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Abstract. In this work we propose a new a posteriori error estimator fag 8tokes problem,
both with and without a reaction term. This hierarchical tymtimator is based on the solution
of local problems posed on appropriate finite dimensionalcgs of bubble-like functions. An
equivalence result between the norm of the finite element@anathe estimator is given, where
the dependence of the constants on the physics of the prabkexplicited. Several numerical
results confirming both the theoretical results and the gpedormance of the estimator are
given.
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1 INTRODUCTION

A posteriori error analysis in problems related to fluid dymes is a subject to the one lot of at-
tention has been paid in the last decades. For instancéd@dvective-diffusive model we can
quote the works* among others. Now, for the Stokes problem, the works byiven® and
Bank and Welfertlaid the basic foundation for the mathematical analysisrattical methods
(see alsbfor error estimators in the nonconforming case). More rdgem®° and! a pos-
teriori error estimators rigorously bounding the disaation errors have been addressed. All
previous references deal with stable (in the sense of theadesinf-sup conditiot?) discretiza-
tions for the Stokes problem. ¥han a posteriori error analysis of stabilized formulatioos f
the Stokes problem was performed.

In this work, we propose an a posteriori error estimator anhlerarchical type for a stabi-
lized discretization of the Stokes problem, with and with@action. Our approach is based on
an idea from? building an auxiliary problem, whose solution is equivabeith the norm of the
finite element error. Since this auxiliary problem is posadha infinite dimensional setting, we
build a hierarchical estimation for the solution of this lplem, which turns out to be equiva-
lent with this solution, and hence the resulting finite elatagproximation is equivalent to the
original finite element error.

An outline of the paper is as follows. The model problem igestan Section 2. Next, in
Section 3 we propose the auxiliary problem (with the digeresidual as right hand side) and
prove a first equivalence result between the norm of the emmdrthe solution of the auxiliary
problem. As we told before, the auxiliary problem is posedaaninfinite dimensional space,
and hence in Section 4 we define a hierarchical a posteriT estimator to approximate it.
The development of this estimator needs a technical assumqgr the local spaces to be used,
and hence in Section 5 we propose a concrete set of localspatisfying this technical (LBB)
condition. Finally, in Section 6 we give several numericadults confirming the theoretical
results and showing the good performance of our estimator.

2 THE MODEL PROBLEM

Let Q C R? a bounded open set with polygonal boundBryWe denote byl (2) the usual
Sobolev space of orden > 0, with norm||- ||, and seminornj- |,,, o, respectively (with the
convention°(Q) = L*(Q) and|- [o.o = ||- [lo,0). Then, givenf € L*(2)? o > 0 andv € R,
our generalized Stokes problem reaBisd (u, p) € H'(Q)*x L3(2) such that

L(u,p):=cu—vAu+Vp = f in  Q,
(P) dive = 0 in  Q,
u = 0 on T,

where L3 () :={q € L*(Q) : (¢q,1)q = 0}, where(-,-)p stands for the inner product in

L*(D) (orin L*(D)? L?(D)**?, if necessary). Let thell := H}(Q2)? andQ := L%(Q) be the
functional spaces to be used. The weak formulation of prolffe) readsFind (u, p) € HxQ
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such that
a(u,v) + b(v,p) + b(u,q) = F(v,q) V(v,q) € HxQ, (1)
where
a(u,v) = o(u,v)q+v(Vu,Vv)g, (2
bv,q) = —(g,divo)g, 3)
F(v,q) = (f,v)a.

In some places, we will writep(-,-) to denote integration oved C R2. Furthermore, let
¢ @xQ — R be the symmetric bilinear form defined by:

1

:;@ﬂh-

c(p,q):
Using bilinear forms: andc we define the following norms:
vl = a(v,v)"? Vve H,
lalle = clq.0)"* VgeQ,

and use them to define the following norm on the product sgéce):

1/2
I, @)l = {nvnz n ||q||3} V(v.q) € HxQ. @

Using the classical theory of Babuska-Brezzitfwe can state the following result.
Lemma 1l Weak problem (1) has a unique soluti@n p) € H x(Q).

