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Abstract: The need to perform computations on irregularly distributed nets of nodes arises in 
many applications of solid and fluid computational mechanics. This is specially problematic 
in three dimensions. Typically, the finite element method with tetrahedral elements is used for 
such purpose. However, this poses a number of problems. On one hand some elements are 
considerably distorted – with eventually some null-volume elements – leading to poor 
solutions. Also, in this method only h-refinement is feasible so that solution improvement 
demands to refine the mesh. In this work we describe  a meshless method which we designate 
as Functional Integral Method (FIM) based on the use of blurred derivatives, that allows to 
overcome the above mentioned difficulties. The method only requires the connectivity of each 
node given by first neighbors (Voronoi cells) for discretization yielding the same structure of 
non-zeros as FEM with tetrahedral elements. The matrix is nevertheless non-symmetric so 
that  storage and solution of the linear system increases by a factor close to two. However, 
results of several numerical simulations indicate that the error is systematically much smaller 
than with FEM and it is rather insensitive to node irregularity so that relation cost-benefit is 
finally enhanced substantially. Also, it allows to perform p-refinement in a trivial manner by 
just adding more neighbors to the local cloud of each node thus increasing the order of 
interpolation. In this way the error can be further reduced without re-meshing 
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1  INTRODUCTION  
 
     The development of meshless method during the last decade were mainly fueled by the 
need to overcome the difficulties posed by mesh generation (i.e. partitions of the domain) in 
three dimensional problems. Some of the methods developed so far are the Diffuse Element1 
Method and the Element Free Galerkin Method2 (which use MLS interpolation), hp-Clouds3, 
Smooth Particle Hydrodynamics4, Reproducing Kernel Particle Methods5, Natural Element 
Method6, Generalized Finite Differences7, etc.  However, it is not yet clear that they are 
generally advantageous over the robust and versatile finite element method. Even though 
these methods do not require domain discretization into elements, this potentiality not always 
leads to better performance. Some of these methods – specifically those based on weak 
formulations – still require a partition of the domain for integration. Also, they are built upon 
rather complex approximations which demand intensive computation and frequently lead to 
poor conditioned matrixes. An alternative is to start from a strong formulation which does 
note require integration over the domain so that a truly meshless method is obtained. 
However, the precision of these methods is low although research continues to improve them.  
    In any case, even if a meshless point method does not require a mesh it still requires to 
specify, for each point (node), which are those linked to it that should be used  to build the 
local approximation. This set, whose construction is far from trivial will be termed the local 
cloud. Very simple criterions – such as selecting the nodes of the cloud according to their 
distances – lead to poor approximation. On the other extreme, there are well established 
techniques such as Delauney triangulation which provide an adequate set of neighbors for 
each node while at the same time discretize the domain into triangles. Hence, a crucial test for 
a finite point method is to compare its performance with linear finite elements.  
    Recently, it was shown that some linear problems – elliptic, parabolic and hyperbolic - can 
be formulated in terms of functional integrals8-10 instead of the classical strong and weak 
formulations, leading to novel methods which combine simplicity and good accuracy. The 
most appealing feature of this method – apart from its good performance – is the fact that 
unlike traditional formulations it does not require calculation of derivatives of any order of the 
shape functions. It is shown that a very simple polynomial interpolation provides excelent 
numerical results both in two and three space dimension. This is demonstrated by solving 
Poisson equation on a number of irregular nets of nodes, where its performance is compared 
with linear finite elements.  
 
2  BLURRED DERIVATIVES 
 
2.1 Definition and properties 
 

    In this section we redefine the derivative operation in order to devise an adequate tool for 
approximation of differential equations. It starts with a simple observation: the value of a 
continuous function at a point can be evaluated as:  
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where the operator P0 is a Gaussian:   
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Equation (1) is a direct consequence of the definition of the  Dirac delta function, which can 
be expressed as the limit of the Gaussian  (2). From what it follows that the derivatives of   f(x)  
can be computed as:  
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The functions Pn in the right side of (3), which are the derivatives of P0 , can be obtained from 

