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Abstract. A finite element technique is developed to compare the linear and nonlinear cable 
equations used in simulation of mooring forces on floating objects. In this technique, the Navier-
Stokes equations for two interacting, incompressible fluids (air and water) are written and 
integrated over  an Arbitrary Lagrangian-Eulerian domain. The interface between the air and 
water is tracked using a transient advection equation. The physical motions of the floating 
objects are handled with automatic mesh-moving schemes. The six degrees of freedom nonlinear 
rigid body dynamics equation are coupled with the Navier-Stokes equations to update the 
positions of the floating objects. The numerical example includes 3D simulations of buoyancy 
effects on a floating object under water constrained with a cable. 
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1 INTRODUCTION 
 There are many marine applications involving the interaction of free-surface flows (water 
waves) with floating objects moored with many cables. The mooring forces are important design 
parameters and need to be estimated very accurately. The concentrated stresses are formed 
around the locations where the cables are attached to the floating objects, and therefore, 
subjecting these locations to a higher risk for structural failures. Advanced high performance 
simulation tools can be used to predict the magnitude of the mooring forces and estimate the 
level of stress concentrations on locations where the mooring forces act. 
 Computer modeling of mooring forces is complex. The partial differential equations 
governing the conservation of mass and momentum, commonly known as the Navier-Stokes 
equations, need to be coupled with the six degrees of freedom nonlinear rigid body dynamics 
equations to account for the position of the floating object. The tensional forces in the cables will 
act as a point force on the object. The magnitude and direction of these forces also need to be 
determined in an iterative scheme through coupling techniques with the other governing 
equations. In addition, the motion of the object in the computational domain needs to be 
addressed.  
 Generally, there are two distinct approaches in the numerical simulation of free-surface flows 
(excluding the rarely used panel method1). Depending on the physical characteristics of the 
problem, either the “moving-mesh” or the “fixed-mesh” technique is used. In the moving-mesh 
technique, the motion of the free-surface is absorbed by moving the computational nodes located 
on the free-surface.2-3 Most of the moving-mesh techniques are based on either the space-time 
finite element formulations4-5 or the solution of the governing equations over Arbitrary 
Lagrangian-Eulerian (ALE)6-7 domains. In the applications where the deformation of the free-
surface is large, the moving-mesh methods usually result in element distortions. As the element 
distortions grow and become unacceptable, the generation of a new mesh and the projection of 
the solution from the old mesh to the new one is essential8. In complex 3D applications, this 
procedure is extremely difficult and time consuming. In such cases, computations using fixed-
mesh techniques are more desirable 
 The most common fixed-mesh techniques are based on the VOF9, the level-set10-11 and 
recently developed Interface-Sharpening/Global Mass Conservation (ISGMC) methods12-13.  In 
these methods, the Navier-Stokes equations are solved over a non-moving mesh. A scalar 
function (or color function) as a marker identifies the location of the free-surface. This function 
is transported throughout the computational domain with a transient advection equation.  
 Our free-surface flow simulation techniques over fixed-meshes are based on the IS-GMC and 
advanced parallel computational technologies we have developed in the past several years.14-15 
These computational technologies are very user friendly and have been applied to many 
applications, including sloshing in tanker-trucks2, waves interacting with marine vessels in 
motion,14-15 and flow in open channels12. In a recent benchmark, we carried out computations 
using a totally unstructured mesh with more than one billion tetrahedral elements.15 The 
sustained computational speed was measured at around 115 GigaFLOPS on the Cray T3E-1200 
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with 1024 processors. The total time spent in inter-processor communication was between 1 and 
2 percent. This free-surface flow solver can produce solutions, which are highly accurate.2,12-13,15 
 The combination of the moving-mesh and fixed-mesh techniques for simulation of free-
surface flows was first introduced in literature by Aliabadi et al.16-17. In this combination 
approach, the free-surface is tracked using a scalar function based on fixed-mesh techniques and 
the motions of the floating objects (translation and rotation) are absorbed using moving-mesh 
techniques. The finite element formulations for this combination approach are based on the 
implementation of the ISGMC in an Arbitrary Lagrangian-Eulerian (ALE) moving-mesh 
domain. We refer to this combination method as MM-ISGMC. The MM-ISGMC method is 
applied to complex 3D problems involving the free-surface flows interacting with objects in 
motion.16-17 
 Recently, we have developed a fluid-structure interaction simulator by incorporating the 
effect of cables into the MM-ISGMC. In this article, we describe and compare two mathematical 
models for cables. In the linear model, we assume that the cables act as linear springs subjected 
to tensional forces (no resistance to the compression force). In the nonlinear model, we use the 
transient, nonlinear finite element formulation derived from the principal of virtual work. The 
comparisons between these two models in the simulation of mooring forces are the main scope 
of this article. 
 The governing equations and the finite element formulations are described in Section 2. The 
iterative solution strategy is briefly discussed in Section 3. The numerical example and results 
are provided in Section 4 following the concluding remarks in Section 5. 