3 THE AUXILIARY PROBLEM AND THE RESIDUAL EQUATION

We start by giving some notations that will be useful in thqusd. First, let{7,},-, be a
regular family of triangulations of2 and let us denote bg,, the set of all sides df;, with the
usual splitting€;, = £q U &r, where&, stand for the sides lying on the interior Qf Also, for
T € T, we denote byV (T') the set of nodes df and by&(T') the set of sides df. Also, for
F € &, we define the following neighborhood:

CUF = U T/.
Fe&(T")

Next, forT € 7, andF’ € &g, let hy be the diameter of’, hp := |F|.
In the rest of the paper we will use the notation

b<—= a < Kb,
b<—=a=<bandb < a,

a

PEPN

a

1213



MECOM 2005 - VIIl Congreso Argentino de Mecanica Computacional

where the positive constast is independent ok, o andv.
Finally, we introduce the following finite element spaces

H, = {peC()’: ¢lr € P{(T)*, VT € T} N Hy(Q)?,
Qn = {peC@Q): glr €PUT), VT € T} N LA(Q),

and present the stabilized finite element method to be ceresidin this paper (cff): Find
(un, pr) € HpxQy such that:

As((wn,pn); (Vn,an)) = Fs(vn,qn)  Y(vn,qn) € HpxQp, (5)
where
As((wn, pn), (Vn, qn)) = a(wn, vp) + b(vn, pr) + b(wn, gn)
— > b1 (L(wn,pn), L(vn, qn))r,
TeT,
and

Fs(vn, qn) = F(vy) Z or (f, L(vn, qn))r.
TeTy

If o > 0, stabilization paramete¥. is given by:

h2
op = T 6
T o hZ max{Ag, 1} + 120 ©
where 19
AT:Z:——%;.
o hi.

If o = 0, we recover the GLS meth&twith 6 = h2./24v.
The starting point in the construction of our a posterioroerestimator is the following
auxiliary problem:Find (¢, ) such that:

a(¢v ’U) + C(w7 q) = F(”v Q) - a(“’h; ’U) - b(’l],ph) - b(“’ha Q) ) (7)
for all (v,q) in H <@, or, written in another way
a(@,v) + (¥, q) =Rp(v,q)  V(v,q) € HXQ, (8)

whereR,, : H x() — R stands for the residual functional given by
Ru(v,q) = F(v,q) — a(uy,v) — b(v,py) — blun, q) .

This auxiliary problem is clearly uncoupled. Indeed, takatternativelyv = 0 andg = 0 in
(8) we have

a(p,v) = (f,v)q—aluy,v)—bv,p,) = R;(v) VYveH, 9
c(,q) = —bun,q) Vg€ Q. (10)
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Remark 2 From (10) we have
/(V_I@Z)—divuh)qu:() Vg e @,
Q

and hence, since 'y — divu, € Q, we can see that
Vv =vdivuy,,
from where we have an explicit solution for

In order to give a more precise (and useful in the sequel)emgion forR}, denoting
ey :=v Vu, — p, I (Wherel stands for theR?>*? identity matrix), integration by parts leads

to
Ri(v) = > (Rr,v)r+ Y _ (Rp,v)r, (11)

TeT), Fe&q

whereR; € L*(T)? and Ry € L*(F)?* are given by

RT = (.f - E(“’haph)”T ;
and
RF = - |[€h-n]]F,
where[v] ,, stands for the jump of acrossF'.
We state now the following equivalence result.

Theorem 3 Lete and E be the errors in approximating the velocity and pressurspestively,
le.
e=u—u, , E:=p—mp.

Then, the following equivalence result holds

o+ v

2
612 + vliaivanlta = lel? + 1812 < (T52) (1912 + v ldivul]

where the equivalence constants are independehtofindwv.

