
����

���������	�
�����
���������������
�����

������������������������������������� �
�����!����"

#�������� �$%&��������������''���%%��()()�()*�

ACCURATE COMPUTATIONS ON UNSTRUCTURE3D MESHES

Enrique Pardo

 Facultad de Ingeniería, Universidad de Mar del Plata, Argentina
e-mail: epardo@fi.mdp.edu.ar

Key words : meshless methods, blurred derivatives, unstructured meshes

Abstract: The need to perform computations on irregularly distributed nets of nodes arises in
many applications of solid and fluid computational mechanics. This is specially problematic
in three dimensions. Typically, the finite element method with tetrahedral elements is used for
such purpose. However, this poses a number of problems. On one hand some elements are
considerably distorted – with eventually some null-volume elements – leading to poor
solutions. Also, in this method only h-refinement is feasible so that solution improvement
demands to refine the mesh. In this work we describe a meshless method which we designate
as Functional Integral Method (FIM) based on the use of blurred derivatives, that allows to
overcome the above mentioned difficulties. The method only requires the connectivity of each
node given by first neighbors (Voronoi cells) for discretization yielding the same structure of
non-zeros as FEM with tetrahedral elements. The matrix is nevertheless non-symmetric so
that storage and solution of the linear system increases by a factor close to two. However,
results of several numerical simulations indicate that the error is systematically much smaller
than with FEM and it is rather insensitive to node irregularity so that relation cost-benefit is
finally enhanced substantially. Also, it allows to perform p-refinement in a trivial manner by
just adding more neighbors to the local cloud of each node thus increasing the order of
interpolation. In this way the error can be further reduced without re-meshing

.

����

���	�
���

1 INTRODUCTION

 The development of meshless method during the last decade were mainly fueled by the
need to overcome the difficulties posed by mesh generation (i.e. partitions of the domain) in
three dimensional problems. Some of the methods developed so far are the Diffuse Element1
Method and the Element Free Galerkin Method2 (which use MLS interpolation), hp-Clouds3,
Smooth Particle Hydrodynamics4, Reproducing Kernel Particle Methods5, Natural Element
Method6, Generalized Finite Differences7, etc. However, it is not yet clear that they are
generally advantageous over the robust and versatile finite element method. Even though
these methods do not require domain discretization into elements, this potentiality not always
leads to better performance. Some of these methods – specifically those based on weak
formulations – still require a partition of the domain for integration. Also, they are built upon
rather complex approximations which demand intensive computation and frequently lead to
poor conditioned matrixes. An alternative is to start from a strong formulation which does
note require integration over the domain so that a truly meshless method is obtained.
However, the precision of these methods is low although research continues to improve them.
 In any case, even if a meshless point method does not require a mesh it still requires to
specify, for each point (node), which are those linked to it that should be used to build the
local approximation. This set, whose construction is far from trivial will be termed the local
cloud. Very simple criterions – such as selecting the nodes of the cloud according to their
distances – lead to poor approximation. On the other extreme, there are well established
techniques such as Delauney triangulation which provide an adequate set of neighbors for
each node while at the same time discretize the domain into triangles. Hence, a crucial test for
a finite point method is to compare its performance with linear finite elements.
 Recently, it was shown that some linear problems – elliptic, parabolic and hyperbolic - can
be formulated in terms of functional integrals8-10 instead of the classical strong and weak
formulations, leading to novel methods which combine simplicity and good accuracy. The
most appealing feature of this method – apart from its good performance – is the fact that
unlike traditional formulations it does not require calculation of derivatives of any order of the
shape functions. It is shown that a very simple polynomial interpolation provides excelent
numerical results both in two and three space dimension. This is demonstrated by solving
Poisson equation on a number of irregular nets of nodes, where its performance is compared
with linear finite elements.

2 BLURRED DERIVATIVES

2.1 Definition and properties

 In this section we redefine the derivative operation in order to devise an adequate tool for
approximation of differential equations. It starts with a simple observation: the value of a
continuous function at a point can be evaluated as:

����

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

 xdxxxx fPf)(),(lim)(0

0
ε

ε
−= ∫

∞

∞−
→

 (1)

where the operator P0 is a Gaussian:

επ

ε
ε 2

2)(

0),(

xx

e
xxP

−
−

=− (2)

Equation (1) is a direct consequence of the definition of the Dirac delta function, which can
be expressed as the limit of the Gaussian (2). From what it follows that the derivatives of f(x)
can be computed as:

 xdxxxxdx
dx

xxd

dx

xd fPfPf
n

n

n

n

)(),lim)(
),(

lim
)((0

0

0

0
εε

εε
−=

−
= ∫∫

∞

∞−
→

∞

∞−
→

 (3)

The functions Pn in the right side of (3), which are the derivatives of P0 , can be obtained from

Rodrigues formula for Hermite polynomials12:)()1(
2

2

xHe
dx

ed nxn

n

xn
−

−

−= .

