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Abstract. The boundary element method applied to Reissner’s theory for elastoplastic layered 
plate bending analysis is considered. As the plate is layered, the plasticity progress can be 
evaluated along the plate thickness. Considering the integral equations of the problem and a 
local coordinate system, the stresses and strains at the mid surface of each layer are obtained. 
Performing integrations along all layers, the bending moments and shear forces are obtained for 
points situated at the mid surface of the plate.  It is assumed that the plastic strains are only due 
to bending. In each layer, the value of the yield stress for the mid surface is considered for all 
points located along its thickness.  The integral equation is discretized using the boundary 
element method. An incremental-iterative algorithm for solving the system of nonlinear equations 
is used. Increments in stresses and strains are calculated in each layer. Some applications were 
solved and compared with other numerical and analytical results. 
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1    INTRODUCTION 
      Recently, due to a large research effort, great advances have been obtained in the development 
of the boundary element method (BEM) to allow the analysis of several kinds of problems, such as 
bending of Reissner´s plates1, 2 and elastoplastic analysis3-6. 
      The aim is to get a formulation with Reissner´s theory for the analysis of multilayered 
elastoplastic plate, as an extension of previous works5, 6. In layered plates, the plasticity progress 
can be evaluated along the plate thickness. The layers are assumed to have isotropic and 
homogeneous material, to be perfectly joined and to have constant thickness. The yield stress is 
considered independently in each layer. The usual procedures employed in the boundary element 
method7 are used in the numerical implementation and an incremental iterative algorithm is 
presented to solve the elastoplastic problem. 
      Reissner´s plate theory8 allows for transverse shear effects and therefore, it holds for thin and 
thick plates.  
      The Cartesian tensor notation is used, in which Greek indices are denotated by subscripts 1,2 
and Latin ones by 1,2,3.  The thickness h of the plate is constant and the distributed load q per unit 
area is known. Cartesian plane  (x1, x2) is defined in the plate undeformed mid surface and x3 is the 
global coordinate along the plate thickness. 

2     BASIC DEFINITIONS 

The bending and transverse shear strains  and , respectively, defined for plate mid 
surface, are 

1
2

( , , )                                                        (1) 

)( ,                                                            (2) 

where  and  are the rotations and displacement, respectively, both defined for plate mid 
surface.  The bending and shear strains defined for points situated through the thickness are:  

3x                                                                 (3) 

                                                                    (4) 

For simplicity of notation,  and  will be written simply as ui. The load conditions of the 
plate are considered as 33 =  ± q/2 and 3 = 0 to x3 = ± h/2, the normal stress 33 are considered 
negligible.   

Tractions are defined by: 

p M n                                                     (5) 

p Q n3                                                       (6) 

in which, n  are direction cosines of the outward  normal to the plate boundary.  
The following boundary conditions are considered: 
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 u     at                                                     (7) ui i u

pi pi

p

p

   at                                                    (8) p

so that , where  is the total boundary. u

 One can define: 
e                                                          (9) 

e                                                                (10) 

as bending and shear strains, respectively, where (.e) denote the elastic part and (.p) the plastic one.   
The equilibrium equations are: 

M Q, 0                                                      (11) 

Q q, 0                                                        (12) 

The moments and shear forces are given by:  

pMqDM 2)1(1
22

2
)1(                  (13) 

2
)1( 2DQ                                               (14) 

in which denote the plastic moment components, so that:  M p

M
Dp p( )1

2
2

2
1

p                                     (15) 

In equations (13) to (15),  is the Kronecker delta,  is Poisson's ratio,  is a constant 

defined as 10
h

, D is the bending rigidity defined as 2

3

)1(12
Eh , E is Young's modulus. 

3     MULTILAYERED PLATE ASSUMPTIONS 

   The co-ordinate system, notation and geometry for layered plates are shown in Figure 1. The 
symbol k denotes the number of a layer, which assumes integer values and starts from the plate 
bottom, and N denotes the number of layers. The plate mid surface defines the domain  and  
represents the boundary of that region. The global co-ordinate along the thickness h is represented 
by x3 and x3k denotes the local co-ordinate along the k-layer thickness hk, defined by 

, in which  denotes the distance of the mid surface of the k-layer from the (xx x xk3 3
0
k3 x k3

0
1, x2) 
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plane. Then, the moments and shear forces are obtained as sums of integrals calculated for each 
layer: 

M
h

h

k

N

k

k

3 32

2

1 /

/
x dx

dx3

                                          (16) 

Q
h

h

k

N

k

k

32

2

1 /

/
                                              (17) 

 

Figure 1: Geometry and notation for multilayered plates. 