Proof. The proof follows from the properties of the bilinear formaand ¢ and the fact that
1 = vdivuy,. For details, seé Sections 3 and 4]
Based on this result in next section we will build an a postegrror estimator fokp.
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4 THE HIERARCHICAL ERROR ESTIMATOR
Let W, be a finite element space such that

W,=H,+ > Hj+ > HY},

TeT, Fe&q

where H,, ¢ H}(T)? and HS. ¢ H}(w,)? are finite dimensional spaces calledbble sub-
spaces
Using these notations we define duerarchical a posteriori error estimatony by

1/2
e = { > a(Pre, Pré)+ > a(Prg, PF¢)} : (12)

TeTh Fe&q

where ¢ is the solution of (9) and, fo6 = T or S = F, Ps¢ is the solution of the local
problem:Find Ps¢ € HY% such that

a(Psp,vs) = Ry (vs) Vus € HY.

Finally, we will suppose that the bubble subspaces satyfdllowing inf—sup condition
(LBB): There existg > 0, independent of, o andv, such that

Br, R
o % BOr||Rrllor VT €T,
Br e Hp )
(BF7RF)F

sup

Or|l R VF € &g,
Br € HY, awF(BF,BF)l/Z - B FH FHO,F Q

wheref andf are the mesh dependent constans given by

0 v Y2y , 0=0,

o o V2 min{hro'2v"12 1} | 0>0.
0 - 7/_1/2 h};v/Q y 0 = 07
B v V4o VA min{hp o272 1312 0 6>0.

Remark 4 In Section 5, we will give a concrete example of bubble fundjmaces satisfying
(LBB).

Under the (LBB) assumption, and using some particular feataf the stabilized finite ele-

ment method (5), we can state the following equivalencedtashose proof may be found ih
Theorem 11.
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Theorem 5 Let ¢ be the solution of (9). If (LBB) holds, then
a(, ) = 13,
whereny is given by (12) and the equivalence constants are indepgrdé, o andv.
Finally, from Theorems 3 and 5, we can state the followingmmasult.

Theorem 6 Let(u, p), (us, pr) andg be the solutions ofl), (5) and(9), respectively. If (LBB)
holds, then the following equivalence holds

2
_ o+v -
S = lu- il o ml? = (T2) S

TeTy, TeT,

where

1/2

_ 1 :
M= 4 a(Pré, Pro) + 2 Z a(Ppe, Ppo) + v ||div Uh||(2),T
FE(S(T)Q(SQ

5 BUBBLE FUNCTION SPACES SATISFYING (LBB) CONDITION

For each element’ € 7;, we define theelement bubble functian- by

br=27 [[ M (13)
zeN(T)

where)\, denotes the barycentric coordinate associated to mo8ellowing Verfurth! let T be
the standard reference element, of vertice9), (0, 1) and(0, 0). Given any numbedt € (0, 1]
denote byd,, : R? — R? the transformation which mags, ) onto (z, ay). Let

fa = @a(f),

and denote by, ., A, , and)s ,, its barycentric coordinates (see Figure 1).

(0,1) S
(0, )

Do (T)

(0,0) (1,0) (0,0) (1,0)
/\B.u /\l.n

Figure 1: Triangled” andZ,.
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Set

45\3(15\104 on fav
bf o= T N
’ 0 on T\T,,

Whereﬁ::{(t,o) eR?:0<t<1}. LetF € & and denote by}, T, two triangles which
haveF' in common. Denote b¥:r;, i = 1,2, the orientation preserving affine transformation

which mapéf onto7; andF onto F (see Figure 2).

(0,

y
Gpo
)

1)
T
(0,0) bal (1,0

Figure 2: Affine transformatiolr;, s = 1, 2.

Set
bpo = { bﬁ,aoG;“,lz‘ on T;1=1,2,

0 on Q\wp. (14)

LetIl := {(z,0) : = € R} and letQ : R? — II the orthogonal projection fro? to II. We
introduce the lifting operataP; : Py (F) — Py (T") by

A ~

Pa(3) =500Q.

