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Abstract. An improvement of a new multiquadric collocation meshless method for
solving PDEs is presented. The scheme proposed here is a simple recipe for dealing
with the shape parameter of the multiquadric at different scales of the size of the grid.
Other technical improvements in the implementation of the method are described and a
framework for an h adaptive theory is established. Numerical experiments are provided
to demonstrate the utility and robustness of the proposed scheme.
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1 INTRODUCTION

The concept of solving PDEs using radial basis functions (RBFs) was introduced by Kansa
in 1990.6,7 He implemented this approach using the multiquadrics radial basis function
(MQ RBF) proposed by Hardy5 for interpolation of scattered data. Kansa’s MQ method
for solving PDEs is a meshless collocation method with global basis functions, which
leads to finite-dimensional problems with full matrices. In21 we have introduced a meshless
local interpolation scheme (LOPI) that compares well with Hardy’s interpolation. LOPI is
r−reproducing and has compactly supported basis. Worth to be mentioned, it also verifies
the delta-Kronecker property, simplifying greatly the introduction of essential boundary
conditions. Roughly speaking, the scheme consists of local interpolation based in Optimal
Point interpolants,9 pasted together with help of the Partition of Unity concept. In19,23

we began the study of the use of LOPI for solving PDEs in a meshless collocation method
that produces very accurate results.

It is already known that the shape parameter cq in radial basis functions interpolators
can meaningfully affect the quality of the interpolator. An h − c adaptive method is
proposed by Kansa et al.1 which tries to take advantage of this fact. In Section 5 we
discuss more largely this issue. The goal of this paper is to propose a multiquadric
meshless method to overcome the problem of the shape parameter optimization. The
method is easy to implement, stable, and produces accurate solutions. We also begin here
a discussion of an h adaptive methodology for LOPI. Several numeric experiments and
tests are given. The last Section provides some concluding remarks.

2 LOPI INTERPOLANTS

Let || . || denote the Euclidean norm in n-dimensional space Rn and B(y; r) the open
ball {x = (x1, . . . , xn) ∈ Rn : ||x− y|| < r } with center y and radius r. We use standard
multi-index notation. In particular, given any multi-index ν = (ν1, . . . , νn) ∈ Rn, |ν|
denotes the sum ν1+· · ·+νn, and Dνf the partial derivative ∂|ν|

∂x
ν1
1 ...∂xνn

n
f for any sufficiently

smooth function f .
Let f = (fβ), β = 0, 1, . . . , K, be the set of given values at distinct points X =

{x0,x1, . . . ,xK}, and g the multiquadrics (MQ) radial C∞ function :

g(x) =
√

c2
q + ||x||2, x ∈ Rn (1)

for a given constant cq > 0 called the shape parameter. We may construct an exact
interpolant of data f as the linear combination

TX (f) =
∑K

β=0
aβ · g(x− xβ)
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of translates of the basic function g by using the Vandermondian (or Grammian) of g

V =




g(x0 − x0) · · · g(xK − x0)
...

. . .
...

g(x0 − xK) · · · g(xK − xK)




Coefficients aβ may be computed using

a = V −1f

whenever the Vandermondian V is invertible.
An interpolant O is r − reproducing iff O[P] = P ∀P polynomial of degree r. In-

terpolants constructed in this way are not reproducing. This property can be retrieved
by augmentation, in a Boolean sum of operators. In order to do this, we must build a
projector Q onto the space of polynomials we wish to preserve. For simplicity, we shall
describe only the case r = 1. Therefore, the space we consider is the linear space P1 of
polynomials of degree ≤ 1.

In the following, we shall consider x0 as a center node, with nodes x1, . . . ,xK sprinkled
around. We think of P1 as generated by a basis of monomials centered at x0; that is, P1

is generated by
{b0 = 1, b1, . . . , bp} = {1, x1 − x0,1, . . . , xn − x0,n}

Note that p ≡ n since the degree of polynomials is limited to r = 1.
We shall search for a weighted least square approximation to data f , using a (’Taylor

expansion’) linear polynomial of the form

P1(x) =
∑

0≤|k|≤1

ak (x− x0)
k,

where k ∈ Rn, and involving a matrix

W = (W (xi,x0)) =




W (x1,x0) 0
. . .