4  INTEGRAL EQUATIONS 

The integral equation for displacements in elastoplastic analysis of plate bending, where initial 
plastic moments are considered, is expressed by5, 6: 

C u P x u x d x U x p x d xij j ij j ij j( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )* *  

U x U x q x d x x M x di i i
p

3 21
*

,
* *( , )

( )
( , ) ( ) ( ) ( , ) ( ) ( )x       (18) 

In this expression, the second term of the left hand side is understood as a Cauchy principal 
value integral;  and x are source point and field point, respectively; Cij ( ) is equal to 1

2 ij  for 
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points  in a smooth boundary and equal to  for internal points; and the plastic moment  is 
written as: 

i j

k

2/

2/
[

u xj (

M p

( ,

Vi
*

x d( )

x d)

( )x

x d( )

d) (

N

k

h

h k
p k dxxM

1
33]                                                        (19) 

The expressions forU and were presented in Refs. [1,2] and for  in Refs. [5,6]. *
ij

*
ijP *

i

 For a constant load q, the transformation of the domain integral in expression (18) into a 
boundary integral yields:  

C u P x d x U x p x d xij j ij ij j( ) ( ) ( , ) ) ( ) ( , ) ( ) ( )* *  

q V x U x n x d x x M x d xi i i
p

,
*

,
* *( , )

( )
) ( ) ( ) ( , ) ( ) ( )

1 2       (20) 

where V  are solutions of the equation  and the expressions for V were presented in  
Refs. [1,2].  The expression (20) represents three integral equations, two of them for rotations  (i = 

 = 1, 2) and the third for deflection  (i = 3). 

i
* 2

3Ui
*

i ,
*

The expressions for moments and shear forces at an internal point  are written as5, 6: 

M U x p x P x u x d xk k k k( ) ( , ) ( ) ( , ) ( ) ( )* *
 

q W x* ( , ( )
( )1 2 q  

* ( , ) ( ) ( ) ( ) ( ) ( )x M x d M x M xp p1
2

2 1 1 3         (21) p

and 

Q U x p x P x u x d xk k k k( ) ( , ) ( ) ( , ) ( ) ( )* *

3 3
 

q W x x x M x d xp
3 3
* *( , ) ( , ) ( ) ( )                         (22) 

The expressions of the U P  were presented in Refs. [1,2] and  in Refs. [5,6]. Wijk ijk i
* *, , *

i
*

5     CONSTITUTIVE EQUATIONS 

The following yield stress function is considered for elastoplastic material: 
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( , ) ( ) ( )k f k e 0 0                                 (23) 

where  the parameter k is a constant,   is initial yield stress under uniaxial tension and  is the 
effective stress, calculated from von Mises and Tresca yield criteria.  

0 e

The stress increment and the elastoplastic tensor are written, respectively, as 

d C d
x dq

h
x
h

C a aep 3 3
2

2 1
3

2 1
( ) '

    (24) 

where C  is the isotropic tensor of elastic constants. 

C C C a a Cep 1
'

                                    (25) 

By following an initial stress procedure, it is first considered an imaginary elastic problem. In 
this case, 

d C d
x

h
x
h

dqe 3 3
2

2 1
3

2
( )

                    (26) 

and the initial stress increment will be computed as 

d d C a a de 1
'

e                                  (27) 

so that 

d d dp e                                                (28) 

and 

d C a a dp 1
'

e                                         (30) 

The entire transverse section of a layer is considered to become plastic when the effective 
stress reaches the yield stress at the point of mid surface of this layer. 

6     BOUNDARY ELEMENTS  
Quadratic boundary elements and constant triangular internal cells will be employed. This 

cells are necessary only in regions of the domain in which plastic strains are expected. Then, 
equation (20) is applied to all boundary nodes in discretized form and equations (21) and (22) are 
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written for all moment internal points, also in discretized form. In matrix form, they become, 
respectively,   

HU GP B TM p                                                          (31) 

M G'P H'U (W' V' ) (T' E' )M p                                        (32) 

Q G''P H''U W'' T''M p                                               (33) 

where the matrices G', G", H' and H" and the vectors W' and  W" contain the  boundary 
integrals  related to the fundamental solution; V' contains the free part related to the transverse 
load; T' and  T" contain the domain integrals that multiply the plastic moments. 
Now, applying a procedure similar to that employed in Refs. [3-6], the following expressions are 
obtained:  

y RM mp                                                (34) 

M S'M ne p '                                             (35) 

Q S''M n''p                                            (36) 

where: 

R A T1                                                (37) 

m A f1                                                (38) 

S' T A'R*                                             (39) 

and  f,  f' e  f" are vectors that contain prescribed values.   

