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Abstract. The presented work consists in analyzing the Meshless Finite Element Method
(MFEM) in solving the Euler equations for an incompressible flow. This method is a mesh-
less method that uses polyhedral elements. These polyhedral use special shape functions
that behave as linear finite element shape functions when the polyhedral are tetrahedral
or a triangle in 2-D. The time integration is evaluated by means of the fractional step
method. Numerical diffusion for convective terms are unnecessary due to the Lagrangian
formulation. MFEM has found to have remarkable results in high complicated geometries.
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1 INTRODUCTION

In the last twenty years computer simulation of the incompressible fluid flow equations
using Eulerian formulations has been required to analyze complex geometry and physics
problems. However there are still difficulties to analyze problems in which the shape
of the interface changes continuously or fluid structure interaction problems where large
deformations should be considered.

Particle methods have been used!™® where each particle is followed in a Lagrangian
manner. Moving interfaces and boundaries can be analyzed by meshless method much
easier than with the Finite Element Method because it is difficult to fit and move a
grid continuously. Furthermore, in Lagrangian formulations the convection terms are
calculated by the motion without any numerical diffusion.

A family of methods called Meshless Methods have been developed as well as for struc-
tural* as for fluid mechanics problems.>”” All these methods use the idea of a polynomial
interpolant which fits a number of points minimizing the distance between the interpolated
function and the value of the unknown field on the points.

More recently, the meshless ideas were generalize to the Finite Element Method in order
to obtain the same computing time in mesh generation than in meshless connectivities.®

In this work new ideas and results will be presented about how to solve a particle
method in fluid mechanics using the Meshless Finite Element Method. In this way a
more general formulation is presented in which all the classical advantages of the FEM
may be used for the unknown functions and derivatives.

2 GOVERNING EQUATIONS

The mass and momentum conservation equations may be written in a semi Lagrangian
formulation as:
Dp

o = —PVu (1)
p%ltl = Vo + pf (2)

with
0ij = Tij — POy (3)

and
Tij = 207 (4)

where o;; is the stress tensor, p the pressure, u the viscosity, 7;; the strain deviatoric
tensor and f a source term.
For non-viscous flow (u — 0) the two set of equations to be used becomes

Dp
D —pVu (5)
Du 1
- - _- f
P Dy pV + (6)
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with the boundary conditions

p=p on I (7
uw=1u on I, (8)

3 THE TIME SPLITTING

The time integration of Eq. 5 and Eq. 6 present some difficulties when the fluid is
incompressible or near incompressible. In this case, explicit time step can not be used,
and even using implicit time step, the incompressibility introduce some wiggles in the
pressure solution which must be stabilized. To overcome these difficulties, a fractional
step method has been proposed which consist to split each time step in 2 steps as following

Du _ utt—u” u"M —u4tu—u”  Au+ Au’ (9)
Dt At At At

and
@an+1_pn:pn+1_p*+p*_pn:Ap/+Ap*

Dt~ At At At
where At = "1 — 7 is the time step; u" = u(t",x"); p" = p(t",x") and u* and p* are
fictitious variables defined by the split.

Now from Eq. 6 and Eq. 9

(10)

Au'  Au* 1 41
=—-Vp" f 11
AT AT R T (11)
which can be split into
Au*
= f (12)
Au’ 1

Now doing the same with Eq. 5 and Eq. 10

LAY Ap +1
— = — n —u* * 14
p(At+At> V(u u” +u") (14)
which can be split into
1 Ap*
-z = —VAu* 1
)AL VAu (15)
1Ap
- = —-VAvu. 1
o AL VAu (16)
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But from Eq. 13 and Eq. 16
Ap'

or +1
pn — )0* n
TAp VRt (18)

Another possibility is to use Eq. 13 and make use of the linearity of the V operator.
Then

Au’ 1
\% =-V(=Vp"*! 19
Ay =-VCI) (19)
which becomes
(Vu' — Vu"ﬂ)ﬁ = v2pitl (20)

4 INCOMPRESSIBILITY CONDITIONS

The simplest way to introduce the incompressibility condition is saying that

p’n+l — pn — pO (21)

If now a volume £; is associated to each node j, the mass conservation implies

n+l n+l _ on.n _ Oo*x x _ 0,0
QT = = Q505 = Qyp; (22)
Then the left hand side of Eq. 18 becomes
Q- Q0
P —p; =1 (7J o ’) (23)
j

The volume associated to each node Q;‘ may be evaluated in different ways. For instance
computing the Voronoi diagram at each node position could be a good option.