0 W (xK ,x0)




with a radially decreasing weight function W (., .) that has still to be chosen. Coefficients
ak in P1 are given by

a = QT(X ) f

where
QT(X ) = (BT

(X )WB(X ))
−1BT

(X )W
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and where matrix B(X ) is written

B(X ) =




1 x1,1 − x0,1 . . . x1,n − x0,n
...

...
...

1 xK,1 − x0,1 . . . xK,n − x0,n


 .

In order to verify the r-reproducing property, some geometrical conditions on X are
needed to assure that BT

(X )WB(X ) is a non singular matrix. In22 it was proved that a

necessary and sufficient condition is rank(B(X )) = dim(Pr).
By setting now

PT(X ) = V −1
(
I −B(X )QT(X )

)
(2)

together with vector functions

v(x) = (g(x− x0), . . . , g(x− xK))

and
b(x) = (1, b1(x), . . . , bp(x));

then, the local interpolating operator may be defined as follows :

IL(X )[f ](x) =< v(x), PT(X )f > + <b(x),QT(X )f >, x ∈Rn

where < ·, · > is the Euclidean scalar product of vectors.
Operator IL(X ) : f →IL(X )[f ] is clearly linear. Then, writing f =

∑
fαeα in term of

standard basis, we have

IL(X )[f ] =
∑

α

fαφα (3)

where φα = IL(X )[eα]. Basic properties of the family of functions {φα} are:

• φα(xβ) = δαβ. That is, the δ − property is satisfied.

• P =
∑

α P (xα)φα, for every polynomial of degree r (r is the chosen degree of
reproducibility).

This squeme was introduced by Zuppa,21 and it is inspired in Local Optimal Point
Interpolations of Lancaster and Salkauskas (see 11.5 of9). It looks a little more complicated
than interpolators of the form:

TPX =
∑

aβ · g(x− xβ) +
∑

cγbγ(x) (4)

treated in the theory of kriging interpolants and coefficients (aβ, cγ) are obtained in a
different way (see for example12). Interpolators TPX have the same properties than
IL(X ). When r = 0, it is required that

∑
aβ + c0 = 0 and this is the scheme used by

Kansa in his global approach.1,6, 7
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3 APPROXIMATE SOLUTION TO PDES BY COLLOCATION

Let QN = {x1, ...,xN} ⊂ Ω ⊂ Rn be a given set of nodes (Ω a bounded domain). We
assume that, for every node xα ∈ QN , we have selected in some way a subset Sα ⊂ QN ,
called the star of xα, such that Sα is the set of neighbor nodes of xα. We assume of course
that xα ∈ Sα , and xα is the first element. For later use, we shall denote dα the diameter
of Sα.

The procedure will be illustrated with elliptic PDEs. For the sake of simplicity, we
assume the interior and boundary operators, P ,BN and BD, respectively to be linear and
that they define a well-posed elliptic boundary value problem:

Pu(x) = f(x), x ∈ Ω
BNu(x)|ΓN

= sN(x)
BDu(x)|ΓD

= sD(x)
(5)

Here, BD is a pure Dirichlet operator and BN a Neumann or mixed operator. After
reordering, we can partitioned the set of nodes QN in the form

QN = {(xβ)|β=1,...,M1 ⊂ Ω, (xβ)|β=M1+1,...,M2 ⊂ ΓN , (xβ)|β=M2+1,...,N ⊂ ΓD

At every star Sα, we shall search for an approximate solution ûα of (5) in the form

û = ILα[u] =
∑

xβ∈Sα\ΓD

uβφβ +
∑

xγ∈Sα∩ΓD

uγφγ (6)

where ILα = IL(Sα) and uγ = sD(xγ).
Substituting û into (5) and using collocation at nodes , we obtain the collocation system

∑

xβ∈Sα\ΓD

uβP [φβ](xα) = f(xα)−
∑

xγ∈Sα∩ΓD

sD(xγ)P [φγ](xα),

α = 1, ...,M0∑

xβ∈Sα\ΓD

uβBN [φβ](xα) = sN(xα)−
∑

xγ∈Sα∩ΓD

bD(xγ)BN [φγ](xα),

α = M0 + 1, ..., M1

In solving P [φβ](xα), we are immediately faced with the problem of evaluating

P [< v(xα), PTeβ > + < b(xα), QTeβ >]

By linearity, we can recast this equation as

< Pv(xα), PTeβ > + < Pb(xα), QTeβ >

The first term in the sum is

< Pv(xα), V −1(I −BQT )eβ >=< V −1(Pv(xα)), (I −BQT )eβ >

Therefore, instead of getting the inverse matrix V −1, it is a little less expensive and more
stable to solve equation V y = Pv(xα).23

xyz


xyz
C. Zuppa

marce
1531



3.1 Neumann problems

The direct implementation of boundary Neumann condition, although formally straight-
forward, creates some effects that may reduce the accuracy of the collocation method in
its most straightforward form. This is because:

1. Discretization of the boundary condition at a boundary node precludes discretization
of the principal governing equation at this node (one equation is generated per degree
of freedom). Thus, only internal nodes support the governing equation.

