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Abstract. Two new error estimators for the BEM in 2-D potential problems were recently
presented by the authors. This work extends these two error estimators for 2-D elasto-
statics problems. The first approach involves a local error estimator based on a gradient
recovery procedure in which the error function is based on differences between smoothed
and non-smoothed rates of change of boundary variables in the local tangential direction.
The second approach is associated with the external problem formulation and gives both
local and global measures of the error, depending on a choice of the external evaluation
point. These approaches are post-processing procedures. Both estimators show consistency
with mesh refinement and give similar qualitative results. The error estimator using the
gradient recovery approach presents a more general characteristic as its formulation does
not rely on an “optimal” choice of an external parameter, such as in the case of the exter-
nal domain error estimator. Also, the external domain error estimator can be used only
for domains in which an exterior region exists.
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1 INTRODUCTION

This work extends two new error estimator approaches in boundary element methods
(BEM) for 2-D elastostatics problems. These error estimator approaches were recently
presented by the authors for 2-D potential problems.1 The extension of these error esti-
mators for a problem with a different integral formulation highlights their generality of
use.

Error estimators based on residuals and error norms, similar to the approaches available
in the finite element method (FEM), have been used for symmetric BEM formulations,
but the error estimators literature is scarce for the collocation BEM formulation. Reviews
for error estimation and adaptivity methods for BEM can be found in Liapis2 and Kita
and Kamiya3.4

The two local error estimator approaches presented in this work can be used for both
Galerkin and collocation BEM formulations. The first approach involves a gradient re-
covery procedure, wherein the smoothed or recovered functions are rates of change of the
boundary variables in the local tangential direction. The gradient recovery approach is
commonly used in the finite element method5 and considers the evaluation of the gradient
of the field variable in global coordinates, with continuous derivatives of this field variable
in fixed global directions. On the other hand, in the BEM the variables of interest are
written in local coordinates. The displacements are continuous throughout the boundary,
while the tractions and the tangential derivatives of the boundary variables may be dis-
continuous, such as at points where the boundary is not smooth or where the boundary
conditions are discontinuous.

The second error estimator approach is associated with an external problem formulation
and gives both a local and a global measure of the error depending on the external point
where the equation is applied. Denda6 presented an error estimator for elasticity based
on the strain energy in the exterior region. In the current work, the error estimator is
obtained using directly the error in the displacements and in the stresses obtained from the
exterior problem. The displacements and the stresses should vanish at points located in
the exterior of a closed domain. Nonzero values indicate errors. If the external evaluation
point is near the boundary, the influence of the nearby boundary elements in the error
estimate will be dominant, and the error information assumes a local characteristic. To
eliminate any influence of the choice of the global directions on the values of the stress
error estimates, the stresses at the exterior point are first combined into stress invariants,
the mean stress and the octahedral stress, before any error information is evaluated.

In the present work, the two estimates are computed for two 2-D elastostatics problems,
of which one contains a singularity. A comparison is made between global and local error
estimates. The error consistency with mesh refinement is also compared.
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2 THE GRADIENT RECOVERY FOR ELASTOSTATICS BEM

The concept of recovery of derivatives for error estimation originated with finite element
methods, in which error indicators were derived from derivatives of the computed finite
element solution. A procedure to smooth the gradient to compute these derivatives with
good accuracy is called gradient recovery.5 The derivatives are evaluated from a weighted
average of element derivatives surrounding a node. The weighting factors are the element
areas.

This post-processing approach to estimate error from gradient recovery was adapted
by the authors to 2-D potential BEM problems in Ref.1 An important feature in this
procedure when applied to FEM is that the derivatives of the field variables (displace-
ments) are taken with respect to a global coordinate system. Thus, not only are the
field variables continuous at the domain nodes, but also the smoothed gradient vectors
in a general elastostatics problem are continuous. On the other hand, when the gradient
recovery procedure is applied to BEM, the tangential and normal directions are written
in local coordinates at a boundary point, and discontinuities in the tangential derivatives
need to be allowed in both the original and the recovered tangential derivatives of the
density fields (boundary displacements and tractions).

To write a system of equations similar to the one obtained with the FEM procedure,
continuity would be required for the derivatives of the densities. The approach adopted
in Ref.1 and extended in this work is to introduce double nodes at all the discontinuous
points, such as the corner nodes on the boundary. Elements with zero length connect
these double nodes, so that no local or global contribution for the error from these ficti-
cious elements is incurred. The concept of double nodes to account for discontinuities in
the tractions when obtaining the boundary solution is well known in the BEM literature7

but is not used in this work. The double nodes introduced here originate from disconti-
nuities in the values of the tangential derivatives of the densities at corner nodes in the
post-processing algorithm to obtain the element errors and not from the original BEM
procedure to evaluate the boundary solution.

The basic boundary integral equation for the elastostatics problem,8 gives the displace-
ment uj(x) as a function of boundary integrals. This displacement-BIE, can be written,
for an homogeneous domain Ω as:

Cji(p)ui(p) =
∫

∂Ω
Ψji(p,Q)ti(Q)dS(Q)−

∫

∂Ω
Tψ

ji(p,Q)ui(Q)dS(Q) (1)

where Q ∈ ∂Ω. The functions Ψji and Tψ
ji are associated with fundamental solutions

of the Navier equation. The integrals in Eq. 1 provide a constraining equation for the
boundary variables when evaluated for p ∈ ∂Ω, which is called the collocation point.