Another way to introducing the incompressibility condition is imposing in Eq. 20 the
condition Vu™*! = 0. Then Eq. 20 becomes

P gyt — w2yntl
AtVu Vp (24)

Both Eq. 23 and Eq. 24 might be used to impose the incompressibility condition. In
this paper Eq. 24 will be used.
The steps to achieve a new time step n + 1 having u™ and p™ from the previous are:

1. Evaluate the u* velocity from Eq. 12,
2. evaluate the divergence Vu*,
evaluate the pressure p"*! solving the laplacian from Eq. 24,

evaluate the velocity u™*! using Eq. 13,

ovok W

move the particles to their new position r**1.
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5 SPATIAL DISCRETIZATION

The Lagrangian split scheme described in the previous section has two important advan-
tages:

1. The first step in the algorithm is linear and explicit. The use of a Lagrangian
formulation eliminates the standard convection term found in Eulerian formulations.
These convection terms are responsible for non-linearity, non symmetry and non self-
adjoint operators and therefore the use of high order stabilization terms to avoid
numerical oscillations. All these problems are not present in this formulation,

2. in all the five steps described in the previous section the only implicit term is the
solution of the laplacian of pressure (step 3) that is a scalar equation, symmetric
and positive definite. Then it is easy to solve using an iterative scheme.

The big disadvantage of the Lagrangian formulation is the permanent updating of the
node positions. For this reason standard Finite Element Methods are not useful due to
the expensive process of updating conforming non-structured finite element meshes.

The key of the Lagrangian formulation is the efficiency in the computing time to
evaluate the permanent mesh update or node connectivity.

Some meshless methods as the Element Free Galerkin Method (EFGM)* or the Natural
Element Method (NEM)® !0 have serious difficulties to solve arbitrary point distribution
in a 3-D domain due to the complicated shape function used.

In this paper, the Meshless Finite Element Method (MFEM)® will be used. The method
will be briefly explained later in this paper.

The big advantage of the MFEM compared with the FEM is the possibility to generate
meshes in a computing time of order n being n the total number of nodes. Compared
with the EFGM or the NEM, the major advantage is the simplicity of the shape functions,
which are the same as the FEM for most of the elements in the domain.

Using the MFEM, the unknown functions will be approximated in matrix form by

NT 0 0 Uu

w=NU=|0 NI 0| |U, (25)
0 0 NT||U

p=NIP=NTP (26)

p=Nip=N"p (27)

where N7 are the MFEM shape function and U, P and p are the nodal value of the
unknown function. B

Using the Galerkin Weighted Residual method to solve Eq. 12, Eq. 13 and Eq. 24
with boundary conditions given by Eq. 7 and Eq. 8 and after integrating by parts some
terms, the following integral equations may be written

/MWWW:/MWWW+N/MMV (28)
v Vv v
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that can be written in matrix form as
M,U* = M, U" + AtF.

Then the equation for the laplacian of p takes the form

p ONp o1 * P / —ntl / ON, aNpT 1
- P N P [ Ngrigr = — nt
At/v((‘)xi )T ), Netd N\ oz, o, )T

that can be written in matrix form as

14 ¥ P N+1
—BU* - —U=LP .
At At

The last integral equation to evaluate the new time step velocity is

ONT
/ N;NFavum+! :/ N;N —iTdvVU* — ﬁ P qv prtt
v v p Jv Oz

that it is possible to write in matrix form as

M, U =M, U* — ﬂBTP““.
p

The matrices written above are

B=[[,(FNAV [, (GEN)AV [ (FENT)aV]

L- [ (BNt NNt avaTy,,
N 0x O oy Oy 0z 0z

Ff = UVNTfEdV fVNTfde fVNszdV]
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6 MESHLESS APPROXIMATION OF THE UNKNOWN FUNCTIONS
6.1 Extended Delaunay Tessellation (EDT)

Let a set of distinct nodes be

N:{n17n27n37"'7nn} in §R3

The Extended Delaunay Tessellation!! within the set N is the unique partition of the
convex hull Q of all the nodes into regions {2; such that 2 = US);, where each (2; is the
polyhedral defined by all the nodes laying on the same sphere, defined by four or more
nodes without any node inside.

