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Abstract. We investigate the numerical dispersive properties of nonconforming finite
element methods to solve the two and three dimensional elastodynamic equations. The
study is performed by deriving and analysing the dispersion relations and by evaluating
the derived quantities, such as the dimension-less phase and group velocities. Also the
phase difference between exact and numerical solutions is investigated. The method stud-
ied, which yields a linear spatial approximation, demonstrates to be less dispersive than
conforming bilinear finite element methods yielding the same spatial degree of approxima-
tion in the two cases shown herein.
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1 INTRODUCTION

Nonconforming finite element methods for the wave equations have been studied by1,2

and3 used these numerical procedures to model problems of exploration geophysics.
A review of literature on effects of numerical dispersion in propagation of wave phe-

nomena reveals that most of the articles published on this subject deal with 2-D scalar
wave equation4–8 and 3-D scalar case.9–11 An exception are the studies by Bamberger et
al.12 and Marfurt13 which analyse the 2-D elastic wave equation. In order to reduce this
gap, our work investigates what can be gained by using a nonconforming finite element
method in 2-D and 3-D elastic wave equation computations.

In the following sections we test if this numerical scheme with a strong theoretical
background is, at the same time, of practical utility. First the differential equations to
elastic wave propagation modeling is provided. Next, the numerical procedure is consid-
ered. This is followed by the calculation of the dispersion relations and thorough analysis
of its properties. Finally, discussion of results and the concluding remarks are presented.

2 THE ELASTIC WAVE EQUATION

The equations describing elastic wave propagation in a two-dimensional or three-dimensional
medium, are: the strain-displacement relation

εij(û) =
1

2

(
∂ûi

∂xj

+
∂ûj

∂xi

)
, (1)

the stress-strain relation

τ̂ij(û) = λ(x)δijεkk(û) + 2µ(x)εij(û), (2)

the equation of dynamics

−ρ(x)ω2û(x, ω)−∇ · τ̂ = f̂(x, ω), x ∈ Ω = (0, 1)N , N = 2, 3, (3)

and boundary conditions
−τ̂ ν = iωAû, x ∈ Γ, (4)

where û(x, ω) is the Fourier transform of the displacement vector u(x, t) at the real angular
frequency ω. In (2), λ and µ are elastic constants. In (3), ρ(x) is the density of the medium
and f(x, t) is the external source. The derivation of the absorbing boundary conditions
(4) can be found in.14,15

For N = 2

A = ρ(x)

[
ν1 ν2

−ν2 ν1

] [
vP 0
0 vS

] [
ν1 −ν2

ν2 ν1

]
,

and for N = 3,

A = ρ(x)



ν1 ν2 ν3

τ 1
1 τ 1

2 τ 1
3

τ 2
1 τ 2

2 τ 2
3






vP 0 0
0 vS 0
0 0 vS






ν1 τ 1

1 τ 2
1

ν2 τ 1
2 τ 2

2

ν3 τ 1
3 τ 2

3


 .
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Here τ1 and τ2 are two unit tangent vectors on the boundary Γ such that {ν, τ1, τ2} is an

orthogonal set. The phase velocities of compressional and shear waves are vP =
(

λ+2µ

ρ

) 1

2

and vS =
(

µ

ρ

) 1

2

respectively.

3 NUMERICAL FORMULATION

The finite element technique, summarized below, for obtaining an approximation solution
was introduced and analysed in.1 Let H1(Ω) be the Sobolev space of functions in L2(Ω)
with first derivatives in L2(Ω). The weak form of the problem is found as usual by
multiplying the equation (3) by admissible test functions and then integrating by parts.
The resulting equation is

−(ρω2û, ψ) +
∑

pq

(τpq(û), εpq(ψ)) + iω 〈Aû, ϕ〉Γ = (f̂ , ψ), ψ ∈ [H1(Ω)]N . (5)

