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Abstract. The purpose of this work is to present a 2-D thermo-rheological model for high 
take up velocities that can predict numerically in the filament domain, the axial velocity 
profile together with the radial and axial resolutions of stresses, temperature and degree of 
crystallization. The rheology of the filament is described through a constitutive equation that 
results from the combination of the Phan-Thien and Tanner viscoelastic model for the 
amorphous phase and the kinetic model of the rigid dumbbell for the crystalline phase 
immersed in the melt. The model is thus able to predict the thermal and mechanical coupling 
between both phases through the degree of transformation (relative degree of crystallization) 
when the balances of mass, momentum and energy are invoked. The effects of stress induced 
crystallization, viscoelasticity, friction of cooling air, filament inertia, gravity and surface 
tension are all considered together with the temperature dependency of polymer and cooling 
air thermo-physical properties. The rate of crystallization is evaluated through the non-
isothermal Avrami-Nakamura equation. Also, the relaxation times of both phases are function 
of temperature and degree of transformation. Numerical predictions of the model compare 
well with experimental data reported in the literature for a PET melt at a take up velocity of 
5490 m/min. Also, consistently with experimental observations reported in the literature, the 
“skin-core” structure is predicted. It is relevant to indicate that the model analyzed here can 
be evaluated from low to high take up velocities, and when the degree of crystallization 
becomes negligible, the one-phase model is recovered continuously . 
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1  INTRODUCTION 
 

The conventional melt spinning operation for synthetic polymers is carried out at relatively 
low take up velocities (less than 3500 m/min). Therefore, the fiber thus obtained requires 
further mechanical (cold drawing) and thermal (heat annealing) treatments to achieve the final 
properties required for commercial uses. At present, high take up velocities are being used in 
the spinneret to reduce these treatments, and also to improve certain fiber mechanical 
responses. Nevertheless, to be successful in this sense, several physical aspects and 
challenging basic problems must be still considered and solved in the production of fibers; for 
instance, appropriate quantification of physical aspects like molecular orientation of the 
amorphous phase due to the elongational flow imposed, non-isothermal crystallization 
induced by stresses, changes in the polymer rheological properties due to the evolutions of the 
amorphous and crystalline phases, among other relevant phenomena associated to this 
complex operation of the polymer processing.  

One of the consequences of the high values of take up velocity required (typically higher 
than 4500 m/min) is the neck formation (sudden reduction of filament radius) at a given 
position of the filament (Figure 1), where stress induced crystallization mainly occurs. 
Therefore, in this context of analysis, the purpose of this work is to present a 2-D thermo-
rheological model for high take up velocities that can predict, in the filament domain, the 
axial velocity profile together with the radial and axial resolutions of stresses, temperature and 
degree of crystallization. The rheology of the filament is described through a constitutive 
equation that results from the combination of the Phan-Thien and Tanner viscoelastic model 
for the amorphous phase and the kinetic model of the rigid dumbbell for the crystalline phase 
immersed in the melt, by following in part the previous works of Doufas et al.1 The model is 
thus able to predict the thermal and mechanical coupling between both phases through the 
degree of transformation (relative degree of crystallization) when the balances of mass, 
momentum and energy are invoked. The effects of stress induced crystallization, 
viscoelasticity, friction of cooling air, filament inertia, gravity and surface tension are all 
considered together with the temperature dependency of polymer thermo-physical properties. 
The rate of crystallization is evaluated through the non-isothermal Avrami-Nakamura 
equation. Also, the relaxation times of both phases are function of temperature and degree of 
crystallization.  