The main difference between the traditional Delaunay Tessellation and the Extended
Delaunay Tessellation is that, in the latter, all the nodes belonging to the same empty
sphere define a unique polyhedron. With this definition, the domain Q will be divided
into tetrahedral and other polyhedral, which are unique for a set of node distribution,
satisfying then, the first statement of the definition of a meshless method.

Fig. 1, for instance, is a 2-D polygon partition with a triangle, a quadrangle and a
pentagon. Fig. 2 is a classical 8-nodes polyhedron with all the nodes on the same sphere,
which may appear in a 3-D problem.

Figure 1: Two dimensional partition in polygons. The triangle, the quadrangle and the pentagon are
each inscribed on a circle.

It must be noted that, for non-uniform node distribution, considering infinite precision,
only 4 nodes are needed to define a sphere. Other nodes close to the sphere may define
other spheres very close to the previous one. In order to avoid this situation, which may
hide polyhedral with more than four nodes, a parameter will be introduced. In such a
way, the polyhedral are defined by all the nodes of the same sphere and nearby spheres
where the distance between their center points is smaller than §.

The parameter 6 avoids the possibility of having zero volume or near zero volume
tetrahedral. When ¢ is large, the number of polyhedral with more than four nodes will
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Figure 2: Eight-node polyhedron. All nodes are on the same sphere.

increase, and the number of tetrahedral with near zero volume will decrease, and vice
versa.
The Extended Delaunay Tessellation allows the existence of a domain partition which:

1. is unique for a set of node distribution,
2. is formed by polyhedral with non-zero volume and
3. is obtained in a bounded time of order n.

Then it satisfies the conditions for a meshless method.

6.2 The Meshless Finite Element shape function

Once the domain partition in polyhedral is defined, shape functions must be introduced
to solve a discrete problem. Limiting the study to second-order elliptic PDE’s such as the
Poisson’s equation, C° continuity shape functions are necessary for a weak form solution.
If possible, shape functions must be locally supported in order to obtain band matrices.
They must also satisfy two criteria in order to have a reasonable convergence order, namely
partition of unity and linear completeness. The FEM typically uses linear or quadratic
polynomial shape functions, which ensures C° continuity between elements. When the
elements are polyhedral with different shapes, polynomial shape functions may only be
used for some specific cases.

In order to define the shape functions inside each polyhedral the non-Sibsonian inter-
polation will be used.!?

Let R = {ny,ny,---,n,} be the set of nodes belonging to a polyhedral. The shape
function N;(x) corresponding to the node n; at an internal point x is defined by building
first the Voronoi cell corresponding to the node x; in the tessellation of the set R U {x}
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and then by computing:
si(x)
Nifx) = s (39)
2
where s;(x) is the surface of the Voronof cell face corresponding to the node n; and h;(x)
is the distance between point x and then node n; as seen in Fig. 3.

Figure 3: Five nodes and arbitrary internal point x. Voronoi diagram and shape function parameters.

Non-Sibsonian interpolations have several properties:
1. 0 < N;(x) <1,

2. Y, Ni(x) =1,

3. N;(n;) = 6;; and

4. x =3, N;(x)n,.

Furthermore, the particular definition of the non-Sibsonian shape function for the lim-
ited set of nodes on the same Voronoi sphere, adds the following properties:

e On a polyhedral surface, the shape function depends only on the nodes of this
surface,?

e on triangular surfaces (or in all the polygon boundaries in 2-D), the shape functions
are linear,

e if the polyhedral is a tetrahedral (or a triangle in 2-D) the shape functions are the
linear finite element shape functions,

o the shape functions have C° continuity between two neighboring polyhedral (see
Fig. 4),
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e As a matter of fact, because all the elements nodes are on the same sphere, the
evaluation of the shape functions and its derivatives becomes very simple.

Figure 4: C° continuity of the shape function on a 2-D node connection.