Rodrigues formula for Hermite polynomials12: )()1(
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Where  Hn(x)  are Hermite  polynomials. These are  orthogonal polynomials with definite 
parity: 
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The first five  polynomials are:   
                     1)(0 =xH       ;  xxH 2)(1 =         ;       24)( 22 −= xxH                                     (6) 

                    xxxH 128)( 33 −=          ;     124816)( 244 +−= xxxH  
The functions Pn  can be regarded as operators: after integration they transform a given 
function,  f(x),  into a new one, 1

εf , which in the limit  0→ε   yields the derivative of the 
former one: 
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    At this point it becomes convenient to introduce some notation and designations for further 
reference. Hence, we will call  Pn  the n-th  derivative kernel, and the transformed function  
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nfε  the blurred derivative of order n. From the preceding equations it follows – and this can 
be  checked by direct computation – that derivative kernels of higher order can be obtained 
from lower order ones through convolution:  
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∞

∞−

+ =                           (8) 

The support of the basic operator P0 defined in formula (2) is infinite. For this reason it seems 
inadequate to tackle numerical solution of differential equations on finite bodies. But it will 
be shown in section 5 that the size of parameter ε  which gives the best numerical results is 
small, so that the Gaussian becomes negligible beyond the first neighbor to a given node. 
However, it is clear from the definitions (1) - (3) that many other functions can be used to 
generate families of blurred derivative kernels. In particular, functions of local support seem 
more appropriate. The simplest choice is the use of a truncated Gaussian as the basic operator 
P0 but it has a drawback: its derivatives include a term accounting for the sudden change at 
the boundary of the support. To avoid it the domain of integration of formulas (1) and (3) 
should reduce to the support of these functions. An alternative are functions of the form: 
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The exponent “n” can be chosen so that derivatives up to the desired order are zero on the 
boundary of the support. In particular, the derivative of order “n” satisfies Rodrigues formula 
for Legendre polynomials, Pn(x), namely:       
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But in this work we will use the Gaussian kernels defined above. They are easy to handle and 
have a number of properties that allow some clean demonstrations that will be very useful for 
our purposes. Also, they can be accepted on interpretational grounds as discussed below.  
 
2.2 Connection with SPH 
 
    Equations (1) and (3) are the starting point of the Smoothed Particle Hydrodynamics (SPH) 
method4. Hence, it appears that SPH and the method to be described in this paper (which is 
designated as FIM for reasons that will become clear in the sequel) are closely related. 
However, it is important to emphasize that the relationship between both methods lies entirely 
in the point of departure: the way in which these equations are used and the final discrete 
equations are completely different. Briefly, in SPH equation (1) is used around each node to 
approximate locally the unknown function whose computational estimate is sought. This is 
fed into the governing differential equation yielding a discrete equation for each node. In the 
present paper, on the contrary, the equations of the preceding sub-section will be used to re-
express the differential equation as an equivalent functional integral. To approximate the 
unknown field locally around each node we will use simple polynomials.  
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    In the applications of the blurred derivative to numerical methods, to be described in the 
next section, we will need a few results and properties of the blurred derivative which are 
listed below. 
 
2.3 Blurred derivative of a step function 
   
    Let  U(x) be a step function: U(x) = a  if  x<0, U(x) = b if  x>0. The blurred derivative is 
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So that in the limit:  
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    This first simple example shows why we adopted the designation “blurred derivative”: it 
smears out discontinuities of derivatives for finite ε . This is a desirable property for 
numerical solution of differential equations, which allows the use of shape functions of low 
degree of continuity.  
 