Four different densities must be considered when writing a boundary integral equation
for 2-D elastostatics: the two components of the displacements, u1 = u and u2 = v, and
the two components of the tractions, t1 = SG and t2 = TAU . In this work, recovery of
the tangential derivatives of each density is made independently, so that separate element
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error information is obtained for each of the four boundary densities. In a later step,
the element residuals are combined into element errors that contain information from the
recovery of the tangential derivatives of all four densities.

In what follows, a boundary density is denoted by φ (φ = u, v, SG or TAU) and
its tangential derivative by ∂φ/∂s. The solution at any point inside the element (e)

is φ(e)(ξ) = �N� {φ}(e) =
∑m

i=1Ni(ξ)φ
(e)
i , where ξ is the intrinsic coordinate and m is

the number of element nodes corresponding to the polynomial interpolation being used.
Taking derivatives with respect to the intrinsic coordinate gives

(
dφ

ds

)(e)

=

(
dφ

dξ

)(e) (
dξ

ds

)(e)

, where

(
dφ

dξ

)(e)

=

⌊
dN

dξ

⌋
{φ}(e) (2)

and J(ξ, s) = (dξ/ds)(e) is the Jacobian of the transformation between the real element
(with coordinate s) and the standard element (with the intrinsic coordinate ξ).

These derivatives can be written with polynomial shape functions one degree higher as

(
dφ

ds

)(e)∗
= �N�

{
dφ

ds

}(e)∗
(3)

where {dφ/ds}(e)∗ is the set of nodal values of the corresponding derivatives, equivalent
in a local averaging sense, to the original ones, {dφ/ds}(e). The element equivalence
is enforced by requiring that both formulations for the derivatives give same element
integrals, defined by

I
(e)
φ =

∫

S(e)
{N}

(
dφ

ds

)(e)∗
ds =

∫

S(e)
{N}

(
dφ

dξ

)(e)

J(ξ, s)ds (4)

where the integration is performed on S(e), which is the element length in 2-D or the
element area in 3-D. If the element under integration is now written as ds = J(s, ξ)dξ,
where J(s, ξ) = ds/dξ = 1/J(ξ, s), all terms in the integrands are only functions of the
intrinsic variable ξ, and all element integrations are performed for ξ ∈ [−1, 1], for the
usual Lagrangian interpolating functions.

The element equations in Eq. 4 are then assembled for the entire boundary S, leading
to an expanded system of equations that includes the original elements and the new
zero-length elements at the double nodes.

A simple procedure is implemented in this work to account automatically for these new
zero-length elements when assembling the system of equations. The procedure consists of
three steps. In the first step, a test is performed at each node i, for discontinuities in the
tractions or in the normal unit vector between the elements that share the node. A corner
locator variable is set to a value of one wherever a corner is located or a discontinuity in
traction exists.
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The second step is to renumber the current nodes and elements to include the zero-
length elements at the located “corner” nodes. A new augmented connectivity matrix is
thus created relating node/element numbering, including the added zero-length elements.
With this procedure, single values for the tractions and for the tangential derivatives of
both the displacements and the tractions can be assigned to each node in the augmented
system. An assembled system of equations is thus obtained from which the vectors of
smoothed nodal derivatives {∂φ/∂s}(e) can be obtained in this augmented system. The
system matrix for the coefficients of the recovered or smoothed quantities is not singular
and admits an inverse after assembling all elements.

The third step is to evaluate the element errors still in the augmented system and
then renumber backwards the nodes/elements to their original numbering, by excluding
the zero-length elements, so that only the error information of the original elements is
retained.

The recovery of all four densities (φ = u, v, SG or TAU) is implemented in this work
so that error estimators are obtained separately from the smoothed tangential derivatives
of the displacements and of the tractions, and also a combined error estimator is obtained
when the individual contributions from the tangential derivatives of the various densities
are added. A scaling parameter is introduced so that the individual contributions are
scaled before being added.

Implementation of the tangential derivative recovery for linear elements

The gradient recovery procedure for the elastostatics problem follows directly from the
similar procedure for the potential problem as established in Ref.1 The recovery of the
derivatives of the potential and the flux in1 is substituted by the recovery of the derivatives
of the two components of the displacement, and of the two components of the tractions.

The procedure has two steps. In the first step all the element smoothed derivatives of
the displacements and of the tractions are obtained from the solution of the four separate
system of equations, assembled from the element equations for each density. In a second
step an element residual is defined for the non-zero length elements by combining the
residuals from the displacements and the tractions. Finally, the element error is obtained
from this residual.

