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Abstract. Motion planning in virtual environments is an exciting research field that has
been studied during last three decades. It has evolved from the simplest problem of plan-
ning a 2D path of a mobile robot using geometric methods, to the very difficult problem of
planning 3D motions of multiple robots with many degrees of freedom, or, more surpris-
ingly, graphic animation, surgical planning, computational biology, or automatic sensing.
This work presents a generic software package, MPSLab, that is aimed for motion plan-
ning and simulation of robots with multiple degrees of freedom (dof) in virtual environ-
ments. This package can represent and simulate multiple robots with several dofs moving
among fixed polyhedral obstacles. The motion planning algorithms implemented in this
packages are probabilistic RRT-based algorithms, some of them developed by the author
of this work. With the motion planning algorithms, problems involving holonomic, non
holonomic, and generic constraints can be solved. To implement these algorithms, the
package possesses differential-equation solvers, optimization algorithms, collision detec-
tion/distance computation libraries, and fast computation of artificial potential fields.
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1 INTRODUCTION

The Motion Planning Problem (MPP)' have attracted the attention of many researchers
during the last three decades. With the increase of computational power capability of
today’s computer, there exists the possibility of giving more autonomy to any system, if
not full autonomy.

In its simpler form, the MPP consists in finding a collision-free path for a robot among
rigid static obstacles connecting an initial state with a final desired one. The basic MPP
has been traditionally solved using geometric approaches, but this problem is computa-
tionally hard for robots with several degrees of freedom, i.e., more than five.

In 1969, Nilsson described a mobile robot system with motion planning capabilities us-
ing a visibility graph method combined with the A* search algorithm to find the shortest
collision-free path.! The robot was represented by a point amidst polygonal obstacles.
Udupa solved collision avoidance by introducing the idea of shrinking a robot to a point.?
In 1979, Lozano-Pérez and Wesley introduced the concept of configuration space and
solved the MPP for polygonal or polyhedral robots translating among polygonal or poly-
hedral obstacles.®* This year, Reif showed that path planning for a 3D linkage made of
polyhedral links is PSPACE-hard and that there is strong evidence that any complete
planner? requires time that grows exponentially with the number of dof of the robot to
find a solution.>”

The complexity of complete path planners and their lack of robustness have moti-
vated the development of heuristic planners. Two of the most popular approaches are
approzimate cell decomposition and artificial potential field.” ! In the approximate cell
decomposition, the free space is represented by a collection of simple cells, whereas arti-
ficial potential fields are used to move the robot under the local effects of repulsive fields
associated to obstacles and the attractive field pulling toward the goal.

Both approaches are resolution-complete® and can solve complex path planning prob-
lems in 2D and 3D configuration spaces, but none of these approaches extends well to
robots with more than 3 dofs, because the number of cells becomes too large, or the
potential field can stuck the robot into local minima before reaching the goal position.

In 1991, a randomized planner which alternated down motions to track the negated gra-
dient of a potential field and random motions to escape local minima was introduced.!?
This planner was able to solve complex path planning problems for many-dof robots.
Because the problems of local minima caused by a deterministic potential field persist,
another type of randomized planner was developed. This planner consists of sampling the
configuration space at random and connecting the samples in free space by local paths,

! Motion planning is a general term that refers to either path planning or trajectory planning.

2A complete, or ezact, path planner is one which returns a collision-free path whenever one exists, and
indicates that no such path exists otherwise.

3A resolution-complete planner is one which finds a path if it exists and if the resolution parameter,
the size of the smallest cells or the resolution of the grid, is set fine enough.

2356


xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
2356


O. A. A. Orqueda

typically straight paths, thus creating a probabilistic roadmap (PRM)*.13"16 Experiments
with PRM planners have been quite successful, showing that they are both fast and
reliable even with robots with many dofs. Formal analysis supports this experimental
observation by showing that PRM planning is complete in a probabilistic sense®.!” PRM
planners are also robust to floating-point approximations and easy to implement. A num-
ber of variants applying different sampling strategies have been recently developed.!™2!