2.4 Blurred derivative of a piece-wise linear function   
 
    Let L(x) = ax  if x<0, L(x) = bx  if x>0. Its blurred derivate is: 
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    The last two integrals in (15) were already evaluated above. In order to compute the other 
two integrals we rewrite them in terms of  Hermite polynomials. Taking into account 
formulas (6) we have:  
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Replacing (17) in (15) and considering that an equation similar to (10) applies to P2 we have: 
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The final result is:   
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The extreme values of the error function are  erf(0)=0   and 1)( ±=±∞erf , so that the limit of 
equation (19) is:  
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2.5  Blurred derivative of polynomials  
 
    Let  q(x) = x2  .  The first blurred derivative is:  
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Rearranging  ( ) 222 )(2 xxxxxxx +−+−= ,  and changing the integration variable  

)( xxx −→  in (21) we have:  

                                              xxqxq 2)()( 11 ==ε                                                          (22) 
Similarly, the second blurred derivative of q(x) turns out to be 

                                              2)()( 22 == xqxqε                                                            (23) 
    This simple relationship is not valid for higher degree monomials. For instance for degree 
three,   f(x) = x3 ,  we have:  
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2.6  Family of derivative kernels 
 
     The set of derivative kernels given by formulas (2) –  (4) is not unique. Moreover, the set 
just given can be considered as the first generation of a whole family. The next generation 
starts with a new derivative kernel of order zero:  
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    The super-index “2” to the left indicates that it belongs to the second generation. In 
referring to the first generation ( eqs. (2)-(8)) however, we will omit the super-index “1” to 
the left to avoid overload notation in oncoming formulas. The complete set of new derivative 
kernels is generated by differentiation of  ),(02 εxxP −  as in formula (4). The polynomials in 

this new set , )(2 λnH , are still  orthogonal among themselves but are no longer Hermite’s. 
However, all of them can be expressed as linear combinations of Hermite polynomials. The 
following generations of this family are produced in a similar manner, starting with zero order 
kernels which contain polynomial factors of increasing degree.  
    An interesting property of this family is that kernels of different generations can eventually 
be combined to yield kernels of these generations but of different degree. We illustrate this 
property with two simple examples that will be very useful in the sequel. The first generation  
zero order kernel can be written as linear combination of two kernels of the second generation  
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Similarly, the first order kernel can be expressed as:  
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    The set of kernels ni P  are said to form a family because all of them originate from the 
Gaussian (2). The Gaussian family is of class ∞C - moreover, kernels of any order are finite –  
and is easy to manipulate.  
  
    A thorough discussion of the application of this methodology to one dimensional 
differential equations including non-linearities, in which several approximations are analyzed 
and compared to standard numerical methods is given elsewhere11. In this paper we will 
concentrate on its application to several space dimensions and specifically to Poisson 
equation. 
 
3  SEVERAL SPACE DIMENSIONS  
 
     Generalization of all the preceding equations to the multidimensional case is 
straightforward. Consider for instance a function of three variables, f(x,y,z). The fundamental 
formula (1) takes now the form:     
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where the  operator P0 is now:   
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     Notice that the exponent in the denominator of the zero order kernel, P0 , (which is 3 in 
this case) equals the number of independent variables of the function f. This stems from the 
fact that  P0 is built simply as the product of the zero order kernels of the independent 
variables. From this, partial derivatives are obtained with the same procedure as (3) and (4). 
For instance, the n-th order partial derivative with respect to x is:  
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    From the preceding it is easy to compute the usual vector operators. In this way, the 
gradient kernel is just:        
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So that the gradient of a scalar field is:  

                ∫ −==
→→

∇∇ Vdflimflimf )(),()()( 1

00
rrrPrr ε

εε
ε                (33) 

    The Laplacian, in turn, can be built either as the sum of the second partial derivatives or as 
the convolution of the divergence and gradient operator (33) as indicated in formula (8). The 
result now depends on the number of independent variables:  
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    As in one dimension, also in the multidimensional case the zero order kernel P0 given by 
(29) gives rise to the first generation of a whole family of operators. For instance in two 
dimensions the second generation of this family starts with:  
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An important consequence of the preceding is that there exists the same relation among 
generations that was pointed out for the one-dimensional case in section 2.6. As an example, 
it can be verified that the following holds:  
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     The relevance of relation (36) – which is a generalization of the one dimensional equation 
(26) - lies in that it allows to formulate the functional integral for any number of space 
dimensions. We describe it in detail because it will be used in the numerical examples. 
Consider again the diffusion equation, but now with two or three space dimensions:  
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    We now replace both members of (37) by their respective blurred derivatives: 
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    Notice that in (38) we have used the correct definition of partial blurred derivative. 
However, after integration over the space variables, ydxdVd .=  in the left member of (38), 
and over time, td , in the right member the following expression is obtained:  
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    Next, the local variation of time is approximated linearly so that:       
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We then replace P0  by 02 P ,  take 4
2εδκ =   and use formula (36) in the first integral of (40) 