The second task is to generate a finite differences numerical algorithm based on the 
perturbation analysis proposed by Henson et al.2 within the filament flow domain, which is 
here extended to the case of stress induced crystallization. In addition, the numerical scheme 
proposed by Ottone and Deiber3 considering the interplay between average and local 
equations of the model is extended to this problem to obtain a high radial resolution of 
temperature, degree of crystallization and stress profiles. Consistently with experimental 
observations reported in the literature, the “skin-core” structure is predicted. It is relevant to 
indicate here that the model proposed can be evaluated from low to high take up velocities, 
and as the degree of crystallization becomes negligible, the one-phase model is recovered 
continuously. 
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It is then clear that this work concentrates efforts on predicting relevant phenomena of the 
microstructure (mainly macromolecular conformation) associated to the small radial 
temperature change in the filament. Thus, to be able to quantify, for instance, the skin-core 
generation in both phases, one must work inevitably in the 2-D domain. Having these 
conditions in our basic framework, we do not introduce the classical numerical 
approximations in the averaging process of nonlinear thermal and mechanical terms used to 
reduce the melt spinning model to the 1-D domain (see also a discussion on this aspect in 
Ottone and Deiber3). 
 

 
Figure 1: Scheme of the melt spinning operation involving one filament. 

 
2 BASIC EQUATIONS 
 

2.1  Extensional Zone 

In this section we present the melt spinning model for the steady state regime in the 
extensional zone, which comprises the part of the filament placed from the extrusion capillary 
to the solidification point (the axial velocity is assumed near constant at this point; see also 
below). Since the polymer is considered incompressible, the mass balance implies,  

 

( ) 0=⋅∇ v              (1) 
 

where v is the velocity vector. The balance of momentum in the filament is expressed, 
 

gpvv ρτρ +⋅∇+∇−=∇⋅           (2) 
 

where ρ  is the polymer density, p is the pressure field, g  is the gravity vector and τ  is the 

extra stress tensor considered symmetric throughout this work. This tensor includes the stress 

contributions of the amorphous 


 +
sp

ττ  and crystalline 
c

τ  phases (see Eq.(14) below). 
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The retarded elastic response is considered in the amorphous phase through the term 
Dss

ητ 2= .3,4  

The energy balance in the filament is, 
 

( )xvH:DqTvc fv ∇⋅++⋅∇−=∇⋅ ∞φ∆ρτρ       (3) 
 

where ∞φ  is the maximum degree of crystallization of the amorphous phase assumed 
constant. In Eq. (3) the heat capacity is expressed as a function of temperature T and degree of 
transformation x  through the following expression1: 
 

( )∞∞ −+= φφ xcxcc sv 11            (4) 
 

where sc is the heat capacity of the semi-crystalline phase and 1c is the heat capacity of the 

amorphous phase. Also, sc  and 1c are functions of the temperature T  expressed in °C, as 
follows: 
 

Tcc)T(c sss 21 +=              (5) 
 

Tcc)T(c 12111 +=              (6) 
 

The heat of fusion )T(H f∆  is also a function of temperature1, 
 

( ) ( )
2

0
2

212111
T

ccTcc)(H)T(H ssff −+−+= ∆∆       (7) 
 

where )(H f 0∆  is the value at the reference temperature5. In Eq. (3), Tkq s ∇⋅−=  is the 

heat flux vector, sk  is the thermal conductivity and τ:D  is the mechanical power. This term 

involves the rate of deformation tensor ( ) 2/vvD T∇+∇=  which is a function of the fluid 

kinematics ( ) rrzz evevz,rv += , where zv  and rv  are the axial and radial components of the 

velocity vector, respectively, in the cylindrical coordinate system. Here the angular 
component of the velocity vector is null because no perturbation in the flow field is 
considered.  

In addition the degree of transformation x  is evaluated through the Avrami-Nakamura rate 
of crystallization, which is expressed,1,5 
 

( )( )( ) ( ) 




−−−=∇⋅ −

p
m/m

av trexpxxlnKmxv τζ11 1      (8) 
 

In Eq. (8) avK  is the Avrami kinetic parameter evaluated under null stress and m is an 
exponent considered unity as suggested by Doufas et al.1 Parameter ζ  is independent from 
temperature and determines the degree of coupling between the rate of crystallization and the 
stress tensor. 
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We use here the Phan-Thien and Tanner model (PTTM) to determine the stress 
p

τ  for the 

amorphous phase and the rigid dumbbell for the orientation stress tensor S  of the crystalline 

phase immersed in the melt.  
The appropriate formulation of the melt spinning model with stress induced crystallization 

requires the constitutive equations for the stress tensors associated to the crystalline and 
amorphous phases. These models are discussed below. 