In the above equation (f, g) =
∫
Ω
fg dx and 〈f, g〉 =

∫
Γ
fg dΓ denote the complex [L2(Ω)]N

and [L2(Γ)]N inner products.
The nonconforming Galerkin procedure consists of finding approximatios to û. Since

the two-dimensional case was also presented in,16 we are made aware here of the three-
dimensional case. We define on the reference cube R̂ = [−1, 1]3

S3(R̂) = Span

{
1, x, y, z, ξ(z)− ξ(x), ξ(z)− ξ(y)

}
, ξ(x) = x2 −

5

3
x4, (6)

The six degrees of freedom associated with S3(R̂) are the values at the mid points of the

faces of R̂. For example, the basis function associated with P=(0,1,0), the E node in
Fig.1, is ϕE(x, y, z) = 1

6
+ 1

2
y + 1

4
(ξ(x)− 2ξ(y) + ξ(z)); it takes value one at the P node

and zero on the remaining ones. The same happens with the other basis functions and
their respective associated nodes. We mention here that the other five basis functions can
be obtained by reflection on the three coordinate planes and cyclic permutation of the
variables.

Next we formulate the procedure as follows: find ûh ∈ [NCh]N such that

−(ρω2ûh, ψ) +
∑

pq

(τpq(û
h), εpq(ψ)) + iω

〈〈
Aûh, ϕ

〉〉
Γ

= (f̂ , ψ), ψ ∈ [MCh]N . (7)

where 〈〈., .〉〉 is the notation for computing the boundary using the midpoint quadrature
rule.

4 DISPERSION ANALYSIS

4.1 Dispersion Relations

To perform the dispersion analysis, we must obtain the basic algebraic equation of a
typical degree of freedom.12,13 In equation (7), we set the source term to zero and restrict
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ourselves to a portion of the domain far away from the boundaries so we can ignore their
contribution.

Fig.(1) shows stencils of elements and nodes involved in the correct building of a struc-
ture using these nodes. Since the origin of coordinates is not a node of the nonconforming
grid, it was necessary to consider a global test function ϕG.
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Figure 1: Elements and nodes involved in the calculation of the numeric dispersion relations for (a) 2-D
case and (b) 3-D case.

For N = 2

ϕG =





ψb on node 1 in TL
ψt on node 1 in BL
ψr on node 2 in BL
ψl on node 2 in BR
ψb on node 3 in TR
ψt on node 3 in BR
ψr on node 4 in TL
ψl on node 4 in TR,

(8)
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and for N = 3

ϕG =





ϕW (x, y, z) + ϕB(x, y, z) + ϕN(x, y, z) in Ω1

ϕE(x, y, z) + ϕB(x, y, z) + ϕN(x, y, z) in Ω2

ϕW (x, y, z) + ϕF (x, y, z) + ϕN(x, y, z) in Ω3

ϕE(x, y, z) + ϕF (x, y, z) + ϕN(x, y, z) in Ω4

ϕW (x, y, z) + ϕB(x, y, z) + ϕS(x, y, z) in Ω5

ϕE(x, y, z) + ϕB(x, y, z) + ϕS(x, y, z) in Ω6

ϕW (x, y, z) + ϕF (x, y, z) + ϕS(x, y, z) in Ω7

ϕE(x, y, z) + ϕF (x, y, z) + ϕS(x, y, z) in Ω8

(9)

ϕG are piecewise functions, where each piece is a local basis function, contributing
only when its support, the corresponding domain, is considered in the calculation of the
internal products of equation (7). For example, in the two-dimensional case, we replace
the vector test function by (ϕG, ϕG) and consider û = (v, w) as a superposition of the
product of the unknown coefficients vi, i = 1, . . . , 12 and wj, j = 1, . . . , 12 times the
associated basis functions; i.e.,

− ρh2

(
35

84
(v1 + v2 + v3 + v4) +

1

24
(v5 + v6 + v7 + v8 + v9 + v10 + v11 + v12)

)