The first step, consisting of the recovery of the tangential derivative for each density
(φ = u, v, SG or TAU), is now detailed. A standard linear element has two end nodes with
corresponding shape functions N1(ξ) = (1 − ξ)/2 and N2(ξ) = (1 + ξ)/2 for ξ ∈ [−1, 1].
The shape function derivatives are N ′

1(ξ) = −1/2 and N ′
2(ξ) = 1/2. The Jacobian for

this 1-D straight element is J(ξ, s) = ∂ξ/∂s = 2/L(e), where L(e) is the length of the
boundary element (e). The element of integration is dS(e) = (L(e)/2)dξ. The original
(non-smoothed) and the recovered (smoothed, denoted by ∗) tangential derivatives of the
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density are written for the element (e) as

(
∂φ

∂s

)(e)

(ξ) =

⌊
∂N

∂ξ

⌋
∂ξ

∂s
{φ}(e) =

2

L(e)
�N ′

1(ξ) N ′
2(ξ)�

{
φ

(e)
1

φ
(e)
2

}
(5)

(
∂φ

∂s

)(e)∗
(ξ) = �N1(ξ) N2(ξ)�

{∂φ1

∂s

(e)∗

∂φ2

∂s

(e)∗

}
(6)

so that the equivalence relation of Eq. 4 can be enforced. After substituting the shape
functions and performing the integrals, the element equivalence equation is obtained as

L(e)

3

[
2 1
1 2

] 



∂φ1

∂s

(e)∗

∂φ2

∂s

(e)∗



 =

[ −1 1
−1 1

] {
φ

(e)
1

φ
(e)
2

}
(7)

Now all element matrices given by Eq. 7 can be assembled for a particular mesh with
N elements. By solving the assembled system of equations, the vector of nodal values
for the smoothed tangential derivatives of the density {∂φ/∂s}(e)∗ are obtained. Because
the assembled matrices are sparse, special methods can be used to solve the assembled
system.9 The vector of element interpolations for the original non-zero elements is now
obtained from Eq. 3 as

(
∂φ

∂s
(ξ)

)(e)∗
= N1(ξ)

∂φ1

∂s

(e)∗
+N2(ξ)

∂φ2

∂s

(e)∗
(8)

where the index (e) is taken, so that only the interpolations for the non-zero elements are
retained. The residuals r2

φ(e) are now evaluated for each of these elements as the square
of the differences between the smoothed solution obtained in Eq. 8 and the original non-
smoothed solution obtained from Eq. 2.

r2φ(e)(ξ) =



(
∂φ

∂s
(ξ)

)(e)∗
−

(
∂φ

∂s
(ξ)

)(e)



2

(9)

The element errors Eφ(e) , the average error EφAV E
and the normalized element errors

E
φ

(e)
norm

are

Eφ(e) =
[∫ 1

−1
r2φ(e)(ξ)dξ

]1
2 L(e)

Ltotal
EφAV E

=
1

N

∑

(e)

Eφ(e) E
φ

(e)
norm

=
Eφ(e)

EφAV E

(10)

where Ltotal is the length of the entire boundary. The element errors Eφ(e) are weighted
by the relative element length to account for element sizes while evaluating the average
error EφAV E

. The average error is a measure of the global error and is used to obtain the
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normalized element errors E
φ

(e)
norm

. The normalized local error indicator could be used in

an adaptive mesh refinement procedure.
The above procedure is performed four times to obtain the smoothed tangential deriv-

atives of the various densities and the corresponding element residuals, leading to the
various individual contributions for the element errors. In this work, the tangential deriv-
atives of the displacements are multiplied by G (the shear modulus) to minimize possible
numerical inaccuracies involving small numbers. A more general local error estimator is
obtained when combining the individual contributions of the four densities. The non-
normalized element errors are combined by means of adding after scaling.

In this work, two separate scaling factors for the tangential derivatives of the displace-
ments (combined) and the tractions (combined) were constructed by evaluating average
values of these tangential derivatives in each non-zero length element and adding these
element contributions to the scaling factor, after weighting the element contribution by
the relative element length. Each element contribution to the scaling factor is an average
of the element tangential derivative of the density evaluated using the smoothed and the
non-smoothed variables. The element contribution to the scaling factor for the tangential
derivative of each density is obtained as follows.

SFφ(e) =

[(
dφ
ds

)(e)∗
AV E

]2

+
[(

dφ
ds

)(e)

AV E

]2

2

L(e)

Ltotal
(11)

where the element average using the smoothed variables is given by

(
dφ

ds

)(e)∗

AV E

=
⌊
1

2

1

2

⌋ {dφ1

ds

(e)∗

dφ2

ds

(e)∗

}
(12)

and the element average using the non-smoothed variables is given by

(
dφ

ds

)(e)

AV E

=
1

L(e)
�−1 1�

{
φ1

(e)

φ2
(e)

}
(13)

Separate scaling factors for the tangential derivative of the densities are obtained as

SFφ =
1

N


∑

(e)

SFφ(e)




1
2

(14)

for φ = u, v, SG and TAU . The scaling factor for the tangential derivatives of the dis-
placements (SFD) is obtained as an average of the separate scaling factors for u and
v: SFD = (SFu + SFv)/2. Similarly, the scaling factor for the tangential derivatives of
the tractions (SFT ) is obtained as an average of the separate scaling factors for SG and
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TAU : SFT = SFSG + SFTAU . The element error with combined contributions from the
tangential derivatives of both the displacements and the tractions is obtained as

E
(e)
GR:D+T =

E(e)
u + E(e)

v

SFD
+
E

(e)
SG + E

(e)
TAU

SFT
(15)

The obtained local error E
(e)
GR:D+T with combined scaled contributions of the tangential

displacement derivatives and the tractions is non-dimensional. The average error ED+TAV E

and the normalized element errors E
(e)
D+T norm

are obtained by replacing φ by D+T in the
second and third equations of Eq. 10.