The viscoelastic stress 
p

τ , which is a part of the amorphous stress tensor 
spa

τττ += , is 

expressed, 
 

DG
t apap

λτ
δ
δλτ 2=+            (9) 

 

for the Phan-Thien and Tanner model (PTTM).6 In Eq. (9), 
 

Dt

TlnD
LL

Dt

D

t p

T

pppp
τττττ

δ
δ −⋅−⋅−=         (10) 

 

is the Gordon-Schowalter7,8 non-affine time-convective derivative, where the effect of the 

thermal history is added through the term Dt/TDln .3 Also DvL χ−⋅∇= is the effective 

velocity gradient tensor, Gap λη =  and ( ) ααηη /ps −= 1 . The instantaneous elastic 

response of this model can be obtained for 1=α .9 Here, G  is the relaxation modulus of the 
amorphous phase. 

Since the melt rheological model gets the linear viscoelastic response at the asymptotic 
limit of small shear rates, the amorphous relaxation time can be expressed ( ) oa T,x λλ ≈  with 

( )[ ]( )212736802975511 xT/.expooo ∞−++−= φλλ  as reported by Doufas and McHugh.5 
The exponential term in this expression was provided by Gregory and Watson.10 In particular, 
the PTTM considers a relaxation time that is also a function of the stress tensor expressed 

( )τλλ tr,TK/oa =  where [ ]G/trxpeK τξ= , which is relevant for nonlinear responses. In 

this context of analysis, the relaxation modulus is also allowed to change with temperature 
according to ( )ro T/T G = G  where rT  is the reference temperature. 

A rheometric characterization of this rheological model was carried out by following the 
same procedure described by Ottone and Deiber4 to evaluate the rheological parameters of the 
PET melt with experimental data reported by Gregory and Watson10 when =x 0. These data 
involved the shear rate flow of a sample that had the similar intrinsic viscosity as the PET 
used by Vassilatos et al.11 (zero shear rate viscosity ≈oη  104.9 Pa s). The results obtained for 
the PTTM are reported in Table 1.  

We consider here that the crystalline phase may be modeled as rigid dumbbells immersed 
in the melt, the number of which increases with the contribution of chains captured from the 
amorphous phase (see also references1,5 for other situations). The conformational state of the 
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crystalline phase is represented by the orientation stress tensor δ
3

1
−≡ uuS , where u  is the 

unit vector along the dumbbell axis and δ  is the identity tensor. Here the bracket uu  in the 

definition of S  involves the average carried out with the conformational density distribution 

function of the crystalline phase. The equation giving the evolution12 of S  for the quadratic 

closure approximation uuuuuuuu ≈ , is 
 

( ) 





 +∇−=+ δλλ

δ
δ

λ
3
1

2
3
2

SS:vDS
t

S T
ccc       (11) 

 

where the relaxation time of the semi-crystalline phase ( )Txc ,λ  is a function of temperature 
and degree of transformation. Thus1,  
 

( ) ( ) ( )xFexpT,xcT,x ac ∞≅ φλλ          (12) 
 

In our numerical calculations, we also used the hybrid closure approximation13 for uuuu  

yielding similar results. From the theory of the rigid dumbbell dynamics12, one also shows 
that the stress tensor of the crystalline phase is, 
 

( ) 





 +∇+≅ δλτ

3
1

2
3 SS:v

G
SG T

c
c

cc
        (13) 

 

where cG  is the corresponding relaxation modulus. 