2 GOVERNING EQUATIONS AND FINITE ELEMENT FORMULATIONS 
 We consider the governing equations for two interacting fluids in the spatial domain Ω  and 
its boundary Γ . Here we assume that the spatial domain and its boundary are both functions of 
time, t. The two fluids are incompressible (e.g. air-water) and separated with an interface. Along 
the interface, the traction force is continuous (surface tension is negligible). The governing 
equations of two fluids are the Navier-Stokes equations written in the Arbitrary Lagrangian-
Eulerian (ALE) domain. These equations are: 
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 (u)I εεεεσσσσ µ+−= 2p ,   

 )(
2
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Here u, umesh, p, ρ , g, and µ  are the fluid velocity, mesh velocity, pressure, density, gravitational 
force, and dynamic viscosity, respectively. The strain tensor is denoted by εεεε  and I represents the 
identity tensor. Equations (1-2) are completed by an appropriate set of boundary and initial 
conditions. The stabilized finite element formulations for equations (1-2) are written as:  
 

[ ]

Ω⋅−−⋅−+
∂

∂ρ

⋅⋅−⋅−ρ
ρ

τ
+Ω⋅+

Ω+Ω−⋅−+
∂

∂ρ⋅

=
ΩΩ

ΩΩ

dp
t

qdq

dpd
t

hhhh
mesh

h
h

ne

e
e

hh
p

hh
mesh

hmhh
p

hhhhh
mesh

h
h

h

)(])([

)()(

)(:)(])([

1

u,guuuu

w,wuuu

u,wguuuuw

σσσσ∇∇∇∇∇∇∇∇

σσσσ∇∇∇∇∇∇∇∇∇∇∇∇

σσσσεεεε∇∇∇∇

 

 .
1

Γ=Ω⋅ρ⋅τ+
Γ

=
Ω

dd
uh

hhh
ne

e
e c h.wuw ∇∇∇∇∇∇∇∇  (4) 

 

Here, w and q  are linear test functions for the velocity and pressure, respectively. In this 
formulation, the first three integrals together with the right hand side term are the Galerkin finite 
element formulation. The first element-level integral includes the stabilizations [2]. The second 
element-level integral is the least-square stabilization of the continuity equation, which enhanced 
the robustness of the finite element formulation at high Reynolds numbers. The details of the 
stabilization techniques and the definitions of the coefficients mτ  and cτ , can be found in 
[2,5,12,18-19]. 
 The interface function, φ , has two distinct values (0,1) and is used to differentiate between 
the two fluids. A transient advection equation transports this function throughout the 
computational domain with the fluid velocity as: 
 

  0)( =φ⋅−+
∂
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Using φ , the density and viscosity can be calculate as: 
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 BA ρφ−+φρ=ρ )1( ,  

             BA µφ−+φµ=µ )1( , (6) 