Hence, letting
ε

λ
xx −

= we have:

[])(),(
11

.)()()1(
)(),(

), 00
00

(εε
εε

λλλ
λ
λεε xxn

nn
nn

n

n

n

n

n
n HPHPPPP xx

dx

d

d

d

dx

xxd
xx −−

=

−−=

=−=− (4)

Where Hn(x) are Hermite polynomials. These are orthogonal polynomials with definite
parity:

 mndxxHxHe mnx ≠=−
∞

∞−
∫ 0)()(

2

 ;)()1()(xHxH nnn −= (5)

The first five polynomials are:
 1)(0 =xH ; xxH 2)(1 = ; 24)(22 −= xxH (6)

 xxxH 128)(33 −= ; 124816)(244 +−= xxxH
The functions Pn can be regarded as operators: after integration they transform a given
function, f(x), into a new one, 1

εf , which in the limit 0→ε yields the derivative of the
former one:

)()(
)(1

0

1 lim xx
x

ff
dx

df
εε →

=≡ (7)

 At this point it becomes convenient to introduce some notation and designations for further
reference. Hence, we will call Pn the n-th derivative kernel, and the transformed function

����

���	�
���

nfε the blurred derivative of order n. From the preceding equations it follows – and this can
be checked by direct computation – that derivative kernels of higher order can be obtained
from lower order ones through convolution:

 111),(,(),() dxPPP xxxxxx εεε βαβα −−− ∫
∞

∞−

+ = (8)

The support of the basic operator P0 defined in formula (2) is infinite. For this reason it seems
inadequate to tackle numerical solution of differential equations on finite bodies. But it will
be shown in section 5 that the size of parameter ε which gives the best numerical results is
small, so that the Gaussian becomes negligible beyond the first neighbor to a given node.
However, it is clear from the definitions (1) - (3) that many other functions can be used to
generate families of blurred derivative kernels. In particular, functions of local support seem
more appropriate. The simplest choice is the use of a truncated Gaussian as the basic operator
P0 but it has a drawback: its derivatives include a term accounting for the sudden change at
the boundary of the support. To avoid it the domain of integration of formulas (1) and (3)
should reduce to the support of these functions. An alternative are functions of the form:

 ()

 ≤−=

elsewhere

xifx
xP

n

0

11
)(

2
0 (9)

The exponent “n” can be chosen so that derivatives up to the desired order are zero on the
boundary of the support. In particular, the derivative of order “n” satisfies Rodrigues formula
for Legendre polynomials, Pn(x), namely:

()

n

nn

nn dx

xd

n
xP

1

!2

1
)(

2 −
= (10)

But in this work we will use the Gaussian kernels defined above. They are easy to handle and
have a number of properties that allow some clean demonstrations that will be very useful for
our purposes. Also, they can be accepted on interpretational grounds as discussed below.

2.2 Connection with SPH

 Equations (1) and (3) are the starting point of the Smoothed Particle Hydrodynamics (SPH)
method4. Hence, it appears that SPH and the method to be described in this paper (which is
designated as FIM for reasons that will become clear in the sequel) are closely related.
However, it is important to emphasize that the relationship between both methods lies entirely
in the point of departure: the way in which these equations are used and the final discrete
equations are completely different. Briefly, in SPH equation (1) is used around each node to
approximate locally the unknown function whose computational estimate is sought. This is
fed into the governing differential equation yielding a discrete equation for each node. In the
present paper, on the contrary, the equations of the preceding sub-section will be used to re-
express the differential equation as an equivalent functional integral. To approximate the
unknown field locally around each node we will use simple polynomials.

����

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

 In the applications of the blurred derivative to numerical methods, to be described in the
next section, we will need a few results and properties of the blurred derivative which are
listed below.

2.3 Blurred derivative of a step function

 Let U(x) be a step function: U(x) = a if x<0, U(x) = b if x>0. The blurred derivative is

 xdxxbxdxxaxU PP),(),()(1

0

1
0

1 εεε −+−= ∫∫
∞

∞−

 (11)

But

xd

xxdP

dx

xxdP
xxP

),(),(
),(

00
1 εε

ε −−=
−

=− (12)

Hence:

επ

εε
ε

ε

2

2

)(),(),()(001

x

e
abxbPxaPxU

−

−=+−= (13)

So that in the limit:

)()()(lim)(1

0

1 xabxUxU δεε
−==

→
 (14)

 This first simple example shows why we adopted the designation “blurred derivative”: it
smears out discontinuities of derivatives for finite ε . This is a desirable property for
numerical solution of differential equations, which allows the use of shape functions of low
degree of continuity.