Therefore, the total extra stress tensor of the semi-crystalline phase is expressed according 
to the mixture theory of two phases as follows: 
 

( )
csp

xx τφττφτ ∞∞ +


 +−= 1         (14) 
 

Equation (14) is different from that proposed by Doufas et al.1 in the sense that when 
0→x  the one-phase model for the low take up velocity range is recovered systematically. 

This asymptotic behavior is also validated through the comparison with experimental data.3 

On the other hand, for 1→x  the semi-crystalline phase looses the stretching ability (system 
locking1) reaching then the solidification point at sTT ≈ . 

 In the formulation of stress tensors above, we have used the mean field approximation 
concerning the velocity gradient and concentration effects in Eq. (14) are neglected.1,5 
 
2.2  Cooling Zone 
 

After the solidification point is obtained at gs TTT >≈ , which is defined from the 
mechanical point of view discussed by Doufas and McHugh5, the filament remains under heat 
exchange with the cooling air. This point is obtained at a temperature greater than the glassy 
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temperature gT  of the polymer due to the increase of the crystalline phase with a high 

relaxation modulus. The cooling zone allows relaxations of the amorphous and crystalline 
phases changing the mechanical properties of the final product. Thus, in the context of the 
model, the filament is still under relaxation and cooling in this zone, while the velocity is 

approximately constant and equal to the take up velocity Lv . Thus, Lz vv ≈  and ≈
∂
∂

z

vz 0 for 

sTT < . 
Under these kinematic and thermal conditions, the stress tensor of the amorphous phase is, 

 

0=+
pap t

τ
δ
δ

λτ             (15) 

 

for the PTTM. Also, the orientation stress tensor of the crystalline phase in this zone is, 
  

0=+ S
t

S c δ
δ

λ              (16) 

 

and, 
 

SGcc
3=τ              (17) 

 

The energy balance in the cooling zone is expressed, 
 

( )xvHqTvc fv ∇⋅+⋅∇−=∇⋅ ∞φ∆ρρ        (18) 
 

The last term on the right hand side of Eq. (18) is negligible because the degree of 

transformation is around unity. Also, the mechanical power is nearly null due to ≈
∂
∂

z

vz 0. 

 It should be pointed out here that the evaluation of the filament cooling for temperatures 
near and below the glassy temperature ( gTT < ) requires further thermodynamic 

considerations associated to the phase change from a semi-crystalline melt to an elastic solid. 
The experimental data analyzed in this work do not cover this part of the cooling process. We 
designate cL  the maximum filament length considered in the experimental data, and cLL <  is 
the length from the capillary to the position where the melt reaches the solidification point at 
the temperature sT . 
 
3 BOUNDARY CONDITIONS 

 

In this model the position =z 0 is placed at the outlet of the extrusion, where the boundary 
conditions are expressed as follows: 
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where )z(ro  is the fiber radius as function of the axial direction z, ov  is the melt velocity at 

the capillary with radius cr , and oT  is the extrusion melt temperature. Also the stress ratio 

lRe  can be varied in the range 0
2

1
<<− lRe  for viscoelastic fluids. This result has been fully 

discussed in the literature,4,14 where it was reported that numerical solutions were not 
sensitive for values of lRe  within this specific range, and that the condition ≈lRe 0 is a good 
approximation3. 

Boundary conditions involving the symmetry of fields are imposed at the centerline 0=r  
for any position z. Thus,  
 

0=
r

vz

∂
∂

, 0=
r

T

∂
∂

, 0=
r

zz

∂
τ∂

 0=
r

rr

∂
τ∂

 0=
r

S zz

∂
∂

, 0=
r

x

∂
∂

     (20) 

 

while at the filament free surface for ( )zrr o=  and any position z, dynamics and kinematics 
constraints are, 
 

( ) ( ) tnTtnT
air

⋅⋅=⋅⋅            (21) 
 

( ) ( ) nnTnnnT
air

⋅⋅+ℵ−=⋅⋅ σ          (22) 
 