to  obtain:  
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The exponent “n” in the denominators is the number of space dimensions. Ee now concentrate 
in the application of (41) for the numerical solution of Poisson equation. For this, we assume 
again that the diffusion process has already taken place  and a stationary state has been 
reached. Assuming for simplicity that the coefficient κ  equals 1 equation (41) leads to:  
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    Where the source term has been divided by κ . 
 
4  NUMERICAL IMPLEMENTATION OF POISSON EQUATION 
 
    Equation (42) can be discretized in many different manners. One of the most convenient 
ones is to fit a local polynomial for each internal node, whose coefficients relate the unknown 
at the current node with values on some number, M, of neighboring nodes. Consider for 
brevity a quadratic polynomial:  
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    The vector of coefficients a is calculated in terms of the M nodal values of u solving13: 
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    The matrix (VtV) of equation (45) is very poorly conditioned, a fact that may deleteriously 
influence numerical result. Hence, a very convenient alternative is to directly compute the 
pseudo-inverse of matrix V using singular value decomposition. Numerical results to be 
discussed in the next section confirm that this is indeed the case.  
    In equation (46) a local numbering has been used, where the index of the current node is 
“0” and its neighbors range from 1 to M. Replacing approximation (43) for node “i” in 
formula (42) yields: 
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    The super-index “u”  in coefficients aj of equation (47), indicates that those coefficients are 
linear combinations of nodal values of the field “u” in the local cloud. Similarly, the super-
index “g” indicates that the combination is with nodal values of source g(x,y). As regards the 
coefficients themselves, they depend on the number and distribution of the M neighbors in the 
cloud. As an example, if there are six neighbors forming a regular hexagon the coefficients 
are: 
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Where the local number of the center node is “0” and its neighbors are numbered from 1 to 6 
anti-clockwise as shown in figure 1. Similarly, if there are eight neighbors as shown in figure 
2 the coefficients are 
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Figure 1: Local cloud with six neighbors Figure 2: Local cloud with eight 
neighbors 
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    It is worth mentioning some features of these coefficients that will be relevant in the 
computational implementation to be described in the next section. In the first place, notice 
that if the parameter ε  is sufficiently large the first two terms of equation (47), ui y a1, can be 
neglected so that the factor ε  is cancelled yielding:  
 

                                        
guu aaa 154 )(20 ++= κ

                                                         (50) 

 
In equation (50) it has also been assumed that the source term can be approximated as a 
constant, a1

g. This is the same equation that would be obtained with a point collocation 
scheme using local polynomial approximation or with Generalized Finite Differences. This 
was already pointed out in the one dimensional case but the result is general. Also, for certain 
nodal arrays equation (47) coincides with the collocation of GFDM whatever the value of 
parameter ε . This happens when the first term of the polynomial approximation, a1, is just 
the value of the field at the center node, u0 , as in the case of the hexagonal array given by 
equations (48). In this case the terms ui and ai of (47) are cancelled and (50) is recovered. But 
this cancellation would not occur if the coefficients (49) – which link the center node to eight 
neighbors – are used.  
    Finally, we notice that whatever the nodal array the quadratic coefficients, a4 y a6, are 
inversely proportional to the square of the nodal spacing, h, as can be seen in equations (48-
49) (although this is rather obvious from dimensional considerations). The importance of this 
lies in the following. The discrete equation corresponding to a given node (i.e. its contribution 
to the global matrix), can be written in the form:  
 

                     ( ) ( ) ( ) 0111000 1 fuuu MMM =++⋅⋅⋅++++− ζβαζβαζβα                   (51) 

Where we have used local numbering and abbreviated the independent term as f0. In equation 
(51) we have called: 