2.4 Blurred derivative of a piece-wise linear function

 Let L(x) = ax if x<0, L(x) = bx if x>0. Its blurred derivate is:

xdxxPbxxdxxPaxxd
xx

xxPbxd
xx

xxPa

xdxxxPbxdxxxPaxL

),().,(
)(

),(
)(

),(

),(),()(

1

0

1
0

1
(

0

1
0

1

0

1
0

1

εε
ε

εε
ε

εε

εεε

−+−+−−+−−

=−+−=

∫∫∫∫

∫∫
∞

∞−

∞

∞−

∞

∞− (15)

 The last two integrals in (15) were already evaluated above. In order to compute the other
two integrals we rewrite them in terms of Hermite polynomials. Taking into account
formulas (6) we have:

)()(
202

2

1
2 λλλ HH += (16)

So that:

)(
2
1

)(
1

2)(
1 20201

)(λελ
ε

λλ
ε

λλ PPPP +== (17)

����

���	�
���

Replacing (17) in (15) and considering that an equation similar to (10) applies to P2 we have:

xd

xxd

dx

xxd
xx

PP
P

),(),(
),(

11
2 εε

ε
−

−=
−

=− (18)

The final result is:

−

+
+

=
εε
x

erf
abba

xL
2

)(
2

)(
)(1 (19)

The extreme values of the error function are erf(0)=0 and 1)(±=±∞erf , so that the limit of
equation (19) is:

>

=
+

<

==
→

0

0
2

)(
0

)()(1

0

1

xifb

xif
ba

xifa

xLlimxL εε
 (20)

2.5 Blurred derivative of polynomials

 Let q(x) = x2 . The first blurred derivative is:

 xdxxq xxP 211),()(εε −∫
∞

∞−

= (21)

Rearranging () 222)(2 xxxxxxx +−+−= , and changing the integration variable

)(xxx −→ in (21) we have:

 xxqxq 2)()(11 ==ε (22)
Similarly, the second blurred derivative of q(x) turns out to be

 2)()(22 == xqxqε (23)
 This simple relationship is not valid for higher degree monomials. For instance for degree
three, f(x) = x3 , we have:

)(
2
3

3),()(122311 xfxxdxxxxf P ≠+=−= ∫
∞

∞−

εεε (24)

2.6 Family of derivative kernels

 The set of derivative kernels given by formulas (2) – (4) is not unique. Moreover, the set
just given can be considered as the first generation of a whole family. The next generation
starts with a new derivative kernel of order zero:

���	

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

−=

 −−=− −
−

−

ε
ε

εεπ
ε

ε)(020
2

2

)(

02),(
)(

2
3

),(
2

2

xxHPP xx
xxe

xx

xx

 (25)

 The super-index “2” to the left indicates that it belongs to the second generation. In
referring to the first generation (eqs. (2)-(8)) however, we will omit the super-index “1” to
the left to avoid overload notation in oncoming formulas. The complete set of new derivative
kernels is generated by differentiation of),(02 εxxP − as in formula (4). The polynomials in

this new set ,)(2 λnH , are still orthogonal among themselves but are no longer Hermite’s.
However, all of them can be expressed as linear combinations of Hermite polynomials. The
following generations of this family are produced in a similar manner, starting with zero order
kernels which contain polynomial factors of increasing degree.
 An interesting property of this family is that kernels of different generations can eventually
be combined to yield kernels of these generations but of different degree. We illustrate this
property with two simple examples that will be very useful in the sequel. The first generation
zero order kernel can be written as linear combination of two kernels of the second generation

),(),(),(2
2

020

4
εεε

ε
xxxxxx PPP −−− += (26)

Similarly, the first order kernel can be expressed as:

),(),(),(
3

2
121

4
εεε

ε
xxxxxx PPP −−− += (27)

 The set of kernels ni P are said to form a family because all of them originate from the
Gaussian (2). The Gaussian family is of class ∞C - moreover, kernels of any order are finite –
and is easy to manipulate.

 A thorough discussion of the application of this methodology to one dimensional
differential equations including non-linearities, in which several approximations are analyzed
and compared to standard numerical methods is given elsewhere11. In this paper we will
concentrate on its application to several space dimensions and specifically to Poisson
equation.

3 SEVERAL SPACE DIMENSIONS

 Generalization of all the preceding equations to the multidimensional case is
straightforward. Consider for instance a function of three variables, f(x,y,z). The fundamental
formula (1) takes now the form:

 VdfPlimzyxf)(
0

0
),(),,(rrr ε

ε
−= ∫

∞

∞−
→ (28)

where the operator P0 is now:

����

���	�
���

 ()3
)(

0
2

2

),(
επ

ε
ε

rr

rr

−−

=− e
P ;

tzyx),,(=r ; tzyx),,(=r ; zdydxdVd = (29)

 Notice that the exponent in the denominator of the zero order kernel, P0 , (which is 3 in
this case) equals the number of independent variables of the function f. This stems from the
fact that P0 is built simply as the product of the zero order kernels of the independent
variables. From this, partial derivatives are obtained with the same procedure as (3) and (4).
For instance, the n-th order partial derivative with respect to x is:

VdfPVdf
x

P

x

f xn

n

n

n

n

)(
,

0

0

0
),(lim)(

),(
lim

)(
rrrr

rrr ε
ε

εε
−=

∂
−∂

=
∂

∂
∫∫
∞

∞−
→

∞

∞−
→ (30)

where:

−

=− −

ε
ε

ε
ε xxn

n
xn HPP),(

1
),(0, rrrr (31)

 From the preceding it is easy to compute the usual vector operators. In this way, the
gradient kernel is just:

()tzyx PPPP),(),,(),,()(2),(
1

),(,1,1,101 εεεε
ε

ε rrrrrrrrrrrrP −−−=−−

=− (32)

So that the gradient of a scalar field is:

 ∫ −==
→→

∇∇ Vdflimflimf)(),()()(1

00
rrrPrr ε

εε
ε (33)

 The Laplacian, in turn, can be built either as the sum of the second partial derivatives or as
the convolution of the divergence and gradient operator (33) as indicated in formula (8). The
result now depends on the number of independent variables:

()[]
()

−

 −−−

−−−−

==

∫

∫
→

→
∇∇

DinVdfP

DinVdfP

ff

3,)(
2

3
),(

4

2,)(1),(
4

lim

)(lim)(

20
2

20
2

0

0

22

rrrrr

rrrrr

rr

ε
ε

ε
ε

ε

ε ε

 (34)

 As in one dimension, also in the multidimensional case the zero order kernel P0 given by
(29) gives rise to the first generation of a whole family of operators. For instance in two
dimensions the second generation of this family starts with:

����

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

 ()

 −
−=−

−−

2

2

2

)(

02)(
2),(

2

2

εεπ
ε

ε rr
rr

rr

e
P ;

tyx),(=r ; tyx),(=r (35)

An important consequence of the preceding is that there exists the same relation among
generations that was pointed out for the one-dimensional case in section 2.6. As an example,
it can be verified that the following holds:

),(
4

),(),(2
2

020 εεεε ε rrrrrr −∇+−=− PP (36)

 The relevance of relation (36) – which is a generalization of the one dimensional equation
(26) - lies in that it allows to formulate the functional integral for any number of space
dimensions. We describe it in detail because it will be used in the numerical examples.
Consider again the diffusion equation, but now with two or three space dimensions:

)(),(
),(2 rr

r
gtu

t

tu +=
∂

∂ ∇κ (37)

 We now replace both members of (37) by their respective blurred derivatives:

[] VdtdgttPPtxuttP

VdtdtxuttPP

)(),(),(),(),(),(

),(),(),(

1002

10

rrrrrr

rr

−−−+−−∇

=−−

∫

∫
∞

∞−

∞

∞−

δεδεκ

δε

 (38)

 Notice that in (38) we have used the correct definition of partial blurred derivative.
However, after integration over the space variables, ydxdVd .= in the left member of (38),
and over time, td , in the right member the following expression is obtained:

 VdxgPVdtxutdtxuttP)(),(),(),(),(),(021 εεδ rrrr −+−∇=− ∫∫∫
∞

∞−

∞

∞−

∞

∞−
 (39)

 Next, the local variation of time is approximated linearly so that:

VdgPVdtuPtu)(),(),()),(),((),(020 rrrrrrrrr εδεδκεδ −+−∇+−=+ ∫∫
∞

∞−

∞

∞−
 (40)

We then replace P0 by 02 P , take 4
2εδκ = and use formula (36) in the first integral of (40)

to obtain:

 () ()∫∫
∞

∞−

−−∞

∞−

−−

+≅+ Vdg
e

Vdtu
e

tu
nn

)(
4

),(
4

),(
4

)(
4

)(22

rrr

rrrr

πκδ
δ

πκδ
δ

κδκδ

 (41)

���

���	�
���

The exponent “n” in the denominators is the number of space dimensions. Ee now concentrate
in the application of (41) for the numerical solution of Poisson equation. For this, we assume
again that the diffusion process has already taken place and a stationary state has been
reached. Assuming for simplicity that the coefficient κ equals 1 equation (41) leads to:

 () ()∫∫
∞

∞−

−−∞

∞−

−−

+≅ Vdg
e

Vdu
e

u
nn

)(
4

)(
4

)(
4

)(
4

)(22

rrr

rrrr

πδ
δ

πδ

δδ

 (42)

 Where the source term has been divided by κ .