The method defined here is termed the Meshless Finite Element Method (MFEM)
because it is both a meshless method and a Finite Element Method. The algorithm steps
for the MFEM are:

1. For a set of nodes compute all the empty spheres with 4 nodes,

2. generate all the polyhedral elements using the nodes belonging to each sphere and
the nodes of all the coincident and nearby spheres,

3. Calculate the shape functions and their derivatives, using the non-Sibsonian inter-
polation, at all the integration points necessary to evaluate the integrals of the weak
form.

The MFEM is a truly meshless method because the shape functions depend only on
the node positions. Furthermore, steps 1 and 2 of the node connectivity are of order n
avoiding all the mesh “cosmetics” often needed in mesh generation.

Fig. 5 shows the shape function and its first derivatives for a node of a 2-D pentagon.
The shape function takes the value 1 at the node and 0 at the other nodes. The linear
behavior on the boundaries can be appreciated.

There is an important difference between the MFEM shape functions proposed here
and the Natural Element Method (NEM)%! shape functions. Both method use shape
functions based on Voronoi diagrams, but they are completely different. The NEM shape
functions have C'® continuity everywhere except at the nodes where it is C° and are built
using the Voronoi diagram of all the natural neighbor nodes at each point x. In this
way very complicated shape functions are obtained which are difficult to differentiate and
which need several integration points for the numerical computation of the integrals. See
Fig. 6 for a graphic representation of the NEM and MFEM shape functions.
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Figure 5: Shape function and its first derivatives for a typical node of a pentagon.

<> <€

Figure 6: Shape functions in a 2-D regular node distribution. a)MFEM; b)NEM.

.

i

7 BOUNDARY SURFACES

One of the main problems in mesh-generation is the correct definition of the domain
boundary. Sometimes, boundary surfaces nodes are explicitly defined as special nodes,
which are different from internal nodes. In other cases, the total set of nodes is the only
information available and the algorithm must recognize the boundaries. Such is the case
in Lagrangian formulation in which, at each time step, a new node distribution is obtained
and the free surface must be recognized from the node positions.

The use of Voronoi diagram or Voronoi spheres can make it easier to recognize boundary
surface nodes. By considering that the node follows a variable h(x) distribution, where
h(x) is the minimum distance between two nodes, the following criterion has been used:

All nodes which are on an empty sphere with a radius r(x) bigger than ah(x),
are considered as boundary nodes.

In this criterion, « is a parameter close to, but bigger than one. This criterion is known
as the Alpha Shape concept.'3
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Once a decision has been made concerning on which of the nodes are on the boundaries,
the boundary surface must be defined. It is well known that, in 3-D problems, the surface
fitting a number of nodes is not unique. For instance, four boundary nodes on a same
sphere may define two different boundary surfaces, one concave and the other convex.

In this paper, the boundary surface is defined with all the polyhedral surfaces having
all their nodes on the boundary and belonging to just one polyhedral.

The correct boundary surface may be important to define the correct normal external
to the surface. Furthermore, in weak form it is also important a correct evaluation of the
volume domain. Nevertheless, it must be noted that in the criterion proposed above, the
error in the boundary surface definition is of order h. This is the standard error of the
boundary surface definition in a meshless method for a given node distribution.

8 NUMERICAL TEST

In order to show the possibilities of the method, two and three dimensional problems will
be tested.

8.1 2-D problems

8.1.1 Water column collapse

This problem was solved by Koshizuka and Oka? experimentally and numerically. It
became a classical example to test the validation of Lagrangian formulations in fluid
flows. The water is first located at left supported by a removable board. The collapse
starts at time ¢ = 0, when the removable board is slide-up. Fig. 7 shows the point
positions at different time steps.

8.1.2 Wave hitting a boat

This example (Fig. 8) shows a wave hitting the sourface of a boat.

8.2 3-D problems

A water column collapse problem as well as other collapse of water from other open
recipients have been tested to show the powerful of the method developed.Fig. 9 and Fig.
10 show some of the results.

9 CONCLUSIONS

Lagrangian formulations in connection with meshless approximation is an excellent com-
bination to solve fluid mechanical problems, particularly those in which the free surface
moves continuously.

Contact problems, as well as breaking waves and collapse problems, may be solved
easily without any additional constraint.
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Figure 7: Water column collapse.
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Figure 8: Wave hitting a boat.
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Figure 9: Water column collapse in 3-D.
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Figure 10: Water column collapse in 3-D with opened walls.
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