                                                                2h

κεζ =                                                                  (52)                            

which is a non-dimensional quantity. The numbers iα  are the coefficients of ui in the term a1 

of the polynomial fitting. Similarly, the numbers iβ  of (51) are the sum of the coefficients of 
ui in the terms a4 and a5, divided by the factor h2. It can be demonstrated9 that for each nodal 
array there exists an optimum value of the non dimensional parameter ζ  which minimizes the 
local discretization error. Hence, once this value is known the optimum “time step” ε  is 
chosen according to the nodal distance with (52). This is crucial for the numerical 
implementation of the method on irregular meshes as described in the next section.  
 
5  NUMERICAL RESULTS 
 
    In this section we describe two and three dimensional tests designed to study the 
performance of the numerical scheme described above. The potential advantages of a 
meshless method should become evident  in the case of irregular node distributions. Hence, in 
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all simulations we used nodal arrays generated as follows. Starting from a regular array of 
nodes, each interior point is moved at random a distance proportional to the initial nodal 
spacing in such a way that boundary nodes remain equally spaced. For the two dimensional 
simulations we used four sets of 10 meshes each with 5X5 nodes, 9X9,  17X17 and 33X33 
nodes. All meshes discretize a unit square. For each model the corresponding Delauney 
triangulation was calculated, for reasons stated below.  
    The set of nodes used to fit the polynomial for a given internal node are called its local 
cloud. The number of nodes in the cloud is the degree of connectivity (or connectivity for 
short) of the given node. Figures 1 and 3 represent degrees of connectivity 7 and 9 
respectively.   
    In the first place, the use of Delauney triangulation allows to compare FIM with linear 
finite elements in equal conditions: in both schemes all interior nodes are linked to the same 
neighbors – using the same local clouds - and hence produce the same structure of non-zeroes 
in the stiffness matrix. Second, the triangulation can be used to identify the second neighbors. 
These can be added to the local cloud in order to fit higher order polynomials. An example is 
shown in figure 3, where the neighbors of an interior node of a 9X9 mesh are shown together 
with the triangulation. It can be seen that the connectivity is six if only first neighbors are 
used, so that a second degree polynomial can be fitted. Adding the second neighbors 
(identified with dashed lines in figure 3) a third degree polynomial can be fitted, and 
consequently the convergence rate is enhanced. 
    In all the meshes used in the present examples connectivities given by first neighbors of 
Delauney triangulation range from 5 to 9. When the degree is 5 a complete second degree 
polynomial cannot be fitted. An alternative would be to use an incomplete polynomial (for 
instance ignoring the monomial x.y). But we just added one second neighbor in that case so 
that the degree of connectivity is never lower than six. A better alternative is to use a 
complete quadratic polynomial and calculate the pseudo-inverse of the Vandermonde matrix 
using singular value decomposition. This scheme is called FIM2 in the numerical examples. 
Notice that this scheme is not fully equivalent to linear finite elements, because the local 
cloud is enriched to six in nodes with primary connectivity 5. 
    In the numerical examples we also used FIM with cubic approximation. For this purpose  
the second neighbors were added to the local cloud as described above. This scheme is called 
FIM3 in the numerical examples. In all meshes the degree of connectivity with FIM3 range 
from 10 to 17. The task of neighbor identification, enrichment and addition of second 
neighbors is done by a very simple pre-processing program. 
    As regards selection of the optimum parameter ε  for each node we proceeded as follows. 
We first determined empirically a set of nearly optimum non-dimensional parameters 

2
ave

opt
opt h

ε
ζ =  for several degrees of connectivity. We did it by simply running a few tests and 

minimizing the error. The results are shown in Table 1 cloud whatever the degree of 
connectivity.  As an  error measure we used the following formula14:  
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Where NP is the number of mesh points, ue is the solution and uNum the numerical value.   
    Finally, for the calculation of partial derivatives at nodes FIM simply evaluates derivatives 
of the local polynomial approximation. This procedure is coincident with the superconvergent 
stress recovery procedure used in finite element calculations. While in the context of finite 
elements this is an ad-hoc methodology, it is completely natural in FIM. To evaluate the error 
in derivatives we used formula (107) replacing u by its derivatives. We also used the same 
procedure to evaluate derivatives with FEM.  
 