4 NUMERICAL IMPLEMENTATION OF POISSON EQUATION

 Equation (42) can be discretized in many different manners. One of the most convenient
ones is to fit a local polynomial for each internal node, whose coefficients relate the unknown
at the current node with values on some number, M, of neighboring nodes. Consider for
brevity a quadratic polynomial:
),(),(.~

yxyxu Ra= (43)

where
 t

yx yxyxyx),,,,,1(22
),(=R ; []taaaaaa 654321=a (44)

 The vector of coefficients a is calculated in terms of the M nodal values of u solving13:

 .uV.VVa t1t .)(−= (45)
where

 ()tMuuu ⋅⋅= 10u ; V = ⋅ ⋅
⋅ ⋅

1

1

1

0 0 0
2

0 0 0
2

1 1 1
2

1 1 1
2

2 2

x y x x y y

x y x x y y

x y x x y yM M M M M M

 (46)

 The matrix (VtV) of equation (45) is very poorly conditioned, a fact that may deleteriously
influence numerical result. Hence, a very convenient alternative is to directly compute the
pseudo-inverse of matrix V using singular value decomposition. Numerical results to be
discussed in the next section confirm that this is indeed the case.
 In equation (46) a local numbering has been used, where the index of the current node is
“0” and its neighbors range from 1 to M. Replacing approximation (43) for node “i” in
formula (42) yields:

())(2)(2 541541

ggguuu
i aaaaaau +++++= κεεκε

 (47)

����

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

 The super-index “u” in coefficients aj of equation (47), indicates that those coefficients are
linear combinations of nodal values of the field “u” in the local cloud. Similarly, the super-
index “g” indicates that the combination is with nodal values of source g(x,y). As regards the
coefficients themselves, they depend on the number and distribution of the M neighbors in the
cloud. As an example, if there are six neighbors forming a regular hexagon the coefficients
are:

 01 ua =

 ++−=)(

2

11
41024 uuu

h
a (48)

 +−++++−=)(

6
1

)(
3
11

416532026 uuuuuuu
h

a

Where the local number of the center node is “0” and its neighbors are numbered from 1 to 6
anti-clockwise as shown in figure 1. Similarly, if there are eight neighbors as shown in figure
2 the coefficients are

 [])()(25
9

1
8642753101 uuuuuuuuua +++−++++=

 +−++++++−=)()(

2
1

3
1

73865421024 uuuuuuuuu
h

a (49)

 +−++++++−=)()(

2
1

3
1

51876432026 uuuuuuuuu
h

a

4 3 2

5 0 1

6 7 8

Figure 1: Local cloud with six neighbors Figure 2: Local cloud with eight
neighbors

 3 2

4 0 1

 5 6

����

���	�
���

 It is worth mentioning some features of these coefficients that will be relevant in the
computational implementation to be described in the next section. In the first place, notice
that if the parameter ε is sufficiently large the first two terms of equation (47), ui y a1, can be
neglected so that the factor ε is cancelled yielding:

guu aaa 154)(20 ++= κ

 (50)

In equation (50) it has also been assumed that the source term can be approximated as a
constant, a1

g. This is the same equation that would be obtained with a point collocation
scheme using local polynomial approximation or with Generalized Finite Differences. This
was already pointed out in the one dimensional case but the result is general. Also, for certain
nodal arrays equation (47) coincides with the collocation of GFDM whatever the value of
parameter ε . This happens when the first term of the polynomial approximation, a1, is just
the value of the field at the center node, u0 , as in the case of the hexagonal array given by
equations (48). In this case the terms ui and ai of (47) are cancelled and (50) is recovered. But
this cancellation would not occur if the coefficients (49) – which link the center node to eight
neighbors – are used.
 Finally, we notice that whatever the nodal array the quadratic coefficients, a4 y a6, are
inversely proportional to the square of the nodal spacing, h, as can be seen in equations (48-
49) (although this is rather obvious from dimensional considerations). The importance of this
lies in the following. The discrete equation corresponding to a given node (i.e. its contribution
to the global matrix), can be written in the form:

 () () () 0111000 1 fuuu MMM =++⋅⋅⋅++++− ζβαζβαζβα (51)

Where we have used local numbering and abbreviated the independent term as f0. In equation
(51) we have called:

 2h

κεζ = (52)

which is a non-dimensional quantity. The numbers iα are the coefficients of ui in the term a1

of the polynomial fitting. Similarly, the numbers iβ of (51) are the sum of the coefficients of
ui in the terms a4 and a5, divided by the factor h2. It can be demonstrated9 that for each nodal
array there exists an optimum value of the non dimensional parameter ζ which minimizes the
local discretization error. Hence, once this value is known the optimum “time step” ε is
chosen according to the nodal distance with (52). This is crucial for the numerical
implementation of the method on irregular meshes as described in the next section.