+ µ (2(v1 + v3)− (v7 + v8 + v11 + u12))

+ (λ+ 2µ) (2(v2 + v4)− (v5 + v6 + v9 + v10))

+ µ(w5 + w9 − w6 − w10) + λ(w8 + w12 − w7 − w11) = 0

− ρh2

(
35

84
(w1 + w2 + w3 + w4) +

1

24
(w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12)

)

+ µ (2(w2 + w4)− (v5 + v6 + v9 + u10))

+ (λ+ 2µ) (2(w1 + w3)− (w7 + w8 + w11 + v12))

+ λ(u5 + u9 − u6 − u10) + µ(u8 + u12 − u7 − u11) = 0. (10)

Following Bamberger et al.,12 we assume wave fields of the form (d1, d2) exp(±ikhx) with
origin in the x-marked node, angular frequency ω and obtain

−ρω2h2T

(
d1

d2

)
+ B

(
d1

d2

)
= 0, (11)

where T is

T =
1

12

(
5
(
cos( 1

2
kh

1h) + cos( 1

2
kh

2h)
)

+ cos(kh
1h) cos( 1

2
kh

2h) + cos( 1

2
kh

1h) cos(kh
2h)

)
. (12)
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and B is the dispersion matrix with elements

b11 = 2µ cos( 1

2
kh

1h)(1− cos(kh
2h)) + 2(λ+ 2µ) cos( 1

2
kh

2h)(1− cos(kh
1h))

b12 = 2µ sin(kh
1h) sin( 1

2
kh

2h) + 2λ sin( 1

2
kh

1h) sin(kh
2h)

b21 = 2λ sin(kh
1h) sin( 1

2
kh

2h) + 2µ sin( 1

2
kh

1h) sin(kh
2h)

b22 = 2µ cos( 1

2
kh

2h)(1− cos(kh
1h)) + 2(λ+ 2µ) cos( 1

2
kh

1h)(1− cos(kh
2h)) (13)

Equation (11) implies that ρω2h2T is an eigenvalue of B with an associated eigenvector
given by (d1, d2). For any fixed k, this equation determines two solutions,

ωj =

√
Λj

ρh2T
, j = 1, 2, (14)

yielding the numeric dispersion relation, where Λj, j = 1, 2 are the eigenvalues of the
matrix B.

Proceeding in analogy to the previous case, in 3-D, we obtain an expresion similar
to (10), which we will omit considering that the test function are (ϕG, ϕG, ϕG) and û =
(v, w, z) which now 36 unknown coefficients per component.

Afterwards we replace the unknowns by the corresponding plane wave solution and we
obtain the following system of three equations

−ρω2h2T




d1

d2

d3


 + B




d1

d2

d3


 = 0, (15)

B being the dispersion matrix with elements given by

b11 = µ γ1(β
2
2 γ3 + β2

3 γ2) + (λ+ 2µ) β2
1 γ2 γ3,

b12 = β1 β2 γ3 (µ γ1 + λ γ2) ,

b13 = β1 β3 γ2 (µ γ1 + λ γ3) ,

b21 = β1 β2 γ3 (λ γ1 + µ γ2) ,

b22 = µ γ2(β
2
3 γ1 + β2

1 γ3) + (λ+ 2µ) β2
2 γ1 γ3,

b23 = β2 β3 γ1(µ γ2 + λ γ3),

b31 = β1 β3 γ2(λ γ1 + µ γ3),

b32 = β2 β3 γ1(λ γ2 + µ γ3),

b33 = µ γ3(β
2
2 γ1 + β2

1 γ2) + (λ+ 2µ) β2
3 γ1 γ2. (16)

with

γ1 = cos( 1

2
kh

1h), γ2 = cos( 1

2
kh

2h), γ3 = cos( 1

2
kh

3h),

β1 = sin( 1

2
kh

1h), β2 = sin( 1

2
kh

2h), β3 = sin( 1

2
kh

3h). (17)
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Given k, this system determines the solutions

ωj(k
h) =

√
Λj

ρh2T
, j = 1, 2, 3, (18)

where Λj, j = 1, 2, 3 are the eigenvalues of the dispersion matrix.