2. The boundary stars tend to be of strongly unsymmetrical shape, with the center of
mass shifted towards the inside of the domains.

The accuracy of the solution is improved in finite difference communities using the
following strategy:

For every node x ∈ ΓN , an associated external node in the direction of the outward
normal of ΓN , was added, at a distance that agree with some measure of the size of the
grid (and the geometry of ∂Ω, of course). In this form, the number of nodes was increased,
one for every node x ∈ ΓN , and two equations at all boundary nodes in ΓN were imposed:
one equation resulting from the boundary condition, and one from the PDE.

A different technique is also implemented in:20,23 the number of basis functions is
augmented at every Neumann node instead.

In a node xγ ∈ Sα ∩ ΓN , we define function ψγ by

ψγ(x) =< n(xγ),x− xγ > ·φγ(x)

where n(xγ) is the normal vector in xγ ∈ ΓN . It can be observed that ψγ(xβ) = 0 for all
xβ ∈ QN and ∂

∂n
ψγ(xγ) = 1.

If Sα ∩ ΓN 6= ∅, we improve the approximation (6) by

û =
∑

xβ∈Sα\ΓD

uβφβ +
∑

xγ∈Sα∩ΓN

uγψγ +
∑

xδ∈Sα∩ΓD

sD(xδ)φδ (7)

and, as before, two equations are imposed at every node xα ∈ ΓN .

4 STARS SELECTION

A good selection of stars is of fundamental importance in meshless method in general
and in this method in particular. On must assure that stars tied together and there are
enough nodes in Sα, but the use of large star increases the bandwidth of the global matrix.

4.0.1 Stars by Delaunay triangulation

The nearest-site search is efficiently resolved by Delaunay triangulations (Voronoy dia-
grams). Given a Delaunay triangulation of QN , stars can be defined by chosen the nodes
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connected to a given one at first order, second order, etc. In20 two families of stars were
considered in numerical experiments:

V 1 : S1
α = {first neighbor nodes of xα},

V 2 : S2
α = {first and second neighbor nodes of xα},

4.0.2 The sphere method

In19,23 stars was defined by
Sα = QN ∩ ωα

where ωα = B(xα, rhα), hα is some measure of the mesh spacing in xα, and r > 0. In19,23

and in this work r will be equal to 2.1 and the diameter of the star dα is then 2.1hα. It
is also assumed that Ω ⊂ ∪N

α=1ωα.
The sphere method can be of difficult application in very irregular grids, but it has

several advantages:

1. There is a rapidly growing body of literature concerned with generating good quality
node sets for meshless methods using biting and sphere packing.15–18 The radii of
spheres are related with a mesh spacing function or the size of spheres are defined
by a sizing function h : Ω → R+.

2. Let SN := {Wα}N
α=1 be a positive Cs partition of unity subordinate to the open

covering {ωα} and let F := RN be the set of possible values f = (fα)N
α=1 of functions

at nodes {xα}. A global interpolator O : F → Cs(Rn) can be defined by

O[f ](x) =
N∑

α=1

ILα[fα](x) · Wα(x) (8)

where fα is the restriction of f to the set of indexes corresponding to nodes in Sα.
For the details, see.21

Using O, solution of (5) can be defined over all Ω and a more global error could be
considered. Besides, this methodology can be applied in adaptive schemes in order to
obtain a global sizing function which is used by biting method for building a new set of
nodes and an associated new family {ωα}.