3 THE EXTERNAL DOMAIN APPROACH FOR ELASTOSTATICS BEM

The external domain error estimator approach is based on the difference between two
equivalent formulations. The exact solution for one integral representation a problem
satisfies any other possible different integral representation of the same problem. When
a numerical solution is found for one formulation, this solution can be substituted into
the discretized form (with same discretization) of the other possible formulation. Because
numerical solutions are not exact, the identities in the discretized form of this second
formulation will not be satisfied. The difference is a measure of the discretization error
of both formulations.

The external domain approach uses the fact that, for a closed domain, the exterior
boundary integral representations for both the displacements and the stresses equal zero
in the elastostatics problem. Thus, any difference from zero can be related to the dis-
cretization error. Because fundamental solutions are functions of the distance between
source and field points, one representation in which the exterior point is very close to
the boundary might give a different error measure than the case in which the point is far
away from the boundary. If different exterior points are considered, several external for-
mulations may be obtained. The error measure is sensitive to the external point position
for non-trivial problems.

To implement the procedure, first a numerical solution at the boundary is obtained
for the discretized mesh using a collocation BEM formulation. This boundary solution is
then substituted into the discretized integral representations for the interior displacements
and stresses, and finally these displacements (u and v) and stresses (σx, σy and τxy) are
evaluated at an exterior point y(e) in a close vicinity to a boundary element (e). An
external error estimator for the total displacement (Ext : D) is constructed as

E
(e)
Ext:D =

[
u

(
y(e)

)2
+ v

(
y(e)

)2
]1/2

(16)

External error estimators can be defined from the stresses at the exterior point, as well.
To eliminate any influence of the choice of global directions on the values of the stress
error estimates, the stresses at the exterior point are combined into stress invariants to
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obtain error estimators. Two external errors estimators are adopted in this work: the
octahedral stress (Ext : T ) and the mean stress (Ext :M), given by

E
(e)
Ext:T =

√
2

3

[
σ2

x − σxσy + σ
2
y + 3τ 2

xy

]1/2
E

(e)
Ext:M = (σx + σy)/2 (17)

with σx, σy and τxy evaluated at the exterior point y(e). Naturally, if the numerical
boundary solution is exact, all external error estimators are zero.

The exterior evaluation point y(e) is located at a distance from the boundary (the
distance from the exterior point to the closest point on the boundary) that is a fraction
α of the size of the nearest boundary element (e). This distance is measured from the
element center in the normal direction to the element at this point. In this work, numerical
experiments are done with various values of α in order to evaluate the most appropriate
location for the external point y. The closer the external point to the boundary, the more
“local” the error information is. On the other hand, if the external point is too close to
the boundary, numerical errors may appear due to quasi-singularities.

The external domain error estimators can also be combined to obtain a more general
error estimator (Ext : D+T+M) with error information from both external displacements
and stresses. The individual contributions for element error are also scaled before adding,
with the scaling factors defined as the average boundary total displacement (v2 + v2)1/2

and total traction (SG2 + TAU2)1/2, respectively.

In Section 4, the element errors E
(e)
Ext for various values of α are compared. Comparisons

are also made between E
(e)
Ext and E

(e)
GR to show the consistency of the local information

given by these estimates with mesh refinement. We note that the external domain error
estimator can be used only for domains in which an exterior region exists. For example, if
using a traction-BIE without a multiregion approach for the case of a crack embedded in
an infinite elastic body, no exterior region could be defined in which the evaluation point
would be at a finite distance from the boundary. In this case, the external domain error
estimator could not be used, while the gradient recovery approach can always be used,
for closed or open boundaries, and for finite or infinite domains.

4 IMPLEMENTATION OF THE PROPOSED ERROR ESTIMATORS

Two numerical examples of elastostatics are performed to demonstrate the implementation
of the two proposed error estimators. The first problem involves a plate with a central
crack. Due to symmetry, one-quarter of the cracked plate is modeled. The crack tip
creates a discontinuity in the normal traction at the smooth point in the intersection
between the two different types of boundary conditions. When discretizing the boundary,
numerical errors are expected at the elements near this singular point, as the boundary
solution will not be able to reproduce exactly the singular traction on one side of the
crack tip.

The second problem involves an axisymmetric pressurized pipe with curved boundary
segments. Also, this problem presents two special features, due to the geometry and
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boundary conditions. The first feature is that in the boundary segments corresponding to
radial directions, only the tangential derivatives (which are, in this case, radial derivatives)
of the densities change. The second feature is that on the circular arcs of the pipe boundary
the exact tractions are constant, so their tangential derivatives are zero. The boundary
elements (linear elements, in this study) do not preserve the circular arcs, thus local errors
are expected on the approximate boundary.

All BEM results were obtained with the code SERBA presented in Paris and Cañas7

with 12-point Gaussian integration. This code uses linear elements, but the error estima-
tor procedures proposed in this work can be adapted to use any degree in the element
polynomial interpolants.

The two problems have the tangential traction TAU prescribed as equal to zero every-
where, thus this traction is not discontinuous. On the other hand, the normal traction
SG is discontinuous at all corners due to the discontinuity in the normal direction to
the adjacent elements. Also, a discontinuity in the normal traction exists at the singular
point (the crack tip) in the first problem. Local errors are expected in a vicinity of these
”corners“ as the numerical code evaluates the unknown discontinuous normal traction.