Let 7; C wp and letGp; the affine transformation defined in Figure 2. We define thagf
operatorPrr, : Py (F) — Py(T;) by

Prr.(s) = PF(S oGp;)o Gz?lz
Using these notations, we can define a lifting operator

PF,Tl (S) in T ,

s € Pp(F) — Pp(s) := { Pprpy(s) inTy,

and, fors = (s1, s2) € Px(F)?, we denote

Ppr(s) = (Pr(s1), Pr(s2)).
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Finally, for all F' € &g let ar be the positive parameter given by

e min{v'/2oc"2h1 1} , 0>0,
1 , 0=0.

In order to satisfy (LBB) condition we need to impose thedaling condition onf:
(F) fis a piecewise polynomial function.

Next, we define the following bubble function spaces:

H). = ({brRr}) VTET,,
HY = {{bpa, Pr(Rr)}) VF €&,

wherebr andbr,, are the bubble functions given by (13) and (14), respegtivél can be
proved (se¥) that the subspaced’. and H', defined above satisfy the (LBB) condition.

6 NUMERICAL RESULTS

In this section we report some results obtained for the stah8tokes problem (i.ex = 0), and
the generalized one (# 0). In both cases we show the ability of an adaptive schemedbas
our a posteriori error estimator, to generate adapted nsesieto improve the discrete solution
without using a highly refined uniform mesh.

6.1 The Stokesproblem (¢ = 0)

We present three sets of numerical experiments to validatewor estimator. From now on
d.o.f. will denote the degrees of freedom associated withraqular mesh.

6.1.1 An analytical solution

For this test case, the domain is taken as the square(0,1)x(0,1), v = 1, andf is set such
as the exact solution of our Stokes problem is given by

ui(z,y) = —2562%(z — 1)*y(y — 1)(2y — 1),
UQ(ZL‘, y) = —Ul(y, $) )
p(z,y) = 150(x — 0.5)(y — 0.5) .

In order to test our a posteriori error estimator in Figure & @epict the error, in the norm
defined in (4), and estimatagy; ash — 0 using a sequence of uniformily refined meshes. We
can observe that both values are in good accordance, whadnfgmed in Table 1 where we
show the effectivity index

N
I(w —wn,p—pu)|’

Ei =
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which remains bounded &s— 0. Finally, in order to study the sensitivity of effectivitpdex

asv — 0, we present in Table 2 the behaviorif and||(u — uy,p — ps)|| for a fixed mesh
and forv = 1,107%,...,107%. We observe that, as was predicted by Theorem 6, estimator
ny follows the same pattern dffu — w;,, p — py)||, and hence, the effectivity index remains
bounded independently of the valuerof

10

error

0.01

0.1

(w—wp,p=pi)| -%- ]
N —m- ]

10

100

1000
d.o.f

10000

100000

Figure 3: Exact error and the a posteriori error estimate.

d.of | |[(w—unp—pnl NH E;
39 6.641955 5.216376 | 0.785367
123 3.292848 2.873238 | 0.872569
435 1.671618 1.523188 | 0.911205
1635 0.838908 0.775193 | 0.924050
6339 0.419710 0.392412 | 0.934960
24963 0.209854 0.197351 | 0.940422
99075 0.104919 9.900770e-02 0.943655

Table 1: Exact error, a posteriori error estimator and eifég index.
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v | [[(w—unp—pi N E;

1 0.209854 0.197351 | 0.940422
le-01 6.643132e-02 | 6.244997e-02 0.940068
le-02 2.309899e-02 | 2.105384e-02 0.911461
1le-03 3.123896e-02 | 2.392909e-02 0.766001
le-04 9.655438e-02 | 7.305909e-02 0.756662
le-05 0.305260 0.227342 | 0.744750
le-06 0.965315 0.645566 | 0.668762

Table 2: Sensibility of the estimator to

6.1.2 Thelid-driven cavity problem

For this case we use the same domain as in previous sectiosetyie= 0, and the boundary
conditionsu = 0 on[{0}x (0, 1)]U[(0,1)x{0}U[{1}x(0,1)] andu = (1,0) on (0, 1) x{1}.
We show in Figure 4 the initial mesh and the adapted one addaising our error estimate.
In Figure 5 we depict the discrete pressure field obtaineaguie initial and adapted meshes
where we note the improvement in the quality of the computdation since the singular nature

of the pressure is better captured in the adapted mesh.