Most of PRM-based algorithms are checked for collision using fast collision check-
ers,?273% because, despite of some attempts to compute an explicit representation of the
free space,® it has been shown that this computation is computationally prohibitive.

With the introduction of differential constraints, a challenging problem emerges that
involves both nonlinear control and traditional path planning issues. This problem is of-
ten referred to as nonholonomic planning 33 or kinodynamic planning.?®*? The design
of a roadmap-based algorithm is more challenging because of the increased difficulty of
connecting pairs of states in the presence of the constraints, also referred to as the steer-
ing problem.3® Several randomized approaches to kinodynamic planning appeared based
on Rapidly-exploring Random Trees for static and time-varying environments, nonholo-
nomic and dynamic constraints, optimization criteria, moving obstacles, and/or flexible
robots. 43746

In this work, it is presented a novel software package for motion planning and simulation
of robots with multiple degrees of freedom (dof) in virtual environments, MPSLab. This
package can represent and simulate multiple robots with several dofs moving between
fixed polyhedral obstacles. The motion planning algorithms implemented in this packages
are probabilistic RRT-based algorithms, some of them developed by the author of this
work.11:43:44,46,4T This motion planning algorithms can solve MPPs involving holonomic,
nonholonomic, and generic constraints. It possess several differential-equation solvers
and optimization algorithms, collision detection/distance computation libraries, and fast
computation of artificial potential fields.

The work is organized a follows: In Section 2, some mathematical expressions and no-
tions on constraints are resumed. In Section 3, the Motion Planning Problem is formalized.
In Section 4, the main characteristics of the software package MPSLab is introduced. In
Section 5, new fields of application are briefly discussed. Conclusions, future work, and
references close the work.

2 MATHEMATICAL PRELIMINARIES

Let W denote the world space, or the physical space in which robots and obstacles exist.
Using the configuration space concept, a robot, A, is represented as a point, ¢, called a
configuration, in a parameter space encoding the robot’s dofs, the configuration space,

4A roadmap is a network of collision-free paths that captures the configuration-space topology, and is
generated by preprocessing the configuration space independently of any initial-goal query.

SUnder reasonable geometric assumptions on the free space, the probability that a PRM planner fails
to find a path while one exists decreases exponentially toward 0 with the number of samples.
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C. The obstacles in the workspace, B;, © = 1,2,..., map as forbidden regions into the
configuration space, CB; = {¢€C| A(q)(B; # O}, or C-obstacle. The union of all
the C-obstacles in C is called the C'-obstacle region. The complement of the C—obstacle
region is the free space, Cfre.. Path planning for a dimensioned robot is thus reduced to
the problem of planning a path for a point in a space that has as many dimensions as the
robot has dofs.”

Let Cyaiqa € C denote the subset of valid postures of the robot A. Let 7 : Z —— C
denote a motion trajectory or path for A expressed as a function of time, where 7 is an
interval [to, t1]. 7 (t) represents the configuration ¢ of A at time ¢, with ¢t € Z. A trajectory
7 is said to be collision-free if 7 (t) € Cppee for all t € Z.

The differential equations describing a nonlinear system affine in control that represents
the motion of A can be described in state space form by®:

m

i =fo(z)+ Y fil@) = fo(x)+ f()u (1)

=1

In the general case, the state variable x evolves over a real-analytic, connected manifold
M € R" with ¢ € C C M, the controls u; are assumed to lie in the Sobolev space
H = H*|0,T], while the f; are smooth C* (M )vector fields.

System motion can be subjected to constraints that may arise from the structure of
the mechanism, or from the way in which it is actuated and controlled. Constraints may
be expressed as equalities or inequalities, bilateral or unilateral constraints, respectively,
and they may explicitly depend on time or not, rheonomic or scleronomic constraints.