4.1 The cracked plate problem

This well known problem consists of a rectangular plate with a central crack. Due to the
symmetry in the geometry and in the boundary conditions, only one-quarter of the cracked
plate is modeled. Figure 1(a) shows the problem geometry and boundary conditions. The
elastic modulus is E = 2.1x106 units and Poisson’s ratio is ν = 0.25. A singularity in the
normal traction is created at the crack tip, point O in Fig. 1(a).

Four meshes are considered to compare the error estimators. Figure 1(b) shows the
initial coarse mesh with 78 elements. Knowing the existence of a singularity at the crack
tip, two types of mesh refinement are adopted. r−refinement is performed by rearranging
the nodal positions so that the mesh density increases on both sides of the boundary region
near the crack tip. This rearrangement is performed without changing the overall number
of nodes. Figure 2(a) shows the r−refined mesh with 78 elements. Mesh refinement
(h−refinement) is also performed (both for the original and r−refined meshes) by dividing
each element by two. The two meshes with 156 elements (original and r−refined) follow
the same idea and are not shown.

All element matrices given by Eq. 7 can be assembled for the various meshes. For all
cases, the number of elements in the expanded system of equations includes the original
elements plus four zero-length elements that were added at the boundary corners and
one zero-length element that was added at the crack tip, which is treated as a “corner”
because the normal traction is discontinuous at this singular point.

By solving the assembled system of equations, the vector of nodal values for the
smoothed tangential derivatives of the densities is obtained. The residuals are evalu-
ated using Eq. 9, and the element errors E

(e)
GR are obtained using Eq. 10 and compared

with the local element errors E
(e)
EXT , obtained using Eqs. 16 and 17.
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(a) (b)
Figure 1: Plate with a central crack. (a) One-quarter of the cracked plate is modeled. A singularity in
the normal traction is created at the crack tip (point O). (b) Coarse mesh (initial): 78 elements.

(a) (b)
Figure 2: Cracked plate problem. (a) Coarse mesh (r−refined): 78 elements. Small elements are concen-
trated near the crack tip. (b) Average (global) error estimators for the Gradient recovery (GR:D+T) pro-
cedure. Similar behavior (not shown) for the errors from the external domain approach (Ext: α = 0.25).
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Comparison of error estimators for the cracked plate problem

Several numerical results have been obtained for the gradient recovery approach. Recovery
of the tangential derivatives of the various densities is performed, and the individual
contributions for the error are combined, with scaling given by Eq. 15. Also, several
numerical results are obtained for the external domain error estimator, as the parameter
α is varied. In this work, five values of this parameter are tested: α = 0.01, 0.25, 0.5,
0.75 and 1.0. The average of the element errors for each case gives an estimate of global
error associated with a particular discretization. Also, this average is used to normalize
the element errors to facilitate their comparison.

Figure 2(b) shows the behavior of the average (global) error estimators using gradient
recovery (GR:D+T), for the various meshes tested. The behavior for the errors from
the external domain approach (Ext: α = 0.25) is similar and not shown. In all cases
the global error, as estimated by the average of the element errors, decreases with mesh
refinement, showing the consistency of the error estimators. We note in Fig. 2(b) that,
for this case, the decrease in average error significantly is greater when r−refining than
when h−refining the mesh of 78 elements. The error estimators were useful to compare
the efficiency of two different types of mesh refinement for this particular problem.

Two different stresses at the exterior evaluation point were defined in Section 3 as
estimators for the external domain approach. Figure 3(a) shows the average (global)
stress error estimators for the external domain (Ext) approach. This figure compares
the influence of the individual contributions of the octahedral stress error (T) and of the
mean stress error (M) on the total stress error (T+M) for various values of α. We note
from Fig. 3(a) that for α = 0.25, the contribution of the octahedral stress is dominant,
between 80% and 90% of the total stress error. If α = 0.25 is adopted, a simpler error
estimator for the external domain approach could be obtained with the evaluation of the
octahedral stress only, because the relative contribution of the mean stress to the total
error is small, in this case. However, if the contribution of the mean stress to the total
error is desired, then other values of α, say, between 0.25 and 0.75, can be considered for
a particular problem.

The external error estimators, after being normalized by their average, are now com-
pared for various distances from the exterior point to the boundary. Figure 3(b) shows
the influence of the position of the external point for the initial mesh with 78 elements.
The error results are plotted for various values of α. The horizontal axis of the various
plots corresponds to the s− coordinate of the middle of each element along the boundary,
starting from the origin at point B (see Fig. 1(a)). The coordinate of the crack tip O is
s = 51. The coordinates of the corner nodes B, C, D and A are s = 0 (and 60), 20, 30
and 50, respectively.

The high values of the error in the elements in a vicinity of the singular point O are
apparent for all values of α. The case of α = 0.01 represents an external point very
close to the boundary and apparently the numerical errors are mostly associated with the
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(a) (b)
Figure 3: Cracked plate problem: (a) Average (global) error estimators for the external domain (Ext)
approach. Influence of the individual contributions of the octahedral stress error (T) and of the mean
stress error (M) into the total stress error (T+M) for the various values of α. Plotted error results for
various meshes. (b) Influence of the position of the external point for the initial mesh with 78 elements.
Plotted error results for various values of α.

near-singularity of the integral equation evaluated at these points. As the distance from
the boundary increases, local information on the boundary error become apparent, with
the highest relative differences between element errors attained for α = 0.5. Error peaks
in the vicinity of the various corner nodes are also evident. As α continues to increase, the
element differences become smaller, the local information becoming attenuated. When α
increases, the information starts losing its local character.