5 NUMERICAL RESULTS

 In this section we describe two and three dimensional tests designed to study the
performance of the numerical scheme described above. The potential advantages of a
meshless method should become evident in the case of irregular node distributions. Hence, in

����

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

all simulations we used nodal arrays generated as follows. Starting from a regular array of
nodes, each interior point is moved at random a distance proportional to the initial nodal
spacing in such a way that boundary nodes remain equally spaced. For the two dimensional
simulations we used four sets of 10 meshes each with 5X5 nodes, 9X9, 17X17 and 33X33
nodes. All meshes discretize a unit square. For each model the corresponding Delauney
triangulation was calculated, for reasons stated below.
 The set of nodes used to fit the polynomial for a given internal node are called its local
cloud. The number of nodes in the cloud is the degree of connectivity (or connectivity for
short) of the given node. Figures 1 and 3 represent degrees of connectivity 7 and 9
respectively.
 In the first place, the use of Delauney triangulation allows to compare FIM with linear
finite elements in equal conditions: in both schemes all interior nodes are linked to the same
neighbors – using the same local clouds - and hence produce the same structure of non-zeroes
in the stiffness matrix. Second, the triangulation can be used to identify the second neighbors.
These can be added to the local cloud in order to fit higher order polynomials. An example is
shown in figure 3, where the neighbors of an interior node of a 9X9 mesh are shown together
with the triangulation. It can be seen that the connectivity is six if only first neighbors are
used, so that a second degree polynomial can be fitted. Adding the second neighbors
(identified with dashed lines in figure 3) a third degree polynomial can be fitted, and
consequently the convergence rate is enhanced.
 In all the meshes used in the present examples connectivities given by first neighbors of
Delauney triangulation range from 5 to 9. When the degree is 5 a complete second degree
polynomial cannot be fitted. An alternative would be to use an incomplete polynomial (for
instance ignoring the monomial x.y). But we just added one second neighbor in that case so
that the degree of connectivity is never lower than six. A better alternative is to use a
complete quadratic polynomial and calculate the pseudo-inverse of the Vandermonde matrix
using singular value decomposition. This scheme is called FIM2 in the numerical examples.
Notice that this scheme is not fully equivalent to linear finite elements, because the local
cloud is enriched to six in nodes with primary connectivity 5.
 In the numerical examples we also used FIM with cubic approximation. For this purpose
the second neighbors were added to the local cloud as described above. This scheme is called
FIM3 in the numerical examples. In all meshes the degree of connectivity with FIM3 range
from 10 to 17. The task of neighbor identification, enrichment and addition of second
neighbors is done by a very simple pre-processing program.
 As regards selection of the optimum parameter ε for each node we proceeded as follows.
We first determined empirically a set of nearly optimum non-dimensional parameters

2
ave

opt
opt h

ε
ζ = for several degrees of connectivity. We did it by simply running a few tests and

minimizing the error. The results are shown in Table 1 cloud whatever the degree of
connectivity. As an error measure we used the following formula14:

 []∑
=

−=
NP

i

Num
i

e
i

máx

e
uu

NPu
E

1

211
 (53)

����

���	�
���

Where NP is the number of mesh points, ue is the solution and uNum the numerical value.
 Finally, for the calculation of partial derivatives at nodes FIM simply evaluates derivatives
of the local polynomial approximation. This procedure is coincident with the superconvergent
stress recovery procedure used in finite element calculations. While in the context of finite
elements this is an ad-hoc methodology, it is completely natural in FIM. To evaluate the error
in derivatives we used formula (107) replacing u by its derivatives. We also used the same
procedure to evaluate derivatives with FEM.

5. 1 Two dimensional examples

 The first example corresponds to the field:

 xyyyxxyxu 2323 33),(+−+−= (54)
This field satisfies Laplace’s equation so that the source term vanishes in this case.
 All meshes have Dirichlet boundary conditions so the error is calculated at interior nodes.
The error for a given number of nodes (and hence for a given mean nodal spacing h) was
calculated by averaging the error for the ten meshes of that type.
 In this first example we compare FIM with other three methods: GFDM, FEM and the
Element Free Galerkin Method (EFG). The latter uses MLS interpolants for trial and test
functions with a variational principle. For the latter we used standard MLS shape functions
without the orthogonal basis functions. Linear basis functions were used. For integration, the

square domain was divided in
2

1−NP
 cells - where NP is the number of nodes – an a 6X6

Gauss quadrature rule was used. For integration on the boundary we used three node
quadratic line elements with a 6 point Gauss rule. Finally, Gaussian weight functions were
used. The support or domain of influence was chosen as 5.5h for all nodes, where h is the
mean nodal spacing of the mesh, while the constant C that controls the relative weight [18]
was set to 2.6h.