4.2 Dispersion Properties

Grid coarseness is an important parameter that affects the accuracy of numerical meth-
ods. The number of grid points per wavelength of a plane wave of frequency ω is a
measure of grid coarseness. We will use H, the reciprocal of the number of grid points
per wavelength and write kh = (kh

1 , k
h
2 , k

h
3 ) = 2πH(cos θ, sin θ) and kh = (kh

1 , k
h
2 , k

h
3 ) =

2πH(cos θ cosφ, sin θ cosφ, sinφ); recalling that |k| = 2π
λ

and being θ the angle between
the direction of propagation and the x-axis and φ the angle between k and the z-axis.
Let us make the nodal separation in the mesh h → 0 for any fixed k. We develop the
elements of matrix B and T in terms of h.

For N = 2

b11 '
(
k2

2 µ+ k2
1 (λ+ 2µ)

)
h2 +O(h)4,

b12 ' k1 k2 (λ+ µ) h2 +O(h)4,

b21 ' k1 k2 (λ+ µ) h2 +O(h)4,

b22 '
(
k2

1 µ+ k2
2 (λ+ 2µ)

)
h2 +O(h)4. (19)

Furthermore,

T ' 1−
5

48

(
k2

1 + k2
2

)
h2 +O(h)4, (20)

corresponding to compressional and shear waves, respectively. The two eigenvalues are

Λ1 ' h2(λ+ 2µ)
(
k2

1 + k2
2

)
+O(h)4 Λ2 ' h2µ

(
k2

1 + k2
2

)
+O(h)4. (21)

The phase and group velocities of the two solutions are

ω1

|k|
'

√
λ+ 2µ

ρ
+O(h)2 and

ω2

|k|
'

√
µ

ρ
+O(h)2 (22)

and

QP = ∇ω1
k

|k|
, QS = ∇ω2

k

|k|
, (23)

We can prove in16 that an infinite elastic medium with no damping is nondispersive.
For N = 3 In like manner, expanding the elements of matrix B and T in terms of h

one obtains
B ' 4h2B̃ +O(h3) (24)
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where B̃ is a symmetric matrix with elements

b̃11 = µ (k2
2 + k2

3) + (λ+ 2µ) k2
1,

b̃12 = (λ+ µ) k1 k2,

b̃13 = (λ+ µ) k1 k2,

b̃22 = µ (k2
1 + k2

3) + (λ+ 2µ) k2
2,

b̃23 = (λ+ µ) k2 k3,

b̃33 = µ (k2
1 + k2

2) + (λ+ 2µ) k2
3 (25)

and

T ' 4−
1

3
|kh|2h2 +O(h)3. (26)

The three eigenvalues of B can be casted as

Λ1 ' h2(λ+ 2µ) |kh|2 +O(h)3,

Λ2 ' h2µ |kh|2 +O(h)3,

Λ3 ' h2µ |kh|2 +O(h)3. (27)

The corresponding expressions for phase and group velocities is obtained by replacing in
Eq. (18)

ω1

|kh|
'

√
λ+ 2µ

ρ
+O(h) and

ω2,3

|kh|
'

√
µ

ρ
+O(h). (28)

QP = ∇ω1
kh

|kh|
, QS = ∇ω2

kh

|kh|
, (29)

We recover the velocities of compressional and shear waves for small values of h. We must
prove that ωj, j = 1, 2, 3 are real because we have assumed a model without dissipation.
Therefore, the eigenvalues in Eq. (18) must in turn be real, a condition that unfortu-
nately they do not automatically verify, because the dispersion matrix B is in general not
symmetric, as shown by Eq. (16). Let us write down the eigenvalues explicitly:

Λ1 = W + Z, Λ2 = W − Z, Λ3 = X, (30)
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where

X = 16µ
(
γ2γ3 β

2
1 + γ1γ3 β

2
2 + γ1γ2β

2
3

)
,

W = 8 (λ+ 3µ)
(
γ2γ3β

2
1 + γ1γ3β

2
2 + γ1γ2β

2
3

)
,

Z = 8

√
λ2 (γ2γ3β2

1 + γ1γ3β2
2 + γ1γ2β2

3)
2
+ µ2 (γ2

1γ
2
3β

4
2 + γ2

2(γ3β2
1 + γ1β2

3)
2)

+µ2 (2γ1γ2γ3β2
2(4(γ2

1γ3 + γ1γ2
3) + 5(γ3β2

1 + γ1β2
3))− 8γ1γ2γ3β2

2(γ1 + γ3))

+2λµ(γ2
2γ

2
3β

4
1 + 4γ2

1γ2γ
2
3β

2
2(γ1 + γ3) + 2γ2

3β
2
1β

2
2(γ

2
1 + γ1γ2 + γ2

2) + γ2
1γ

2
3β

4
2)

+2λµ(2γ2
2β

2
1β

2
3(γ

2
1 + g2

2) + γ2
1β

2
2β

2
3(2 + (γ2 + γ3)2) + γ2

1γ
2
2β

4
3)

−2λµ((4γ1γ2γ3β
2
2(γ1 + γ3)) + 2γ1γ

2
2γ3β

2
1β

2
3 + γ2

1β
4
2β

2
3 + γ2

1β
2
2β

4
3) (31)

The eigenvalues are periodic functions of k, with periodicity equal to 4π
h

and symmetric
with respect to the planes k1 = 0, k2 = 0 and k3 = 0. Furthermore, the planes k2 = k1 and
k3 = k1 are also symmetry planes as the scalar dispersion relation,16 hence, their domain is
D =

{
k ∈ D/|k| ≤ π

h

}
and D =

{
k/0 ≤ H ≤ 1

2
, 0 ≤ θ ≤ π

4
, 0 ≤ φ ≤ π

4

}
. T being always

positive, the eigenvalues must have the same behaviour. Clearly Λ3 and W are positive,
but showing that Z is real and positive is not so obvious. A close inspection shows that
the positive terms in Z are always bigger than the negative ones, so it must be shown that
W > Z. We performed a numerical study of the inequality writing k in terms of H,θ and
φ, and we found that it is always verified within the prescribed domain, and for all the
used Lamé coefficients. For H → 0, W ' 2|kh|2(λ+ 3µ) and Z ' 2|kh|2(λ+ µ), and the
eigenvalues recover the continuous behaviour. All eigenvalues remain real and positive also
for H → 1

2
. However, when the number of points per wavelength is smaller than three,

although Λj, j = 1, 2, 3 are positive, the values of the smaller eigenvalues, associated
with the S-waves, differ by a small percentage. Nevertheless, this gap diminishes when
calculating the dispersion relations and related quantities because one takes the square
root of the eigenvalues and divides them by a number bigger than one.

5 RESULTS

To carry on with our task of analysing the numerical error introduced by dispersion, we
calculate the dimensionless phase velocities for both P and S waves, since an algorithm
may be considered accurate if it properly models these velocities.

The following figures are performed in terms of H, θ, φ and the Poisson’s coefficient
ν = λ

2(λ+µ)
. Our numerical studies proved that neither the dimensionless phase velocities

nor the group velocities depend on the value of Poisson’s coefficient, and that they show
certain variation only when the number of point per wavelength is smaller than four. This
is a very interesting feature, because it makes the numerical method almost independent
of the material properties. The restriction of three or four points per wavelength is not
a strong one at all, the requirement of having smaller errors in the calculated quantities
(exploration geophysicists say 1 percent) usually leads to use at least twice this quantity.
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Figure 2: Adimensional compressional wave phase velocities for two different values of the Poisson’s
coefficient, ν = 0.1 and ν = 0.4.
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Figure 3: Adimensional shear wave phase velocities for two different values of the Poisson’s coefficient,
ν = 0.1 and ν = 0.4.