The external error estimator is based on a combination of displacement and stress
errors. Figure 4(a) shows the influence of the individual contributions of displacement
only (Ext:D), octahedral stress only (Ext:T) and mean stress only (Ext:M) on the total
(Ext:D+T+M) error estimator. The initial mesh contained 78 elements, and α = 0.25.
Clearly, the contribution of the octahedral stress is dominant. The total error curve is
very close to the curve obtained with the octahedral stress. The relative dominance of
the octahedral stress over the mean stress, for α = 0.25, was already noted on Fig. 3(a)
for the global errors. But only the mean stress shows clearly the presence of corner nodes,
by presenting sudden changes in the error distribution at these corners. The choice of
a different value of α, say, between 0.25 and 0.75, will allow for this contribution of the
mean stress to be accounted for in the total external error.

Figure 4(b) shows the influence of the individual contributions of the displacements
u and v only (GR:u and GR:v) and of the tractions SG and TAU only (GR:SG and
GR:TAU) for the gradient recovery (GR:D+T) error estimator. The initial mesh con-
tained 78 elements. The error from the traction TAU only (GR:TAU) is zero everywhere
due to boundary conditions. On the side AB, both the individual contributions of the
non-prescribed displacement on OB (GR:u only) and of the non-prescribed normal trac-
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(a) (b)
Figure 4: Cracked plate problem: (a) Influence of the individual contributions of displacement
only (Ext:D), octahedral stress only (Ext:T) and mean stress only (Ext:M) for the external domain
(Ext:D+T+M) error estimator for the initial mesh with 78 elements. (b) Influence of the individual
contributions of displacements u and v only (GR:u and GR:v) and traction SG (GR:SG) for the Gradient
Recovery (GR:D+T) error estimator for the initial mesh with 78 elements. The error from the traction
TAU only (GR:TAU) is zero everywhere due to the boundary conditions. GR:TAU is not plotted herein.

tion on AO (GR:SG only) for the error estimator highlight the high errors in the region
near the singular point. The error from the displacement dominates on the elements
belonging to the side OB and the error from the traction dominates on the elements be-
longing to the side AO. On side DA, we note increasing values of the local error in both
the non-prescribed displacement (GR:v only) and in the non-prescribed normal traction
(GR:SG only) as point A is approached. The non-prescribed density that contains the
error information is different in each boundary region, depending on the boundary condi-
tions, and only the total error (GR:D+T) is able to recover the appropriate element error
information for all segments of the boundary. Also, due to high errors in the vicinity of
the singular point, corner errors are not apparent in this non-log plot.

Figure 5(a) presents a comparison between gradient recovery (GR:D+T) and external
(Ext:D+T+M, α = 0.25) error estimators for the initial mesh with 78 elements. As
expected, both error estimators indicate the same region about the singular point O as
having the highest values of error. The corner nodes are more apparent with the gradient
recovery than with the external error estimator. This behavior can be explained by the
choice of α = 0.25 for the external error estimator. As shown in Fig. 3(b), other choices,
such as α = 0.5, may allow for a better representation of these corner nodes with the
external error estimator.

Figure 5(b) shows the influence of mesh refinement for the gradient recovery error
estimator with displacements and tractions combined (GR:D+T). Similarly, Fig. 6(a)
shows the influence of mesh refinement for the external domain (Ext:D+T+M) error
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(a) (b)
Figure 5: Cracked plate problem: (a) Comparison between Gradient Recovery (GR:D+T) and Exter-
nal (Ext:D+T+M, α = 0.25) error estimators for the initial mesh with 78 elements. (b) Influence of
mesh refinement for the Gradient Recovery error estimator with displacements and tractions combined
(GR:D+T). h-refinement performed on initial mesh of 78 elements.

estimator with α = 0.25. In both cases, h−refinement is performed on the initial mesh
of 78 elements. These results are qualitatively comparable and consistent as the mesh is
refined.

Figure 6(b) shows the influence of r−refinement for the gradient recovery error estima-
tor with displacements and tractions combined (GR:D+T). Similarly, Fig. 7(a) shows the
influence of r−refinement for the external domain (Ext:D+T+M) error estimator with
α = 0.25. In both cases, the r−refinement is performed on the initial mesh of 78 elements
by concentrating small elements near the crack tip. Both figures show that the adopted
r−refinement procedure redistributes and equalizes errors. The general idea of equalizing
the errors on the entire boundary appears clearly in Figures 6(b) and 7(a), where the
errors in the vicinity of the crack tip are attenuated.

On the other hand, for the gradient recovery error estimator, the redistribution of the
errors shown in Fig. 6(b) leads to an equalization of the element errors on almost all the
boundary regions, except for the region near the crack tip, where the errors remain high.
The reason for this behavior is that as the elements near the crack tip become smaller,
the tangential derivatives become functions with increasingly high slopes, so that the
recovery procedure is accounting for increasingly large differences between smoothed and
non-smoothed quantities. The gradient recovery error estimator highlights the fact that
the error is becoming more localized near the crack tip. The error in the small near-crack-
tip element is not decreasing with mesh refinement. Changes other than mesh refinement
are needed for the local error near the crack tip to decrease. For example, by substituting
the standard Lagrangian near-crack-tip element by a special singular element, the local
error in this element is expected to become small.
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(a) (b)
Figure 6: Cracked plate problem: (a) Influence of mesh refinement for the external domain (Ext:D+T+M)
error estimator with α = 0.25. h-refinement performed on initial mesh of 78 elements. (b) Influence of
r−refinement for the Gradient Recovery error estimator with displacements and tractions combined
(GR:D+T). r−refinement performed on initial mesh of 78 elements by concentrating small elements near
the crack tip.