0.0 0.5

0.0

0.5

Figure 3: Interior node of figure 5
showing first and some second

neighbors.
Figure 7: Cubic polynomial. Error with

FEM, GFDM, FIM2 and FIM3

-3.5 -3.0 -2.5 -2.0 -1.5

Ln(h)

-40

-30

-20

-10

0

Ln
(E

rr
or

)

GFDM

FEM

FIM2

FIM2

FIM3

����

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

 Figure 4 shows a plot of error in u versus mean nodal spacing, h, in logarithmic scale. It
can be seen that the error is larger with Generalized Finite Differences, followed by linear
finite elements (FEM). The smallest error occurs with EFG and FIM2 that are similar. The
four regression lines have slope 2 as expected. It is worth pointing out that while comparison
of FIM2 with FEM and GFDM is conclusive, comparison with EFG should be taken with
caution. This is because FEM and GFDM do not contain free parameters that must be
adjusted for better performance, so that results do not depend on implementation details. The
performance of EFG, on the other hand, depends on the type and parameters of the weight
function, the integration method, and implementation of the MLS shape functions. In
particular, use of orthogonal basis functions might enhance performance. For this reasons the
present comparison with EFG is indicative of a trend and not a definite result. However, there
is an important point concerning the computational cost of both methods. As mentioned
above, FIM2 uses only first neighbors for interpolation, so that the connectivity of interior
nodes ranges from 6 to 9 in all meshes. This yields a very sparse matrix which is also very
well conditioned. In our implementation of EFG, on the other hand, the connectivity of
interior nodes is close to 100, the computer cost of matrix inversion for all Gauss point is
rather high, and the matrix is somewhat poorly conditioned. By the same token, we do not
compare FIM2 with SPH and related methods. This is because the convergence rate of SPH is
low and it is less accurate than EFG. Moreover, several correction schemes for SPH (i.e.
RKPM) have been compared with EFG and shown to be less accurate15.

 The second two dimensional example corresponds to the field

)sin()sin(),(yxyxu ππ= (55)
which is zero on the boundaries. The source term is:

)sin()sin(2),(2 yxyxg πππ= (56)
 Unlike the FEM, the present method allows more versatility in the selection of
approximations which can be different for the source and the field. In particular, we noticed
that the use of ordinary least squares polynomial approximation of the source term leads to
rather poor results. On the other extreme, if the source is assumed to be constant for each
node the results are also unsatisfactory. Hence, we resorted to the simple procedure of using a
weighted average of both approximations mentioned above. We found empirically that very
good results – both with FIM2 and with FIM3 – can be obtained by assigning a weight of
40% to the constant value of the source on the node, g0 , and 60% to the polynomial
approximation. Hence, the nodal equation has the form:

 []{ })(26.04.0)(2 5410541
ggguuu

i aaagaaau ++++++= κεεκε
 (57)

 Figure 5 shows a plot of error in u versus mean nodal spacing, h, in logarithmic scale. As in
the previous example, FIM2 has better precision than FEM, while FIM3 has even better
precision and also a higher rate of convergence. Also, the slope of the regression line with
FIM2 is slightly higher than two. This might be a consequence of the approximation used for
the source, which better captures the local variation as the mesh is refined.

����

���	�
���

 As mentioned in section 4, inversion of matrix (VtV) may have a deleterious effect on
numerical results due to poor conditioning. In fact, if singular value decomposition is used for
the case of quadratic interpolation there is a substantial improvement of results as shown in
figure 6. Also, in such case it is not necessary to add second neighbors to nodes with primary
connectivity less than six. On the contrary, a complete polynomial is used since SVD
automatically sets to zero negligible eigenvalues.

5. 2 Three dimensional example

 Three dimensional simulations were performed on unit cubes of 53, 73, 93 and 123 nodes.
The field

)sin()sin()sin(),,(zyxzyxu πππ= (58)

was modeled. The mesh of points was discretized into tetrahedra to perform finite element
calculations, and the same neighbors were used for FIM using singular value decomposition
for calculation of polynomial fitting. Connectivity of interior points range from 10 to 18,
except at a few nodes where it is higher. Notice that in three dimensions a complete quadratic
polynomial has 10 coefficients while a complete cubic polynomial has 19 coefficients. Hence,
a complete cubic polynomial cannot be fitted for all interior nodes. The corresponding FIM
scheme is designated as FIM A in figure 7. However, if the Voronoi cells are used to identify
first neighbors in the case of a regular array they define a cube around each interior node with
connectivity 27. Hence, a complete cubic polynomial can be used with a dramatic increase of
precision as shown in the curve designated FIM B of figure 7. Notice in particular that for the
finer mesh used in this simulation (123 nodes) the error with FIM is less than 1/50 the FEM

Figure 5: Sine solution. Error with
FEM, FIM2 and FIM3.

-3.5 -3.0 -2.5 -2.0 -1.5

Ln(h)

-12

-8

-4

0

Ln
(E

rr
or

)

FIM2

FIM3

FEM

-3.6 -3.2 -2.8 -2.4 -2.0

Ln(h)

-10

-8

-6

-4

-2

Ln
(E

rr
or

)

FEM

FIM2

FIM-SVD

Figure 6: Sine solution. Use of
singular value decomposition.

��
	

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

error. Clearly, the use of the mesheless method offers a substantial advantage in three
dimensions.