0=⋅ nv                (23) 
 

tvtv air ⋅=⋅              (24) 
 

for the mechanical variables, and  
 

Thnq e∆=⋅              (25) 
 

for the temperature field. In these equations, n  and t  are the unit vectors normal and 
tangential to the free surface, respectively, ℵ is the curvature of the free surface and σ is the 
polymer-air surface tension. In addition, the total stress tensor τδ +−= pT  in the filament 

involves the extra stress tensor τ  and the pressure p, where δ  is the unit tensor. It is assumed 

that δairair
pT −≈  for the cooling air. In Eq. (25), airTTT −=∆  is the thermal jump between 

the average air temperature airT  and the polymer temperature T evaluated at the free surface 
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and eh  is the external coefficient of heat transfer. Also, airv  is the velocity vector of the 

cooling air. Here, we are also assuming that the model for the melt spinning operation is 
uncoupled from the model of the cooling air, which may be an appropriate approximation 
when a monofilament spinning is considered14. 
 Correlations required to evaluate the friction and external heat transfer coefficients are 
taken from Ottone and Deiber3. In addition, in this work we consider that the thermo-physical 

properties of air are function of temperature. Thus, ccair T/1∝ρ , 70.
ccair T∝µ  and 

airairk µ∝  for air density, viscosity and thermal conductivity, respectively, when values at a 

reference temperature airT  are known. The value ccT  is the arithmetic mean between the 
cooling air and filament temperatures.  
 

4  NUMERICAL METHOD 
 

 The numerical algorithm proposed by Ottone and Deiber3 to study the low take up 
velocity range has been extended here to consider the phenomenon of stress induced 
crystallization at high take up velocities. Thus, the balance equations associated to the 
description of the crystalline phase coupled to the amorphous phase described above were 
included in this algorithm.  

It is appropriate to point out here that this iterative algorithm allows us to account for the 
most relevant phenomena associated to a 2-D description of temperature, degree of 
transformation and stress fields. With this specific target, we use the analytical coupling 
between the perturbed average model resulting from the rigorous radial average of the 
perturbed 2-D model2,3 and the associated point-wise energy balance, rate of crystallization 
and constitutive equations for stresses.  

The perturbed average model is solved with the Runge-Kutta method and the 2-D 
differential equations are solved through finite differences, which are coupled also iteratively 
at each axial step, where convergence criteria are imposed. The finite difference equations 
involve the implicit tri-diagonal algorithm for the temperature field and the explicit-implicit 
backward differences for the stresses and degree of transformation. Fine meshes can be 
generated; for instance, 100 radial nodes and axial step sizes of 10-5 m, depending these 
aspects on the precision required to describe the details of the filament microstructure. 

It should be also pointed out here that the numerical method uses a cylindrical coordinate 
system ( θ,r,z ) placing the z-axis along the filament from the extrusion capillary to the take 
up roll (Figure 1). In addition, a coordinate transformation defining new variables ( θζ ,,Z ) 
with zZ =  and or/r=ζ  is considered to achieve a 2-D rectangular computational domain. 

Table 1 presents the values concerning the thermo-physical properties and rheological 
parameters of the PET melt as well as the model constants used in the numerical runs. Also, 
Table 2 indicates the processing conditions of the melt spinning operation simulated in this 
work. Therefore, in the section below, the numerical predictions of the model are compared 
with the experimental data reported by Vassilatos et al.11 
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 It should be pointed out here that the numerical method also uses an outer iterative loop 
through a shooting method based on trial initial values of the axial stress, and it must 
converge to the take up velocity and solidification temperature. This numerical aspect places 
emphasis in that the melt spinning operation generates a two points boundary value problem 
(TPBVP) from the mathematical point of view (see also below). 
 