(a) (b)
Figure 7: (a) Cracked plate problem: Influence of r−refinement for the external domain (Ext:D+T+M)
error estimator with α = 0.25. r−refinement performed on initial mesh of 78 elements by concentrating
small elements near the crack tip. (b) Axisymmetric pressurized pipe. One-quarter of the pipe cross
section is modeled.
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4.2 The pipe problem

This example illustrates the use of the two error estimators for an axisymmetric pres-
surized pipe. Due to symmetry, only one-quarter of the pipe cross section is modeled.
Figure 7(b) shows the problem geometry and boundary conditions. The elastic modulus
is E = 3.0x107 units and Poisson’s ratio is ν = 0.3.

Several meshes were constructed to evaluate the error estimators for this problem.
Figure 8(a) shows the coarsest mesh with 48 elements (96 DOF). Finer meshes with 96
and 192 elements are obtained subsequently by dividing each element by two in each mesh
refinement step.

(a) (b)
Figure 8: Pipe problem. (a) Coarsest mesh: 48 elements. (b) Scaling factors for the Gradient Recovery
(GR:D+T) and for the external domain (Ext:D+T+M) error estimators. Individual contributions of the
displacements (u and v) only and of the tractions (SG and TAU) only are scaled before combined to give
the GR:D+T error estimator. Similarly, individual contributions of the displacements (D) only and of the
invariant stresses (T and M) only are scaled before combined to give the Ext:D+T+M error estimator.

Comparison of the error estimators results for the pipe problem

After the boundary solution is obtained using the BEM code, the local element error is
calculated using both the gradient recovery and the external domain approaches. Several
numerical results for element error are obtained for the gradient recovery approach, with
scaling given by Eq. 15. Figure 8(b) shows the scaling factors for the gradient recovery
(GR:D+T) and for the external domain (Ext:D+T+M) error estimators. Individual con-
tributions of the displacements (u and v) only and of the tractions (SG and TAU) only
are scaled before combining to give the GR:D+T error estimator. Similarly, individual
contributions of the displacements (D) only and of the invariant stresses (T and M) only
are scaled before combining to give the Ext:D+T+M error estimator.
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Also, several numerical results are obtained for the external domain error estimator, as
the parameter α, which gives the distance from the external point to the nearest boundary
element, assumes the values: α = 0.01, 0.25, 0.5, 0.75 and 1.0.

Figure 9(a) shows the average (global) error estimators for the gradient recovery (GR)
procedure and for the external domain (Ext) approach for various values of α. The average
of the element errors for each case gives an estimate of the global error associated with
a particular discretization. Also, this average is used to normalize the element errors for
their comparison. In almost all cases, the global error, as estimated by the average of the
element errors, decreases with mesh refinement, i.e., with increasing number of degrees
of freedom (DOF), showing the consistency of the error estimators. The only exception
is the external error Ext:D+T+M for α = 0.01 where the quasi-singularities due to the
location of the external point very near the boundary play a major role in the average
error behavior, which is practically constant with mesh refinement.

(a) (b)
Figure 9: Pipe problem: (a) Average (global) error estimators for the Gradient recovery (GR) procedure
and for the external domain (Ext) approach for various values of α. (b) Average (global) error estimators
for the external domain (Ext) approach. Influence of the individual contributions of the octahedral stress
error (T) and of the mean stress error (M) into the total stress error (T+M) for the various values of α.
Plotted error results for various meshes.

Figure 9(b) shows the average (global) error estimators for the external domain (Ext)
approach. This figure compares the influence of the individual contributions of the octa-
hedral stress error (T) and of the mean stress error (M) into the total stress error (T+M)
for the various values of α. The error results were plotted for the various meshes. Similar
to the crack problem, the contribution of the octahedral stress to the total stress error is
clearly dominant for α = 0.25.

Local normalized external error estimators have been compared for various distances
from the exterior point to the boundary. Figure 10(a) illustrates the influence of the
position of the external point for the 48-element mesh. The error results were plotted for
the various values of α. The origin of the s− coordinate is point B (see Fig. 7(b)). The
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coordinates of the corner nodes B, C, D and A are s = 0 (and 6.71), 1.0, 4.14 and 5.14,
respectively.

(a) (b)
Figure 10: Pipe problem: (a) Influence of the position of the external point for the 48-element mesh.
Plotted error results for various values of α. Insert shows errors in region about corner A. (b) Influence
of the individual contributions of displacement only (Ext:D), octahedral stress only (Ext:T) and mean
stress only (Ext:M) for the external domain (Ext:D+T+M) error estimator for the 48-element mesh.

The error results for α = 0.01 present the least variation of all cases. This case
represents an external point very near the boundary, with numerical errors primarily
associated with near-singularities of the integral equation. When the value of α increases
from 0.01 to 0.5, the relative differences in the element errors increase, so that qualitative
comparisons for the local error can be made. But when α continues to increase, the local
information becomes attenuated. This phenomenon can be clearly seen, for example, for
the elements near corner nodes. The inset in Fig. 10(a) shows the errors in a region about
corner node A. When α increases, the information on the error begins to lose its local
character.

