not so easy to implement dot products in C-XSC as in
PASCAL-XSC. The aim of our work was to simplify the way the user could use dot products
in C-XSC. The idea was to implement a similar concept like # expressions used in
PASCAL-XSC.

The objective is to implement a library which contains the routines to evaluate an
expression with high accuracy. The user should only write it as a mathematical expression,
and our library should be called and execute the defined loops, the use of accumulate
functions, etc, for that case. Then, the user should only write something like in PASCAL-XSC
for calculating dot products.

We discussed many ways how it could be done. Some of these ideas are:
• Change GNU compiler;
• Construct a pre-compiler;
• Use Templates;
• Use Operator Overloading;

Discussing about the first idea, change the GNU compiler, we thought it would be too
error prone and complicated. If we do a small modification in a wrong place, it can make
all the compiler useless, or at least make it work wrong. It would be complicated as well,
because the GNU compiler is not small, and it would take some time to understand how it
works and think what could be changed.

The second idea, construct a pre-compiler, was consider a good idea, because it is easier
than write a full compiler. But after some discussions we realised that the compilation could
not be local to the expression, because we need the datatypes to evaluate the expression. We
would need to read all the program because the variable definitions could be everywhere in
the program, só we would need to write a full compiler.

The concept of templates6 in C++ may be useful for this implementation. Using templates
does not make programs slower. The time is spent in compilation time, not in execution
time, what makes the program faster. We would need to use specialization with templates.
After some tests we knew that specialization using C-XSC data types worked correctly. The
problem would be the number of arguments and the generalization for any expression. This
idea should be analyzed more carefully in the future.

Operator overloading seemed to be the best idea considering the short time we had. The

xyz
M. L. Kolberg, G. Bohlender, D. M. Claudio

xyz

marce
1435

idea is to redefine the result type of all matrix and vector operators of C-XSC as a
dotprecision type. Then the user can write scalar product expressions in a mathematical way.
The redefined operators are called and the expression is solved with high accuracy with no
extra work for the user. This would imply the use of many temporary variables of type dot
precision, what would create an overhead for the construction and destruction of that
variables and would make the execution time of the program worse than if the user
prefers to write the loops by himself. In the other hand it would be easier and safer for the
user to use the new implementation.

3 THE FIRST IMPLEMENTATION - OPERATOR OVERLOADING

The idea was to implement the new dot precision operators with operator overloading.
The results of all operations are dot precision values, vectors or matrices. Only the final result
is rounded to the regular floating-point value, vector or matrix. This means that instead of
one dot precision variable we use many of these, and it involves an overhead for the
creation and the destruction of all this variables.

We implemented the overloaded operators using reference arguments (&) in order to keep
the overhead as small as possible. This version worked in most cases, but we had some
problems related to ambiguities between the C-XSC version and the new version. We noticed
that the compiler used the new implementation for simple operations, but for expressions it
used the C-XSC existing operator. As the results were constants, the compiler prefered to
call an operator defined with constants, and this was the C-XSC operator. When we took
out the reference (or added a const before the data type), we got an error from the compiler
because it was ambiguous between the new operator and the C-XSC existing operator. The
compiler could not decide which operator it should use.

We thought about using namespaces, but it did not solve the problem. The namespace
concept cannot avoid the ambiguities. Namespaces can be concatenated, but in this case,
the both spaces are being used. One namespace do not annulate the other. Another
problem with namespaces is that it cannot be used easily with operators. An operator
symbol cannot be qualified with a namespace, instead of a+b we would have to use function
style operators like a.name::operator+(b).

Another point is that the user should be able to choose between using the accurate
expression or not.

4 THE SECOND IMPLEMENTATION

4.1 Function

The second implementation uses normal functions to solve the expressions. These
functions are defined for scalars, vectors and matrices of real, complex, interval and complex
interval data types of C-XSC. Using function overloading ali functions for addition can be
named identically, and the same for subtraction, multiplication, rounding, etc.