5  RESULTS AND DISCUSSION 
 

 Figure 2 shows that the numerical prediction of the filament radius compares well with 
experimental data reported by Vassilatos et al.11 for a take up velocity of 5490 m/min. It is 
also found that the appropriate friction coefficient is obtained for =β 0.3. From this figure it 
is clear that the filament necking stars when the filament radius decreases sharply to become 
then constant at the onset of the cooling zone, i.e. for 0.7<Z < 0.83 m, approximately. For the 
same situation, Figure 3 compares the numerical prediction of the average temperature profile 
with experimental data. It is observed here that the small plateau presented by experimental 
data at around Z=0.75 m (see also the small peak in full line described by numerical results at 
the same place) can be associated to the heating of the filament due to the necking 
phenomenon. This phenomenon increases the heat generation in the filament, which is 
coming from the heat of crystallization (crystallization occurs mainly in filament necking) and 
the mechanical power developed due to the sharp increase of stresses (see Figure 9). 
 In relation to the necking phenomenon, it is also relevant to analyze the evolution of the 
amorphous and crystalline relaxations times (see Figure 4). For instance, the crystalline 
relaxation time is almost null until ≈Z 0.83 where the cooling zone stars. The evolution of the 
amorphous relaxation time increases for low Z to reach a maximum value, then decreases as a 
consequence of the sudden increment of the degree of transformation and stresses in the 
necking zone. Finally in the cooling zone, both relaxation times increase sharply because the 
filament temperature falls to low values. 

Figures 5 to 7 depict the sensitivity of model responses when changes of parameters are 
introduced to enhance the coupling between stress and crystallization (parameter ζ ) and 
filament and air (parameter β ). Most of our results are similar to those reported by Doufas et 
al.1 in the 1-D filament domain. These authors considered the 2-D domain for low take up 
velocities only.16 

In relation to the importance of solving the melt spinning problem in the 2-D domain, 
Figure 8 to 11 show the 2-D calculations obtained for the temperature ( )Z,T ζ  and stress 

difference ( ) ( )Z,Z, rrzz ζτζττ∆ −=  fields, and the following microstructure variables of 
practical interest derived from them: 
 

( )
G

tr
Z,E a

a 3

τ
ζ =             (26) 

 

designated relative amorphous chain extension, and  
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( ) S:SZ,Fc
2

3
=ζ             (27) 

 

which is the orientation factor. Thus, 1=cF  for perfect alignment and 0=cF  for total 
isotropy. In these figures one can observe that a small radial change in temperature generates 
the skin-core phenomenon of both the amorphous and crystalline phases. Thus ( )Z,Ea ζ  and 

( )Z,Fc ζ  increase toward the filament-air interface after the necking is developed (black 
regions in Figures 10 and 11 indicating steep variations when 100 parametric lines are potted). 

There are several aspects of the melt spinning model that may deserve considerations in 
future researches. For instance, refinements in the calculations can be introduced by modeling 
further the different transitions along the filament. For instance, Kannan et al.17 have recently 
modeled the melt spinning operation at low take up velocities (crystallization is neglected and 
a 1-D filament domain is used) through a thermo-mechanical theory to be able to predict the 
position where the transition from melt to elastic solid initiates, having as thermodynamic 
data the glassy temperature. Therefore, in the shooting method only the take up velocity (the 
true boundary condition) must be satisfied. The results show that this zone is rather small (the 
initiation zone is close to the solidification point) and the associated velocity profiles are 
smoother than in previous calculations4. Nevertheless, the results also show a rather 
Newtonian like behavior as that found for the approximations of George.18 One concludes 
here that further efforts should be placed to model the transitions zones involving sT  and gT  

with kinematics and thermal matching conditions to get a genuine TPBVP in the high take up 
velocity range. 
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Table 1:Thermo-physical properties and rheological parameters of the PET melt. 