Figure 10(b) shows the influence of the individual contributions of displacement only
(Ext:D), octahedral stress only (Ext:T) and mean stress only (Ext:M) for the external
domain (Ext:D+T+M) error estimator for the 48-element mesh. Similar to the crack
problem, the contribution of the mean stress clearly identifies the error at the corner
nodes.

Figure 11(a) shows the influence of the individual contributions of the displacements u
and v only (GR:u and GR:v) and of the tractions SG and TAU only (GR:SG and GR:TAU)
for the gradient recovery (GR:D+T) error estimator for the 48-element mesh. The error
from the traction TAU only (GR:TAU) is zero everywhere due to the boundary conditions.
Similar to the crack problem, the individual contributions were able to identify errors in
regions where the respective density was not prescribed. Only the total error (GR:D+T)
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(a) (b)
Figure 11: Pipe problem: (a) Influence of the individual contributions of displacements u and v only
(GR:u and GR:v) and tractions SG and TAU only (GR:SG and GR:TAU) for the Gradient Recovery
(GR:D+T) error estimator for the 48-element mesh. The error from the traction TAU only (GR:TAU) is
zero everywhere due to the boundary conditions. (b) Comparison between Gradient Recovery (GR:D+T)
and External (Ext:D+T+M, α = 0.25) error estimators for the 48-element mesh.

is able to show consistent error information in all boundary segments, regardless of the
boundary conditions.

Figure 11(b) presents a comparison between gradient recovery (GR:D+T) and external
(Ext:D+T+M, α = 0.25) error estimators for the 48-element mesh. Both error estimators
exhibit similar qualitative behavior in the vicinity of the corner nodes. Similar to the crack
problem, the large external errors at corner nodes are more attenuated for α = 0.25 than,
for example, for α = 0.5, as shown in Fig. 10(a). This result can be explained from the
fact that the contribution of the mean stress to the external error is less important for
α = 0.25, as shown in Fig. 9(b), and the mean stress was shown in Fig. 10(b) to be the
error component that better indicates the external error at the corner nodes.

Figure 12(a) shows the influence of mesh refinement for the gradient recovery error
estimator with displacements and tractions combined (GR:D+T). Similarly, Fig. 12(b)
shows the influence of mesh refinement for the external domain (Ext:D+T+M) error esti-
mator with α = 0.25. All these error results are qualitatively comparable and consistent
with mesh refinement.

5 CONCLUSIONS

Error estimators based on gradient recovery and external solution show consistency with
mesh refinement and give similar qualitative results. The error estimators were also proven
to be useful to compare the efficiency of two different types of mesh refinement (r− and
h−refinement) for a particular problem.

The error estimator using the gradient recovery approach presents a more general
characteristic as this formulation does not rely on an “optimal” choice of an external
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(a) (b)
Figure 12: Pipe problem: (a) Influence of mesh refinement for the Gradient Recovery error estimator
with displacements and tractions combined (GR:D+T). (b) Influence of mesh refinement for the external
domain (Ext:D+T+M) error estimator with α = 0.25.

parameter, such as in the case of the external domain error estimator. Also, the external
domain error estimator can be used only for domains in which an exterior region exists,
while the gradient recovery approach can be used on a broader range of elastostatics
problems.

The external error results for α = 0.01 present the least variation of all cases, which
can be explained by the fact that the element errors are dominated by the near-singular
behavior of the integrals, and not by the discretization error. As the distance from
the boundary increases, local information becomes more apparent. The highest relative
differences between element errors and the highest error peaks in the vicinity of the various
corner nodes were attained for α = 0.5. When α increases further, the information begins
to lose its local character.

The relative contributions of the octahedral and mean stresses to the total external
error is dependent on the choice of the external point. The octahedral stress is dominant
over the mean stress for α = 0.25. Also, the external errors at the corner nodes are more
attenuated for α = 0.25 than, for example, for α = 0.5. The mean stress is the error
component that better indicates the external error at the corner nodes. Choices of values
of α between 0.25 and 0.75 allow for the contribution of the mean stress to be accounted
for adequately in the total external error.

The individual contributions to the gradient recovery error estimator were able to
identify errors only in the regions were the respective density was not prescribed. Only
the total error (GR:D+T) was able to report consistent error information on all boundary
segments, regardless of the boundary conditions.

The gradient recovery and the external error estimators exhibit similar behavior in
the vicinity of the corner nodes, although the various corner nodes were found to be
more evident with the gradient recovery approach than with the external error estimator.
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Importantly, both error estimators indicate the same region about the singular point as
having the highest values for the normalized error.

The redistribution of the error with r−refinement leads to an equalization of the el-
ement errors on almost all the boundary regions, except for the region near the crack
tip, where high errors remained. The gradient recovery error estimator highlights the
fact that as the error becomes more localized near the crack tip, the error in the small
near-crack-tip element does not decrease, even with the mesh refinement.

The replacement of the standard near-crack-tip element by a special singular element
is expected to improve these local error results.

Future work on this topic could include the extension of the two error estimators for
higher order elements, for 2-D potential and elastostatics problems.
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