Figure 4: Initial and adapted meshes.
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Figure 5: The pressure in the initial and adapted meshes.

6.1.3 Thebackward facing step problem

This test case is posed on the backward facing step configirdthe step is located at, y) =
(2.5,0), the entry of the channel is at= 0 and the exit of the channel at= 22. The channel
width is 1 at entry and at exit. The boundary conditions are inflow parabolic preféed free
outflow. We assumg = 0. In this case a singularity arises at the step from the reaant
corner. Hence we can expect the meshes to be locally refimeshéithe corner. In Figure 6
we depict the initial mesh, and in Figure 7 we show a zoom ofati@ted mesh where we
can observe the local behavior of the adapted mesh. Is@/afuée vertical component of the
velocity are depicted in Figure 8 for both meshes. We renfagkrnprovement in the quality of
the discrete solution if we use the adapted mesh.

Figure 6: Initial mesh.
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Figure 7: A zoom, near the singularity, of the adapted mesh.

Figure 8: A zoom, near the singularity, of the normal velpdit the initial and the adapted meshes.

6.2 Thegeneralized problem (o # 0)
6.2.1 An analytical solution

For this test case we use the same analytical solution frachd®e6.1.1. In Figures 9 and 10
we present the behavior, when= 1 ando = 1, 105, of the true error and the error estimate
whenh goes to 0 using again a sequence of uniformily refined medheRbles 3 and 4 we
show the same kind of information plus the effectivity ind&ote that the exact error is quite
well approached by our a posteriori error estimate.
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10 g

error

0.1

T —
(w—wn,p—pu)| -%- 3
Ul |

10

100

1000

d.o.f

10000

100000

Figure 9: Exact error and the a posteriori error estimate-(1 ando = 1).

d.o.f | |[(w—wun,p—pn)ll n E;
39 6.687539 5.263874 | 0.787116
123 3.298747 2.877562 | 0.872319
435 1.672377 1.523716 | 0.911107
1635 0.839004 0.775254 | 0.924016
6339 0.419722 0.392420 | 0.934951
24963 0.209856 0.197352 | 0.940419
99075 0.104919 9.900781e-02 0.943655

Table 3: Error, a posteriori error estimator and effecyivitdex (v = 1 ando = 1).
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1000 g

error
=
T

0.1

(w—up,p—pn)| —%- ]
N -m- ]

10

100

1000 10000

d.o.f

100000

Figure 10: Exact error and the a posteriori error estimate: (1 ando = 10°).

d.o.f | ||(w—wupp—pn)l n E;
39 821.888331 719.153888 0.875001
123 274.845840 238.693702 0.868463
435 78.294327 67.770544 | 0.865586
1635 20.622990 17.688430| 0.857704
6339 5.2790531 4.381471 | 0.829972
24963 1.3445539 1.005010 | 0.747467
99075 0.3497008 0.212486 | 0.607624

Table 4: Error, a posteriori error estimator and effecjivitdex ¢z = 1 ando = 106).

6.2.2 Thelid-driven cavity problem

Again, we consider the problem described in Section 6.1uRjrbthis case we assume= 1
ando = 10°. In Figure 11 we depict the initial and final adapted meshes.ndte that our a
posteriori error estimate is able to detect correctly thertatary layer of the solution. In Figure
12 we show a vertical cross section of the first component efvocity field. This cross
section shows us the quality of the discrete solution coegpusing the adapted mesh. Note
that the boundary layer is clearly captured.
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Figure 11: Initial and final adapted meshes.

Figure 12: A cross section of the tangential velocity at %
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