See Fig.2 and 3 for 2-D case. In the other case, there is almost no variation in the curves
when the azimuth θ varies from 0 to π

4
. Then, in order not to show redundant informa-

tion, we present just one direction. The figure 4 displays compressional and shear phase
velocities, calculated for different directions within the prescribed domain and Poisson’s
coefficient equal 0.1. Fig.5 and 6 show again the dependence of the group velocities on
the Poisson’s coefficient for 2-D propagation. As before, this dependence is negligible.
Adimensional group velocities in 3-D elastic case are illustrated in Fig.7. The horizontal
line encloses the region with a relative error of less than 2%. It can be clearly seen that
the curves fall inside this region even when calculated with less that ten points per wave-
length. Finally we show in Fig.8 and Fig.9 the comparison between the results yielded
by the nonconforming method (NC) and the conforming method (C) for the normalized
2-D compressional and shear phase and group velocities. The NC-method is by far less
dispersive than the C-one. There is not a big difference in the overall behaviour of the ve-
locities for compressional or shear waves in the case of the former, while for the latter, the
shear case display a worse behaviour than the compressional one. When working with ten
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Figure 4: Adimensional compressional and shear phase velocities for the three dimensional case. Poisson’s
coefficient, ν = 0.1.
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Figure 5: Adimensional compressional group velocities for two different values of the Poisson’s coefficient,
ν = 0.1 and ν = 0.4.
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Figure 6: Adimensional shear wave group velocities for two different values of the Poisson’s coefficient,
ν = 0.1 and ν = 0.4.
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Figure 7: Adimensional compressional and shear group velocities for the 3-D case. The horizontal lines
enclose the region with relative error less than 2%.

points per wavelength, the error is 5% for the C-method, and .98% for the NC-method,
considering the worst case scenarios.

6 CONCLUSIONS

In this paper we have investigated the dispersive properties of a nonconforming finite ele-
ment method to solve the two-dimensional and three-dimensional elastic wave equations.
The study was performed by deriving and analyzing the dispersion relations and by eval-
uating derived quantities, such as dimensionless phase and group velocities. By means
of Taylor expansions of the numerical dispersion relations we showed that the continuous
behaviour is recovered, when the distance between nodes tends to be zero simultaneously
in all three coordinate directions. We have also observed that the dimensionless phase
and group velocities are independent of the material properties of the medium whenever
more than three points per wavelength are used.
On the other hand, we have shown that the numerical method introduces spatial anisotropy.
The phase and group velocities depend on the propagation directions; however, although
they were dependent on the declination φ, they presented a small variation for all the
ranges of the azimuth. In both cases the phase velocities behave very well, even when
using a relatively small number of points per wavelength, the relative error remains close
to zero. When dealing with group velocities the number of points per wavelength must
be increased to keep this error within small bounds, but we observed that it is possible
to have H > .1, and the error is still smaller than 2%.
We have studied the (local) phase difference and also observed that the NC-method is
polluted, that is, the error of the numerical solution increases for increasing wavenumber,
even using a fixed number of points per wavelength.
We have compared the performace of the analyzed method with that of a conforming
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Figure 8: Comparison of worst (lines) and best (triangles) cases of the compressional and shear phase
velocities for the 2-D elastic equation.
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Figure 9: Comparison of worst (lines) and best (triangles) cases of the compressional and shear group
velocities for the 2-D elastic equation.
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finite element method yielding the same order of spatial approximation. It can be clearly
seen that the NC-method introduces less numerical anisotropy and is less dispersive than
the C-method. Indeed, given a fixed accuracy requirement, using the former allows to
nearly halve the number of points per wavelength required by the latter to achieve it.
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