5. 1  Two dimensional examples 
 
    The first example corresponds to the field: 

                                         xyyyxxyxu 2323 33),( +−+−=                          (54) 
This field satisfies Laplace’s equation so that the source term vanishes in this case.  
    All meshes have Dirichlet boundary conditions so the error is calculated at interior nodes. 
The error for a given number of nodes (and hence for a given mean nodal spacing h) was 
calculated by averaging the error for the ten meshes of that type.  
    In this first example we compare FIM with other three methods: GFDM, FEM and the 
Element Free Galerkin Method (EFG). The latter uses MLS interpolants for trial and test 
functions with a variational principle. For the latter we used standard MLS shape functions 
without the orthogonal basis functions. Linear basis functions were used. For integration, the 

square domain was divided in 
2

1−NP
 cells - where NP is the number of nodes – an a 6X6 

Gauss quadrature rule was used. For integration on the boundary we used three node 
quadratic line elements with a 6 point Gauss rule. Finally, Gaussian weight functions were 
used. The support or domain of influence was chosen as 5.5h for all nodes, where h is the 
mean nodal spacing of the mesh, while the constant C that controls the relative weight [18] 
was set to 2.6h.  
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Figure 3: Interior node of figure 5 
showing first and some second 

neighbors.
Figure 7: Cubic polynomial. Error with 

FEM, GFDM,  FIM2 and FIM3 
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    Figure 4 shows a plot of error in u versus mean nodal spacing, h, in logarithmic scale. It 
can be seen that the error is larger with Generalized Finite Differences, followed by linear 
finite elements  (FEM). The smallest error occurs with EFG and FIM2 that are similar. The 
four regression lines have slope 2 as expected. It is worth pointing out that while comparison 
of FIM2 with FEM and GFDM is conclusive, comparison with EFG should be taken with 
caution. This is because FEM and GFDM do not contain free parameters that must be 
adjusted for better performance, so that results do not depend on implementation details. The 
performance of EFG, on the other hand, depends on the type and parameters of the weight 
function, the integration method, and implementation of the MLS shape functions. In 
particular, use of orthogonal basis functions might enhance performance. For this reasons the 
present comparison with EFG is  indicative of a trend and not a definite result. However, there 
is an important point concerning the computational cost of both methods. As mentioned 
above, FIM2 uses only first neighbors for interpolation, so that the connectivity of interior 
nodes ranges from 6 to 9 in all meshes. This yields a very sparse matrix which is also very 
well conditioned. In our implementation of EFG, on the other hand, the connectivity of 
interior nodes is close to 100, the computer cost of matrix inversion for all Gauss point is 
rather high, and the matrix is somewhat poorly conditioned. By the same token, we do not 
compare FIM2 with SPH and related methods. This is because the convergence rate of SPH is 
low and it is less accurate than EFG. Moreover, several correction schemes for SPH (i.e. 
RKPM) have been compared with EFG and shown to be less accurate15.  
 
    The second two dimensional example corresponds to the field 

                                               )sin()sin(),( yxyxu ππ=                                                (55) 
which is zero on the boundaries. The source term is: 

                                              )sin()sin(2),( 2 yxyxg πππ=                                       (56) 
    Unlike the FEM, the present method allows more versatility in the selection of 
approximations which can be different for the source and the field. In particular, we noticed 
that the use of ordinary least squares polynomial approximation of the source term leads to 
rather poor results. On the other extreme, if the source is assumed to be constant for each 
node the results are also unsatisfactory. Hence, we resorted to the simple procedure of using a 
weighted average of both approximations mentioned above. We found empirically that very 
good results –  both with FIM2 and with FIM3 – can be obtained by assigning a weight of 
40% to the constant value of the source on the node, g0 , and 60% to the polynomial 
approximation. Hence, the nodal equation has the form:   
 

       [ ]{ })(26.04.0)(2 5410541
ggguuu

i aaagaaau ++++++= κεεκε
            (57)     