7     SOLUTION PROCEDURE  

The algorithm used to solve the elastoplastic problem in layered approach is described in what 
follows9. 

The incremental process starts with the reduction of the maximum equivalent stress  
evaluated at internal cell points to the initial yield stress 

max
e

0. An initial load factor is therefore 
computed as: 

0
0

e
max                                                             (40) 

The next values of the load factor are calculated as: 

i i 1 i                                                        (41) 
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where  is defined for the first yielding by i

i i 0                                                          (42) 

and i is a given percentage. 
For each i,  the increment of the  initial stress is iteratively computed by the following 

iterative incremental procedure: 
i- Compute the increment of elastic moment by:  

                                                               (43) M S Me p
i' n

p

for the first iteration, or by the expression:  

M S Me '                                                    (44) 

in the following iterations. 
ii- Compute the increment of the elastic stress for mid surface points of each layer by:  

e
eM

h
x

12
3 3                                                    (45) 

iii- Compute the increment of the real stress for mid surface points of each layer by: 

e C a a
1
'

e

p

x dx

p

                                    (46) 

iv- Verify the convergence, comparing  calculated with its accumulated value obtained from 
the load increment, to conclude if it can be neglected. 

e
p

v- Compute the increment of initial stress for mid surface points of each layer by: 

p e                                                         (47) 

vi- Accumulate the values of initial and real stresses for mid surface points of each layer by: 
p p                                                           (48) 

                                                          (49) 

vii- Compute the increments of residual moment by:  

M p p

h

h

k

N

k

k [ ]
/

/

3 32

2

1
                                             (50) 

viii- Compute the increments of real moment by:  

M M Me                                                   (51) 



���	

������#��
&�����������,��-�
�$�����������������������������������������������������������������

ix- Continue with the next point, restarting the process from item (ii) until all points have been 
considered. 
x- Restarting new iteration with item (i). 

8     NUMERICAL RESULTS 

We solve two numerical examples and compare our results with those available in the 
literature.  

 Simply Supported Square Plate Under Uniform Loading: As shown in Figure 2, it is considered a 
square plate of tickness h=0.01, simply supported, under uniform loading q. Von Mises yield 
criterion and plastic ideally material  (H'=0) are considered in the numerical analysis. The 
following material properties are used:  =0.3; E=10.92 and 0=1,600. Due to symmetry, only a 
quarter of the plate is discretized. 

Figure 2: Square plate. Boundary elements and internal cells. 

The results obtained with layered approach for that plate are shown in the Figure 3, in which 
the load displacement curves are presented, corresponding to the point situated at the center of the 
plate. The results presented for the same problem in Ref.[5] using the BEM with nonlayered 
approach and in Ref. [10] using the finite element method (FEM) are also shown in Figure 3.   

Rectangular beam: In this example, it is considered a simply supported rectangular beam under 
uniform loading with the following characteristics: length l=3,000mm, width w=150mm and 
thickness h=900mm. The discretization is shown in Figure 4. The material parameters are: H'= 0; 

 =0.3;  E=210kN/mm2 and 0=0.25kN/mm2. 
The results are presented in Figure 5, and the value 4.46mm was obtained.The analytical result 

obtained for the point located at the center of the mid surface using Timoshenko’s theory11, which 
considers the effects of transverse shear strains, is 4.48mm. 
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9     CONCLUSIONS 
     An application of the boundary element method to the analysis of multilayered elastoplastic 

plates is presented in this work. The formulation utilizes Reissner´s plate bending theory, which 
takes into account transverse shear deformation. The solution procedure considers the stresses for 
mid surface points of each layer. The layered approach allows the plasticity progress to be 
evaluated through the thickness. It was verified that results are in good agreement with other 
numerical and analytical ones. 

              

Figure 3: Square plate. Load displacement curves. 

               
Figure 4: Rectangular beam. Boundary elements and internal cells. 
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Figure 5: Rectangular beam. Load displacement curves. 
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