5 OPTIMIZATION OF THE SHAPE PARAMETER

Several authors7,14 have noticed that the shape parameter cq in radial basis functions
interpolators can meaningfully affect the quality of the interpolator. In certain cases, the
deviation can be significantly decreased by increasing cq and it is generally believed that
this is always the case (see10). In1 Kansa et al. developed an h − c method along this
line. But this brings us to one unpleasant feature of these interpolators: the matrices
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which must be inverted become poorly conditioned. It has been argued that this, and
the roundoff error, become the ultimate barriers for the interpolation to reach higher
accuracy: there is an optimal large value of cq before the solution breakdown. This is the
Schaback’s uncertainty principle.14

I think that this issue remain a challenging problem in RBF interpolators. Madych’s
proof concerns the approximation of a given function, not the solution of a PDE. Such
a proof so far does not exist. In fact, a numerical experiment with model 1 of section 7
with a uniform mesh of size h = 0.125, gives the evolution of the maximal error shown
in Figure 1. At all the values of cq displayed in the figure, the condition number of the
matrix are of order O(1.0e + 7) and the numerical calculations do not breakdown at all.
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Figure 1: Maximal error vs. cq
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Following the same line of numerical experiments, we have obtained a fitting curve of
optimal values of the shape parameter equal to

cq(d) ≈ 0.6251719 · d0.12679 (9)

where d = 2.1h.
Multiple attempts have been made to provide formulae for optimal cq (see13), but I

am not aware of any efficient squeme which can be used without caution. As a matter
of fact, in solving PDEs using RDBs, the selection of the optimal shape parameter can
be related with the methodology employed in discretizing the problem in preparation for
numerical implementation.

Also, it should be pointed out that when h ≈ 0.031, for example, we have obtained
condition numbers of matrix V of order 1.e + 13. Beyond that limit, the matrix solver
needs to carry more and more floating points to maintain the accuracy of the solution.
Fornberg and Wright4 method extracts the singularity before the assemblage of the matrix
in general RBF interpolators, thus alleviating the roundoff error problem.

Despite the lack of theoretical error estimates for the use of radial basis function in
this asymmetric collocation method, it is useful to get an idea of what we should expect.
Let f be a function defined in the convex hull CSα of the star Sα with diameter dα and
suppose δα = dα/2 = maxy∈CSα(infxβ∈Sα ||y − xβ||). We want to estimate

sup
x∈CSα

|f(x)− ILα[f ](x)| (10)

By a change of coordinates x = xα + (cq(dα))−1z, we can recast (10) as

sup
z∈B(0,1)

|f̃(z)− ĨL[̃f ](z)|

where the interpolator ĨL uses now the standard multiquadric h1(z) =
√

1 + ||z||2 ,
and the new δ has the value δ = (cq(dα))−1(dα/2) ≈ 0.79 · d0.87

α . According to Madych’s
result,10,11 we have

sup
z∈B(0,1)

|f̃(z)− ĨL[̃f ](z)| = O
(
λ

1
δ

)

with 0 < λ < 1, if δ → 0.
This considerations should allow us to conclude the exponential convergence of the

interpolator. Unfortunately, Madych’s result requires that the function f (in fact, an

extension over all Rn) be in L2(Rn, (|ξ|2ĥ1(ξ))
−1dξ), where ĥ1 is the Fourier transform of

h1. That is, f must be extremely good. We do remind the reader however that Madych’s
estimates concerns the approximation of a given function and not the solution of a PDE.
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6 AN ADAPTIVE METHOD FOR LOPI

What make linear finite element method so attractive is its simplicity. The problem of
optimizing the shape parameter in radial basis function approximations is, in my opinion,
a burden that destroys the special appeals that this method could have. As we have
remarked, a good fitting of optimal values of the shape parameter is an issue that remains
to be solved. Simple recipes for the shape parameter are then especially attractive.

One simple recipe for the shape parameter that produce good numerical solutions was
introduced in23 . In this paper we introduce another recipe whose major attraction is its
extreme simplicity and which appears to produce better results.

We shall use LOPI interpolants in B(xα, 1) with a fixed multiquadrics

g =
√

A + || z ||2 (11)

where A > 0 is a constant that has still to be chosen.
Given a star Sα centered in xα and with diameter dα, the scaling function is the dilation

T : B(xα, dα) → B(xα, 1) given by T (x) = γ(x− xα), where γ = 1
dα

. An interpolation
problem in Sα is transformed into an interpolation problem in B(xα, 1) via the change of
coordinates given by T . Also, all necessary calculations in discretizing PDEs are made at
this fixed scale.

The good behavior of constant A = 35 has been determined experimentally and has
been used in our numerical examples. By scaling, the condition number of matrix V has
always an O(1.0e + 12) behavior.