 

where the subscripts A and B denote the fluid A and fluid B. The artificial diffusion finite element 
formulation for Equation (5) leads to: 
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where ψ  is a linear test function for the interface function. Here the first integral is the Galerkin 
finite element formulation and the second integral is the artificial diffusion stabilization. The 
artificial diffusion stabilization technique is used for over stabilization.2,12 This feature allows us 
to enforce the conservation of mass not only locally, but also globally. In the IS-GMS, the 
sharpness of the interface function is recovered after each nonlinear iteration.12-13,17  
 There is no limit on the number of cables, which can be attached to the floating objects. For 
nonlinear hawsers, the equation governing the dynamics of the nonlinear cables can be written 
as: 
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where x is the position vector, X is the initial position, cρ  is the cable density, and T is the 
Cauchy stress tensor. Locally, the Green strain tensor has only one component, which can be 
defined as: 
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where s is a tangent vector in the original configuration of the cables. The Cauchy stress tensor, 
T, and the 2nd Piola-Kirchoff stress tensor, S, are related through geometry deformation. Under 
the assumption of small strain, but large geometry displacements, the only component of S in the 
s direction is: 
 

 1111 ES cE=  (11) 

 

Here cE  is the Young’s modulus of elasticity of the cable. The finite element formulation for 
Equation (8) is derived from the principle of virtual work [20] leading to: 
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where H is the test function for hawser displacements. Here we assume that the fluid does not 
affect the cable motion directly. Instead, a numerical damping, θ , is introduced to dampen the 
oscillations in time. In this formulation, all of the integrations are carried out in the original 
domain rather than current deformed domain. 
 For the linear model, we have: 
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Here, fL  and iL  are the final and initial length of the cable, respectively. 
 The motions of the floating objects are handled using an automatic mesh moving scheme. In 
our mesh-moving scheme, the mesh connectivity does not change as the nodes are moved to the 
new locations. Here, we assume that the computational domain is made of elastic material8. We 
solve linear elasticity equations to obtain the displacements for every computational node. These 
equations are: 
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2
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where d  is the displacement, κκκκ  is the strain tensor, and 1λ and 2λ  are the linear elasticity 
coefficients. The finite element formulation for these equations is the Galerkin formulation 
written as: 
 

 [ ] 0)(2)()( 21 =Ω∇λ+λ
Ω

dhhh dId: κκκκ∇.∇.∇.∇.ππππκκκκ , (15) 

 

where ππππ  is the test function for the displacements.  
 The six degrees of freedom nonlinear rigid body dynamics are solved to locate the new 
position and orientation of the floating objects. Here we consider two coordinate systems, one 
attached to the computational domain, X, and the other attached to the floating object, Y. The 
rotation matrix, Q , transfers components of any arbitrary vector from the X coordinate system to 
the Y coordinate system. The nonlinear rigid body dynamics equations for the center of gravity 
of the object are: 
 

  XXX agF mm =− , (16) 

 

  YYX  ][ ααααQJQM T= , (17) 

 

where XF and YM are the total force and angular momentum exerted on the center of gravity of 
the object by the fluids, respectively. The linear and angular accelerations are Xa and Yαααα . The 
mass of the object is m and its moment of inertia is YJ . Here the subscribed “X” and “Y” 
denotes the coordinate system where the components of the vectors and matrices are evaluated.   
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3 ITERATIVE SOLUTION STRATEGY 
 The discretization of the finite element formulations results in a series of coupled, nonlinear 
systems of equations that need to be solved at every time step. The nonlinear system of equations 
in vector form can be written as: 
 

 ( ) L,F =ss ,  (18) 

 

where the vector F  is the function of nodal unknowns, s , and its time derivative, s . Here L is the 
known right-hand-side vector. After linearization using the Newton-Raphson algorithm, we need 
to solve a series of first order linear differential equation systems. These systems are also solved 
iteratively using the GMRES update algorithm18,21. For very large systems of equations, we use a 
matrix-free iteration strategy18. This element-vector-based computation totally eliminates the 
need to form any matrices, even at the element-level. 

4 NUMERICAL EXAMPLE 

4.1 Buoyancy effect on floating object under water  
 Here we simulate the buoyancy effect on a cubic object completely under water. The 
nondimensional computational domain covers a volume 04250 .. ≤≤− x , 25100 .. ≤≤ y , 