6 CONCLUSIONS

 It has been shown in this work that the concept of blurred derivatives provides a valuable
tool in computational mechanics. On one hand it leads to fully meshless methods, since there
is no need of partitioning the domain of interest. Also, it is more versatile than standard strong
and weak formulations since it allows a higher degree of flexibility for selection of trial
functions: even piecewise constant approximations lead to meaningful discrete equations.
Another important byproduct of blurred derivative is that it allows to derive in a simple
manner the Functional Integral Method for elliptic problems – of which generalized finite
differences is a special case – and to generalize it to non-linear problems. The numerical
examples with unstructured meshes indicate that when FIM uses the closest neighbors for
quadratic interpolation its precision is higher than FEM. In particular, when polynomial
coefficients are calculated using the pseudo-inverse (singular value decomposition) it is
possible to attain very high precision. This is specially remarkable in three dimensions.
 Finally, there is an interesting consequence of the definition of blurred derivative that
might be the source of new developments. As stated in the first pages of this article, blurred

-3.0 -2.5 -2.0 -1.5 -1.0

Ln(h)

-10

-8

-6

-4

-2

Ln
(E

rr
or

)

FIM B

FIM A

FEM

Figure 7: Three dimensional simulation. Comparison of
FEM, FIM with the same first neighbors and FIM with

higher connectiviy.

��
�

���	�
���

derivative kernels are proportional to Hermite polynomials. But each polynomial, Hn(x) can
be regarded as the solution of the associated differential equation:

 0)(2
)(

2
)(

2

2

=+− xfn
dx

xdf
x

dx

xfd
 (59)

 Hence, if the index “n” of equation (59) is allowed to take real values – not only integers –
the so called fractional derivatives are naturally obtained. This definition differs from the
most usual ones, which nevertheless are not equivalent among themselves. The solutions of
(59) can be expressed in terms of confluent hypergeometric functions12. In particular,
Riewe16,17 has shown recently that fractional derivatives allow to formulate Lagrangians and
Hamiltonians for non- conservative systems. The concept of blurred derivative might then
provide an adequate tool for new numerical implementations of such systems.

7 REFERENCES

[1] B. Nayroles, G. Touzot and P. Villon, “Generalizing the finite element method: diffuse

approximation and diffuse elements”, Computational Mechanics, 10, 307-318 1992.
[2] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, “Meshless methods:

an overview and recent developments”, Computer Methods in Applied Mechanics and
Engineering, 139, 3-47 1996.

[3] C.A. Duarte and J.T. Oden, “H-p adaptive method using clouds”, Computer Methods in
Applied Mechanics and Engineering, 139, 237-262 1996.

[4] J.J. Monaghan, “An introduction to SPH”, Computer Physics Communications, 48, 89-
96 1998.

[5] W.K. Liu, S. Jun and Y.F. Zhang, “Reproducing Kernel Particle Methods”, Int. J. Num.
Meth. Engng; 20: 1081-1106, 1995.

[6] N. Sukumar, B. Moran and T. Belytschko, “The Natural Element Method in Solid
Mechanics”, Int. J. Num. Meth. Engng , 43: 839-887, 1998.

[7] T. Liszka, “An Interpolation Method for an Irregular Net of Nodes”, Int. J. Num. Meth.
Engng, 20, 1599-1612 1984.

[8] E. Pardo, “Meshless method for linear elastostatics based on a path integral
formulation”, Int. J. Num. Meth. Engng, 47: 1463-1480 2000.

[9] E. Pardo, “Convergence and accuracy of the path integral approach for elastostatics”.
Computer Methods in Applied Mechanics and Engineering, 191 (20): 2219-2247 2002.

[10] E. Pardo, “Functional integral formulation of classical wave equations”, Journal of
Sound and Vibration (in press).

[11] E. Pardo, “Blurred derivatives and meshless methods”, Int. J. Num. Meth. Engng, (in
press).

[12] Abramowitz M, Stegun IA. Handbook of Mathematical Functions. Dover: New York,
1973.

[13] Lancaster P, Salkauskas K. Curve and Surface Fitting. Academic Press: London, 1986.

��
�

#� �#����������
�����&��+$�
����� ���
������� �$%&���������#���

[14] N. R. Aluru, “A point collocation method based on reproducing kernel approximations”.
Int. J. Num. Meth. Engng, 47, 1083-1121 2000.

[15] T. Belytschko, Y. Krongauz, J. Dolbow and C. Gerlach, “On the completeness of
meshfree particle Methods”, Int. J. Num. Meth. Engng, 43, 785-819 1998.

[16] F. Riewe, “Nonconservative Lagrangian and Hamiltonian mechanics”, Physical Review
E , 53, 1890-1899 1996.

[17] F. Riewe, “Mechanics with fractional derivatives”, Physical Review E, 55, 3581-3592
1997.