An a posteriori error estimate compatible with Taylor expansion is given at each node
xα by

Er(xα) = d2
α ·max

|η|=2
||Dηû(xα)||

This indicator is scaled over the domain

Ind(xα) =
Er(xα)

Erm

where Erm = meanxα∈QN (Er(xα)).8

The implementation of an h refinement is achieved simply by inserting nodes in the
region where Ind > 1. Nodes might be inserted following the algorithm described in.3

Numerical experiments seem to hint however that grid size can not change too abruptly
and perhaps this is a characteristic of collocation methods. Better results are obtained
by using a smooth size function in biting method in order to build a new grid. The new
size function can be built by interpolating function

f(xα) =
dα

Ind(xα)
(12)

This squeme was used in model 2 of next section.
These two different approaches must be further investigated.
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7 NUMERICAL EXAMPLES

We shall now perform several numerical tests to investigate the approximating properties
of the new LOPI. We first make all settings in our experiments explicit. All of our
examples are two dimensional and will measure error in the solution and, in some case,
its derivatives.

We shall use the following error measures

εl2 =
1

maxQ |u(xβ)|

√
1

|Q| |u(xβ)− û(xβ)|2

εxl2 =
1

maxQ |ux(xβ)|

√
1

|Q| |ux(xβ)− ûx(xβ)|2

εyl2 =
1

maxQ |uy(xβ)|

√
1

|Q| |uy(xβ)− ûy(xβ)|2

ε = max
Q
|u(xβ)− û(xβ)|

Test with both random and on uniformly spaced nodes were performed. In the former
case, nodes were generated by adding a random perturbation of value 0.25h to a uniform
grid with h−spacing. These kinds of grids will be called uniform and random uniform
grids, respectively. Error displayed in figures in the randomly distributed points case,
correspond to average over ten runs. It should be remarked that in all tests in uniform
grids, stars were selected with the sphere method with r = 2.1h. In random grids the V 2
method was used instead.

7.1 Model 1

This test example is a Poisson equation with an exponential source on a unit square
domain. Mixed boundary conditions are imposed. This example was proposed by Aluru
2 to test performance of methods in presence of both high local gradient and mixed non-
homogeneous boundary conditions.

The governing equation and imposed boundary conditions may be written:

−∆u = f

where

f(x, y) = −6x− 8y

−
[

4

α2
− 4

(
x− β

α2

)2

− 4

(
y − β

α2

)2
]

exp

[
−

(
x− β

α

)2

−
(

y − β

α

)2
]
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u(x = 0) = −y3 + exp

[
−

(
α

β

)2

−
(

y − β

α

)2
]

u(x = 1) = −1− y3 + exp

[
−

(
1− β

α

)2

−
(

y − β

α

)2
]

uy(y = 0) =
2β

α2
exp

[
−

(
α

β

)2

−
(

x− β

α

)2
]

uy(y = 1) = −3− 2
1− β

α2
exp

[
−

(
x− β

α

)2

−
(

1− β

α

)2
]

with α = 0.07, β = 0.5.
Figure 4 displays the results in uniform grids for LOPI, kriging 0, kriging 1 and the

shp scheme of Aluru, and shows the better behavior of the new LOPI scheme.

7.2 Model 2

This is a Dirichlet problem with a singularity at the origin. The governing equation is

∆u = 0, Ω = {(x, y)| − 1 < x < 1, 0 < y < 1}

The Dirichlet condition u|∂Ω = g is assumed in such a way that the exact solution is

u(x, y) =

√√
x2 + y2 − x

In a uniform grid with h = 0.0625, the following results were obtained

ε εl2

3.356e− 002 −6.526e + 000

The problem was recalculated in a new refined grid which was constructed by biting
method and function size (12). The new results were

ε εl2

8.084e− 003 −7.984e + 000

8 CONCLUSIONS

Several computational features of the new method proposed are demonstrated:

• The numerical experiments performed show that the new LOPI scheme is a very
efficient method. The method is highly flexible and produces accurate results. More-
over, it is truly meshless and of simple implementation.
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• The method can be strongly related to the new biting and sphere packing methods
to produce good quality point sets for meshless method.

• Much additional work remains to be done, specially for an h−adaptive theory. Nev-
ertheless, the results presented in this paper are quite encouraging and show that
the new LOPI scheme might have a great potential to become a very competitive
method in some finite difference applications: advective problems, etc. We hope to
show this claim in future works.
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Figure 2: Convergence of LOPI and the shp scheme of Aluru
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