 
    Figure 5 shows a plot of error in u versus mean nodal spacing, h, in logarithmic scale. As in 
the previous example, FIM2 has better precision than FEM, while FIM3 has even better 
precision and also a higher rate of convergence. Also, the slope of the regression line with 
FIM2 is slightly higher than two. This might be a consequence of the approximation used for 
the source, which better captures the local variation as the mesh is refined.  
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     As mentioned in section 4, inversion of matrix (VtV) may have a deleterious effect on 
numerical results due to poor conditioning. In fact, if singular value decomposition is used for 
the case of quadratic interpolation there is a substantial improvement of results as shown in 
figure 6. Also, in such case it is not necessary to add second neighbors to nodes with primary 
connectivity less than six. On the contrary, a complete polynomial is used since SVD 
automatically sets to zero negligible eigenvalues.  

 
5. 2  Three dimensional example 
 
     Three dimensional simulations were performed on unit cubes of 53, 73, 93 and 123 nodes. 
The field   
 

                                             )sin()sin()sin(),,( zyxzyxu πππ=                                     (58) 
 
was modeled. The mesh of points was discretized into tetrahedra to perform finite element 
calculations, and the same neighbors were used for FIM using singular value decomposition 
for calculation of polynomial fitting. Connectivity of interior points range from 10 to 18, 
except at a few nodes where it is higher. Notice that in three dimensions a complete quadratic 
polynomial has 10 coefficients while a complete cubic polynomial has 19 coefficients. Hence, 
a complete cubic polynomial cannot be fitted for all interior nodes. The corresponding FIM 
scheme is designated as FIM A in figure 7. However, if the Voronoi cells are used to identify 
first neighbors in the case of a regular array they define a cube around each interior node with 
connectivity 27. Hence, a complete cubic polynomial can be used with a dramatic increase of 
precision as shown in the curve designated FIM B of figure 7. Notice in particular that for the 
finer mesh used in this simulation (123 nodes) the error with FIM is less than 1/50 the FEM 

Figure 5: Sine solution. Error with 
FEM, FIM2 and FIM3.  
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error. Clearly, the use of the mesheless method offers a substantial advantage in three 
dimensions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  CONCLUSIONS 
 
    It has been shown in this work that the concept of blurred derivatives provides a valuable 
tool in computational mechanics. On one hand it leads to fully meshless methods, since there 
is no need of partitioning the domain of interest. Also, it is more versatile than standard strong 
and weak formulations since it allows a higher degree of flexibility for selection of trial 
functions: even piecewise constant approximations lead to meaningful discrete equations. 
Another important byproduct of blurred derivative is that it allows to derive in a simple 
manner the Functional Integral Method for elliptic problems – of which generalized finite 
differences is a special case – and to generalize it to non-linear problems. The numerical 
examples with unstructured meshes indicate that when FIM uses the closest neighbors for 
quadratic interpolation its precision is higher than FEM. In particular, when polynomial 
coefficients are calculated using the pseudo-inverse (singular value decomposition) it is 
possible to attain very high precision. This is specially remarkable in three dimensions. 
        Finally, there is an interesting consequence of the definition of blurred derivative that 
might be the source of new developments. As stated in the first pages of this article, blurred 
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derivative kernels are proportional to Hermite polynomials. But each polynomial, Hn(x) can 
be regarded as the solution of the associated differential equation:  
 

                                               0)(2
)(

2
)(

2
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=+− xfn
dx

xdf
x

dx

xfd
                                           (59) 

 
    Hence, if the index “n” of equation (59) is allowed to take real values –  not only integers –  
the so called fractional derivatives are naturally obtained. This definition differs from the 
most usual ones, which nevertheless are not equivalent among themselves. The solutions of 
(59) can be expressed in terms of confluent hypergeometric functions12. In particular, 
Riewe16,17 has shown recently that fractional derivatives allow to  formulate Lagrangians and 
Hamiltonians for non- conservative systems. The concept of blurred derivative might then 
provide an adequate tool for new numerical implementations of such systems.  
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