 

Parameters  Value Reference  

1sc  0.2502 cal/gr oC Doufas and McHugh5 

2sc  7 10-4 cal/gr oC2 Doufas and McHugh5 

11c  0.4243 cal/gr oC Doufas and McHugh5 

12c  5.65 10-4 cal/gr oC2 Doufas and McHugh5 

)(H f 0∆  30 cal/gr Doufas and McHugh5 

∞φ  0.42 Vassilatos et al.11 
m  1 Doufas et al.1 
F  5 This work 
ζ  1.3 10-6 This work 
c  0.005 Doufas et al.1 

ooλ  0.0125 s-1 Deiber and Ottone4 

oG  8400Pa Deiber and Ottone4 

sk  0.2 W/m oC Doufas and McHugh5 

avK  0.016 s-1 This work 

σ  0.027 Pa m Henson el al.2 
ρ  1200 kg/m3 Ziabicki and Kawai15 
α  0.999 This work 
χ  4 10-5 Deiber and Ottone4 
ξ  9.25 10-5 Deiber and Ottone4 

 
Table 2: Processing conditions for the melt spinning operation. Experimental data are from Vassilatos et al.11 

 

Processing parameter Value  

Take up velocity, Lv  5490 m/min 

Capillary tube radius, cr  0.19 mm 

Mass flow rate, oc vr 2π  2.8 gr/min 

Temperature at exit of capillary, To 310 oC 
Initial velocity, ov  0.302 m/s 

Velocity of cooling air, airv  0.1 m/s 

Cooling air temperature, airT  24 oC 
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Figure 2: Numerical prediction of the filament radius along the spinline. • refers to experimental data of 

Vassilatos et al.11 for a take up velocity of 5490 m/min, 165=sT  oC and =β 0.3. 
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Figure 3: Numerical prediction of the average temperature profile along the spinline.  refers to experimental 

data of Vassilatos et al.11 for a take up velocity of 5490 m/min, 165=sT  oC and =β 0.3. 
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Figure 4: Numerical predictions of amorphous  and crystalline relaxation times for a take up velocity of 5490 

m/min, 165=sT  oC and =β 0.3. 
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Figure 5: Numerical predictions of the effect of parameter ζ  on the degree of transformation. Input parameters 

and processing conditions are included in Tables 1 and 2. Also, =sT 180 oC and =β 0.33. 
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Figure 6: Numerical predictions of the effect of parameter β on the average temperature profile. Input parameters 
and processing conditions are included in Tables 1 and 2. 
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Figure 7: Numerical predictions of the effect of parameter β on the filament radius. Input parameters and 
processing conditions are included in Tables 1 and 2. 
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Figure 8: Numerical prediction of the temperature field ( )Z,T ζ for the experimental situation of Vassilatos et 

al.11 at a take up velocity of 5490 m/min. 
 
 
 
 

 
 

Figure 9: Numerical prediction of the stress difference field ( ) ( )Z,Z, rrzz ζτζττ∆ −=  for the experimental 

situation of Vassilatos et al.11 at a take up velocity of 5490 m/min. The maximum value is 107 Pa. 
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Figure 10: Numerical prediction of the relative amorphous chain extension field ( )Z,Ea ζ  for the experimental 

situation of Vassilatos et al.11 at a take up velocity of 5490 m/min. The maximum value is 34 at cLZ = . 
 
 

 
 

Figure 11: Numerical prediction of the orientation factor field ( )Z,Fa ζ  for the experimental situation of 

Vassilatos et al.11 at a take up velocity of 5490 m/min. The maximum value is 0.92 at cLZ =  and the minimum 

is 6 10-4 at =Z 0. 
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6 CONCLUSIONS 
 

More precise calculations than those reported previously with 1-D models are required in 
the modeling of melt fiber spinning at high take up velocities in order to explore details of the 
filament microstructure.. For this purpose, the perturbed 2-D model described in this work 
must be solved. A numerical algorithm based on finite differences that allows one to obtain 
precise radial resolution of temperature, degree of transformation and stress fields is proposed 
here. It is also shown that the rheology of the filament can be approximately described 
through a constitutive equation that results from the combination of the Phan-Thien and 
Tanner viscoelastic model for the amorphous phase and the kinetic model of the rigid 
dumbbell for the crystalline phase immersed in the melt. Numerical predictions of the model 
compare well with experimental data published in the literature. Also, the developments of 
skin-core structures of crystalline and amorphous phases are obtained.  
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