The user may call the nested functions to solve the mathematical expression in just one

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz

marce
1436

line. Using the same example that was used in section 2, supposing that we want to calculate
the following expression with high accuracy: yo = b — A * xi — A * XQ , and yo, b, xi, XQ

are rvectors and A is rmatrix. Solving this problem with the second implementation, it
would be done by the user as shown in algorithm 3:

Algorithm 3 Solution using the second implementation
y0=dprnd(dpadd(dpadd(b,dpmul(dpminus(A),xl)),dpmul(dpminus(A),x0)));
or
y0=dprnd(dpsub(dpsub(b,dpmul(A,xl)),dpmul(A,x0)));

As it can be seen in the example, it is not easy to read the expression. This is in contrast
with our original aim that was to make it simpler for the user. Because of these
disadvantages, we decided to write a small pre-compiler to make it possible to use an
operator notation.

4.2 Pre-Compiler

A pre-compiler reads a text file containing an extended C++ program with some special
symbols and transforms it in a text file which is afterwards passed to a normal C++ compiler.
This concept seemed to be very complicated for us, because we believed that we would need
to analyze all the program in order to determine the data types of the operands. In this case
we would need to write nearly a full compiler.

As described in the previous section, all the functions are named identically for all data
types with function overloading. Thus, we recognize that we do not need to know the data
types and therefore we can just make a mechanical transformation from operator symbols in
accurate expressions (#-expressions) to function calls.

Supposing that we want to calculate the following expression with high accuracy: yo = b-
A * x1 - A * X0, and y0, b, x1, x0 are rvectors and A is rmatrix. The solution using C-XSC
and the pre-compiler is:

Algorithm 4 User solution using C-XSC and pre-compiler
y0 = #*(b-A*x1-A*x0)

Algorithm 5 Solution generated by the pre-compiler
y0 = dprnd(dpsub(dpsub(b,dpmul(A,xl)),dpmul(A,x0)));

This pre-compiler is powerful enough for most of the dot expressions but does NOT
analyze the syntax/semantics of a C++ program. There are the following limitations:

• there must be no whitespace between # and (
• the syntax for...sum for summation loops is not implemented
• () are not allowed in #-expressions
• no syntax analysis is performed for the operands, therefore one should not use

arithmetic operators in index expressions;

xyz
M. L. Kolberg, G. Bohlender, D. M. Claudio

xyz

marce
1437

• comments, string literais, char literais etc. are not handled correctly.
The program will e.g. be confused by the following lines:

Table 2: Expressions that are not handled by the program.

Expression The pre-processor thinks it should
x=#(a+b/*+c*/); add a, b/*, and */
x = #(a+b['*']); Multiply b[' with ']
x = #(x[i+l]); add x[i and 1]

5 CHARACTERISTICS OF THE LIBRARY

The implemented library follows the philosophy of C-XSC. We defined a namespace
(accuexp) that contains all the function defmitions for all data types defined in C-XSC. As in
C-XSC, we separated the matrices and vectors of real, complex, interval and complex interval
in different files (rmatrix, rvector, cmatrix, cvector, imatrix, ivector, cimatrix and
civector).

We defined a class for each data type that defines some functions and operators for
matrices and vectors composed by real, complex, interval or complex interval dot
precision elements. The result of the implemented functions are always dot precision. The
following functions, ect are defined:

• a constructor, a copy constructor and a destructor;
• an assignment operator;
• addition and subtraction of different combinations of C-XSC data types and dot

precision types;
• multiplication, for the C-XSC data types;
• the monadic subtraction for the C-XSC data types;
• different roundings to the basic C-XSC data types;

The implemented library have some restrictions:
• No check index ranges: we use always from O to n-1. But C-XSC uses normally

from l to n.
• We assume that the dimension of matrices and vectors are the same.

6 EXECUTION TIME

The execution time when using C-XSC are worse than using just C++. We decided to
make some measurements of the time to analyze if this implementation to make it easy to
the user is faster or slower than the version the user would implement by himself.

In the tables 3,4,5 and 6 we show the quotient between the execution time of the new
version and the C-XSC version. The measurement was made using a repetition factor 100 to
100.000 depending on the dimension, the operation and the data type.