Motion restrictions that may be put in the form

hi(q)=0,i=1,...,k <n, h;: @+— R, smooth (2)

are called holonomic constraints. Its effect is to confine the attainable system configu-
rations to an (n — k)-dimensional smooth submanifold of Q. The problem is solved by
defining n — k new coordinates on the restricted submanifold that characterize the ac-
tual degrees of freedom of the system. For simulation purposes, a Differential-Algebraic
Equation (DAE) system solver is used.

System constraints whose expression involves generalized coordinates and velocities in
the form

a;(q,4) =0,i=1,...,k <n, a;: @+— R" smooth

are referred to as kinematic constraints. These will limit the admissible motions of the
system by restricting the set of generalized velocities that can be attained at a given
configuration. In mechanics, such constraints are usually encountered in the Pfaffian
form

al (¢)g=0,i=1,....,k<n, or AT (¢)¢=0, (3)

6Not every robot has an associated differential model. This cases are addressed by equating the
differentials to zero, and computing the next state by interpolation.
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Figure 1: Basic-PRM.

It may happen that the kinematic constraints (3) are not integrable, i.e., cannot be
put in the form (2). In this case, the constraints and the mechanical system itself are
called nonholonomic.

3 MOTION PLANNING PROBLEM

Given @init € Cyatia and goar € Cyatia, the main goal of the planning algorithm is to compute
a continuous motion planning trajectory 7, or equivalently, a control law w« (), such that
Vt € [to, t1], T (t) € Coatia, and 7 (to) = @inie and 7 (t1) = Ggoar-

The idea behind the basic Probabilistic Roadmap Method (PRM) is to represent and to
capture the connectivity of C¢,.. by a random network, a roadmap, whose nodes and edges
correspond to randomly selected configurations and path segments, respectively.*®4° In a
preprocessing step, or a learning phase, a large number of points are distributed uniformly
at random in C, and those found to be in Cy,.. are retained as nodes in the roadmap. A
local planner is then used to find paths between each pair of nodes that are sufficiently
close together. If the planner succeeds in finding a path between two nodes, they are
connected by an edge in the roadmap. In the query phase, the user specified start and
goal configurations are connected to the roadmap by the local planner. Then the roadmap
is searched for a shortest path between the given points, Fig. 1.

A strategy for building a Basic-PRM can be summarized as follows, Alg. 1: Let G
be a graph composed by a set E of edges that connect two configurations by a free path.
The path represents an edge, the set V' contains all the configuration nodes of the graph.
A configuration ¢,.,q is randomly chosen each iteration with uniform distribution. If this
configuration belongs to Cy,e. then it is added to V. Then it is tested the connection with
its neighbors. The neighbors of this configuration are defined as the nodes whose distance
to the configuration ¢,q,q is less than d,,..

The Basic-PRM in its original form, is a purely geometric planner. There exist several
modification to take into account system constraints and/or dynamics,*®%° but none of
them are generic solution for rapid development: a careful study of the resulting trajec-
tories of a particular system must be obtained.
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Algorithm 1 PRM-Basic
PRM _BASIC (ginit)
LV —=0; E— 0; Npodes — 0;
2: while n,,040s < Nmax dO
30 rana —RANDOM CONFIG();

4: if Grand € Cfree then

o: V-V U {QTand} )

6: Nnodes < Mnodes 1 17

7 V. « set of neightbours of ¢,4nq (including g4nq)

8: for all v € V, in increasing order of distance do

9: if —connected (¢rana; V) &L (¢rand, V) € Cfree then
10: E—F U {(q“md; U)} )

11: end if

12: end for

13:  end if

14: end while

The Rapidly-Exploring Random Tree (RRT)5! is an exploration algorithm for quickly
searching high-dimensional spaces that have both global constraints, arising from workspace
obstacles and velocity bounds, and differential constraints, arising from system kinemat-
ics and dynamics. The key idea is to bias the exploration toward unexplored portions of
the space by randomly sampling points in the state space and incrementally pulling the
search tree toward them.