,.. 750750 ≤≤≤≤≤≤≤≤−−−− z  and the cubic object covers a volume of 5251 .. ≤≤ x , 650350 .. ≤≤ y , 
... 250250 ≤≤≤≤≤≤≤≤−−−− z  The density of the cubic object is half that of water. The water elevation (in y 

direction) is 0.75. A single hawser is attached at one end to the ground at point 
 0.0) 0.0, (0.0,A  and at the other end to point  0.0) 0.35, (1.5, B  located on the object. The density of 

the cable is 1.5 times the density of water. This is a relatively light cable. Since the cable remains 
completely under water, the effective density of the cable is half of the water (due to buoyancy 
forces). The nondimensional Young’s modulus of elasticity and the cross-section area of the 
cable are 1000 and 0.001, respectively.  
 The simulations are carried out using two finite element meshes. The coarse mesh has 
199,666 nodes and 1,214,076 tetrahedral elements. The fine mesh is obtained by simply 
subdividing each element of the coarse mesh into 8 elements. The cable is modeled using both  
Equation (8) (nonlinear) and Equation (13) (linear). Here we present 4 solutions labeled as 
Nonlinear-Coarse for coarse mesh using Equation (8), Linear-Coarse, for coarse mesh using 
Equation (13), Nonlinear-Fine for fine mesh using Equation (8) and Linear-Fine for fine mesh 
using Equation (13). For the nonlinear model, the cable is discretized using 20 elements. 
 Initially, we assume that the hawser is stress-free and completely straight, connected from 
point A to point B. As the cubic object rises to the free-surface of water, tensional force is 
generated in the cable, which causes the floating object to move toward left (-x direction) and 
slightly rotate counterclockwise. The simulations are carried out on the Cray T3E with 64 
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processors. For both meshes, the time step is 0.005 and the total number of time steps is 400. In 
the coarse mesh simulations, the number of nonlinear iterations per time step is 4 and the Krylov 
subspace in the GMRES is 40. In the fine mesh simulations, 5 nonlinear iterations are performed 
at each time step and the Krylov subspace in the GMRES is set to 50. 
 Figure 1 shows the position of the cable at times equal to 0.5 and 1.0. In this figure, the 
graphs on the left and right sides correspond to coarse mesh and fine mesh, respectively. The 
difference between the solutions obtained using both meshes is small. From these graphs, we can 
also see that the linear and nonlinear models for the cables result in almost identical solutions. 
However, the differences between the solutions of these two models can be seen in Figure 2. In 
this figure, the tensional forces for all four solutions are plotted versus time. As we can see, the 
difference between the linear and nonlinear models can be as high as 15% in tensional forces. 
Also, the solutions for the nonlinear cable model show two pull-relax scenarios whereas the 
linear model experience only one. Figure 3 shows the cross-section of the solution at z = 0.0 and 
for times at 0.1 and 2.1 (top and bottom). Here, the color shows the water and air (green for air 
and red for water) for the Nonlinear-Fine solution. In this figure, we can clearly see that the 
water is still drifting off of the floating object into the tank. Our simulation model is capable of 
separating part of the water and re-merging it. Since the set of solutions using the coarse and fine 
meshes for two different cases (linear and nonlinear models) are very similar, we can conclude 
that the simulation results are reasonably accurate. 



���

���
������������+��
���������������������������������������������������������������������

 

  

 
Figure 1. The graphs show the position of the cable at time equal to 0.5 and 1.0. In this figure, the graphs on the left 

correspond to the solution obtained using the coarse mesh and the graphs on the right correspond to the solution 
obtained using the fine mesh. 
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Figure 2. The tensional forces for all four solutions versus time. 

 
 
 

 

 

 

 

 

 

 

 

Figure 3. Figure shows the cross section from the computational domain at z = 0.0 and for times at 0.1 (top) and 2.1 
(bottom). Here, the color shows the water (red) and air (green) for the Nonlinear-Fine solution. 
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5 CONCLUDING REMARKS 
 We incorporated two mathematical models for cables into our free-surface flow solver with 
moving mesh capability. The new free-surface flow solver is capable of simulating mooring 
forces on floating objects.  In our approach, the cables act as constrain for the six degrees of 
freedom nonlinear rigid body dynamics (6DOF). The solutions of the Navier-Stokes equations 
for two incompressible fluids, the transient scalar equation governing the motion of the interface, 
the linear elasticity equations for mesh-moving, the linear and nonlinear equations for cables, 
and the equations for 6DOF are  obtained iteratively at every time step. The numerical example 
included 3D simulations of floating object constrained with a light-weight cable.  
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