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz

marce
1438

Table 3: Matrix addition

+ rmatrix cmatrix imatrix cimatrix
2x2 2.6875 2.6966 2.6889 2.5481
4x4 2.4788 2.5903 2.3525 2.2583
8x8 2.4639 4.2946 4.1053 4.2453

16x16 4.3992 5.0373 4.9761 4.2702

Table 4: Matrix multiplication

* rmatrix cmatrix imatrix cimatrix
2x2 2.3418 1.9667 2.4114 1.9283
4x4 1.5622 1.5347 1.7797 1.5435
8x8 1.3102 1.5557 1.8883 1.6933

16x16 1.3977 1.3738 1.6293 1.4156

Table 5: Vector addition

+ rvector cvector ivector civector
2 3.5443 3.3144 3.1813 2.4735
4 2.8305 2.7126 2.6118 2.2573
8 2.5786 2.5328 2.4325 2.2252

16 2.4834 2.5006 2.5308 2.3133

Table 6: Vector multiplication

* rvector cvector ivector civector
2 1.9455 1.7216 2.4317 1.5032
4 1.6129 1.3583 1.9120 1.3058
8 1.3196 1.2173 1.4533 1.2198

16 1.1680 1.1700 1.3297 1.1390

Comparing the new implementation with the old way of programing we could observate
the following efects:

• in big matrices/vectors the diference is not so high as in small matrices/vector.
It is caused because in bigger dimensions we have less overhead for management
and construction/destruction of temporary variables than in smaller dimensions.

• in big dimensions of matrices we can observe a considerable increase in the
execution time in the new implementation. It could be explained as a cache efect.
The high size matrices do not fit in the cache memory, what make the execution
time worse.

As we predicted, the new implementation is slower than the version that can be
implemented by the user because of some reasons:

• we need to generate one or several dot precision matrix/vector.
• sometimes we need to add dot precision matrices/vectors, otherwise we would

only need accumulate floating-point value to a dot precision variable.
• objects need to be copied when they are returned as a result of an operation.

xyz
M. L. Kolberg, G. Bohlender, D. M. Claudio

xyz

marce
1439

This means that copy constructor should be called and some objects should be
generated.

In the other hand, using the new version, the user do not need to worry about implement
loops, and create dot precision variables. The user should only write as a mathematical
expression, enclosed by parentheses and select the rounding mode. All the extra work is done
by the preprocessor and our library.

7 CONCLUSIONS

C-XSC is a programming library for Extended Scientific Computing which support many
data types with high accuracy. However it does not provide the accurate expressions which are
already available in the older language PASCAL-XSC. These expressions have to be replaced
by long loops which are more difficult to understand.

We studied possibilities how this accurate expressions could be implemented in C-XSC.
We considered alternatives like operator overloading with special result types avoiding
rounding errors, and a small pre-processor which converts accurate expressions to functions
calls.

The use of the pre-compiler and the implemented functions solved the problem we want
to solve: the user can just write the expression in a mathematical way, like in PASCAL-
XSC, and this expression will be solved with high accuracy.

This version is basically working, but is not optimized. The performance using the new
implementation was not so good compared to the use of C-XSC only. There are somethings
that should be done in a future version:

• index ranges and checks;
• improvements in the performance;
• more sophisticated pre-compiler.

ACKNOWLEDGEMENT
We would like to express our gratitude to Prof. Walter Krämer of Wuppertal University

and to Dr. Rudi Klatte of Karlsruhe University for many suggestions and fruitful discussions.

8 REFERENCES

[1] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D. : Numerical Toolbox for Verified
Computing I- Basic Numerical Problems, Springer Verlag, Berlin, 1993.

[2] Hofschuster, W.; Kraemer, W.; Wedner, S.; Wiethoff, A.: C-XSC 2.0 A C++ Class
Library for Extended Scientific Computing, Preprint, Wup-pertal Universitaet, 2001/1.

[3] Klatte, R.; Kulisch, U.; Lawo, C.; Rauch, R.; Wiethoff, A.: C-XSC - A C++ Class Library
for Extended Scientific Computing, Springer Verlag, Berlin, 1993

[4] Klatte, R.; Kulisch, U.; Neaga, M.; Ratz, D.; Ullrich, Ch.: PASCAL-XSC - Language
Reference With Examples, Springer Verlag, Berlin, 1992.

[5] Kulisch, U.; Miranker, W.L.: Computer Arithmetic in Theory and Practice, Academic
Press, New York, 1981.

[6] Stroustrup, B.: The C++ Programming Language, Special Edition, Addison-Wesley, 2000.

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz

marce
1440