In order to build a Basic-RRT, Alg. 2, a simple iteration is performed in which each step
attempts to extend the RRT by adding a new vertex that is biased by a randomly-selected
configuration. The EXTEND function selects the nearest vertex already in the RRT to
the given sample configuration, q. The nearest vertex is chosen according to a metric p.
The function NEW STATE makes a motion toward ¢ by applying an input u for some
time increment At, with some fixed incremental distance ¢, and test for collision. This
input can be chosen at random, or selected by trying all possible inputs and choosing
the one that yields a new state as close as possible to the sample, ¢. NEW _STATE
implicitly uses the collision detection function to determine whether the new state and all
intermediate states satisfy the global constraints. Three situations can occur: REACHED,
in which ¢ is directly added to the RRT' because it already contains a vertex within € of
q¢; ADVANCED, in which a new vertex ¢,., # ¢ is added to the RRT; TRAPPED, in
which the proposed new vertex is rejected because it does not lie in Cypee.

Notwithstanding the basic- RRT' can be used in isolation as a path planner, the problem
is that, without any bias toward the goal, convergence might be very slow. Several
improved planning algorithm have been proposed based on the basic-RRT', p.e., RRT-
GoalBias, RRT-Connect, and MPC-RRT.

In RRT-GoalBias, RANDOM STATE is replaced by a biased coin that if it returns
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Algorithm 2 RRT-Basic
BUILD _RRT (ginit)
1: 7 .anit (Qim‘t)
2: for k=1to K do
3:  Grana — RANDOM CONFIG (7, ¢rana)
4
5

- end for
: ReturnT

EXTEND (7, q)

I: Gnear — NEAREST NEIGHBOR (7,q)
2: if NEW _CONFIG (¢, Gnears new) then
3:  T.add vertex (gnew)
T'add_edge (Qneah Qnew; unew)
if ¢,e0o = g then
Return REACHED
else
Return ADVANCED
end if
10:  Return TRAPPED
11: end if

heads, then qgoq is returned; otherwise, a random state is returned. Even with a small
probability of returning heads, such as 0.05, RRT-GoalBias converges to the goal much
faster than the basic RRT.

RRT-Connect is a probabilistically complete planner designed specifically for path
planning problems that involve no differential constraints, or that can be integrated in
time reversed. The method is based on two ideas: CONNECT heuristic that attempts
to move over a longer distance, and the growth of RRT's from both ¢n;: and ggoa. The
CONNECT heuristic is a greedy function that can be considered as an alternative to
the EXTEND function of the basic-RRT, Alg. 3. Instead of attempting to extend an
RRT by a single € step, the CONNECT heuristic iterates the EXTEND step until ¢, an
obstacle, or an infeasible configuration is reached. This operation has a similar function
than the artificial potential function in a randomized potential field approach.** With
the CONNECT heuristic, the basin of attraction continues to move around as the RRT
grows, as opposed to an artificial potential field method, in which the basin of attraction
remains fixed at the goal. Two trees 7, and 7, are maintained at all times until they
become connected and a solution is found. In each iteration, one tree is extended, and an
attempt is made to connect the nearest vertex of the other tree to the new vertex. Then
the roles are reversed by swapping the two trees. This causes both trees to explore Cyyee,
while trying to establish a connection between them.

MPC-RRT was proposed by the author of this paper.!"46 It consists in changing the
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Algorithm 3 RRT-Connect
CONNECT (7, q)
1: repeat
2: S« EXTEND (7,q)
3: until not (S = Advanced)
4: Return S

RRT_BIDIRECTIONAL (¢init, Ggoat)
1: 7,.init (¢init) , Tp-init (Ggoar)
2: for k=1to K do
3:  Qrana — RANDOM CONFIG()

4:  if not (EXTEND (7,, ¢rana) = Trapped) then
5: if (CONNECT (7., gnew) = Reached) then
6: Return PATH (7,,7;)

7: end if

8: SWAP (7,,7,)

9: end if

10:  Return Failure

11: end for

CONNECT heuristic by a path-space iteration method.3”3%52 This method iterate on the
control along a trajectory until a feasible trajectory is found, incorporating the inequality
constraints by using exterior penalty functions. At each iteration a performance index that
reflects the feasibility of the path itself is minimized, i.e., the error between the end-point
map of the system and the desired final configuration is minimized. The convergence of
the algorithm requires that the brackets of the Control Lie Algebra (CLA) satisty a linear
growth condition. For the exterior penalty functions a generalized potential function'® 1!
is computed. This functions assume that the generalized potential of a differential mass
dm is given by dm /r™. Then it can be shown that the generalized potential field of a
polyhedral body of mass M and volume V' can be expressed as:

U<q>z//[Mf—Z=k//Lf—Z:§Ue<q>, (@

where U, (¢) can be computed in closed form if m =1 or m > 3.1%-11

4 MPSLAB: MOTION PLANNING AND SIMULATION IN 3D ENVI-
RONMENTS

The previous sections have introduced some of the tools needed for motion planning in
virtual environments. In order to try different planners a flexible platform is needed:
MPSLab is a C++ generic software package intended for motion planning and simulation
in virtual environments. It can represent multiple robots with high degrees of freedom
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Figure 2: MPSLab screen shots

using polyhedra, Fig. 2. Generality and easy implementation are the purposes of this
software. To this end, it is used a language similar to VRML as language programming,
and were added three collision packages/distance computation libraries, three differential
equation solvers, and an optimization package. Figure 3 shows a typical simulation using
MPSLab.

In the following paragraphs the main components of MPSLab are resumed.

Collision Detection/distance computation Constructing an explicit representation
of the obstacle region, CB, is not an easy task, and is nor always required. It is often
preferable to simply build a logical predicate that serves as a probe that tests whether a
configuration lies in CB. This is referred to as collision detection. Distance computation
refers to the computation of the minimum distance of any object to any body of the robot.

The packages used by MPSLab for these purposes are: PQP, a library for collision de-
tection, distance computation, and tolerance verification on a pair of geometric models.?
V-Collide, a package for collision detection between arbitrary polygonal objects in large
environments®. SWIFT++, a library for intersection detection, tolerance verification,
approximate or exact distance computation of polyhedral models.2

Differential Equation Solvers MPSLab supports resolution of ordinary differential
equation (ODE) using RKSUITE®® and a library written by the author of this paper,
and resolution of differential algebraic equation (DAE) using DASPK .5

Optimization Nonlinearly constrained large-scale optimization can be solved with the
interface with Huge Quadratic Programming (HQP).5
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Figure 3: MPSLab simulation.

5 DISCUSSION

Motion planning algorithms born with the main idea of solving the problem of finding a
collision-free path for a robot in a given environment. However, several exciting appli-
cation fields have been appeared in last few years and new ones present challenges for
researches. For instance:

Medical Surgery Imaging techniques are widely available to produce detailed and
precise computer representations of 3D tissue structures. It is desirable to precompute
minimally invasive paths of surgical tools among soft tissue structures having different
elastic properties. Motions must be computed for objects sliding in contact with one
another, which requires dealing with friction models.

Planning for sensing Sensors can be used to acquire information about an environ-
ment, like building a 3D model or localizing objects of interest. Active sensing deals with
the problem of finding the next placement (and the corresponding motion) where the
acquisition of new information is a maximum to avoid redundancy and data explosion.

Graphic Animation During the last few years, animation have incorporated dynamic
modeling to create physically realistic animation, vision sensing to automatically acquire
3D models, haptic interaction to feel virtual objects, and motion planning to create
collision-free motions. Fast planner can help to generate realistic-looking motions.
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6 CONCLUSIONS AND FUTURE WORK

In this work a novel software package combining randomized motion planning algorithms,
collision detection/distance computation, optimization, and differential equation resolu-
tion have been presented.

There exist a lot of applications where this software can be used, and more research is
being done on the integration of this simulation platform with real systems.?® Moreover,
the author is adding collision response capability to finish the simulation power of the
software. There is also work on programming more complex examples, i.e., robots with
several degrees of freedom (more than 70) in order to test the real capacity of the planner.
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