Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XLI, pp. 127-136 C.I. Pairetti, M.A. Pucheta, M.A. Storti, C.M. Venier (Eds.) R. Jaca, D. Felix (Issue eds.) Rosario, November 5-8, 2024

DETERMINACIÓN DE FRECUENCIAS NATURALES DE VIBRACIÓN TRANSVERSAL EN PLACAS FG RECTANGULARES DELGADAS CON PRESENCIA DE HUECOS EN SU DOMINIO

DETERMINATION OF NATURAL FREQUENCIES OF TRANSVERSE VIBRATION IN THIN RECTANGULAR FG PLATES WITH THE PRESENCE OF GAPS IN THEIR DOMAIN

Gonzalo J. Gilardi^a, Daniel H. Felix^a y Alejandro R. Ratazzi^a

^aDepartamento de Ingeniería (UNS), Instituto de Ingeniería-II-UNS (UNS-CIC) Universidad Nacional del Sur (UNS), Avenida Alem 1253, 8000 Bahía Blanca, Argentina gonzalo.gilardi@uns.edu.ar, dhfelix@uns.edu.ar, alejandro.ratazzi@uns.edu.ar, http://www.uns.edu.ar.

Palabras clave: placas rectangulares, vibraciones, frecuencias naturales, huecos, Ritz.

Resumen. En el presente trabajo, se busca determinar los coeficientes de frecuencia natural de vibración transversal de placas FG rectangulares delgadas, con variación continua de sus propiedades mecánicas a lo largo de su espesor y presencia de huecos en su dominio. Las placas FG deben su denominación a que se encuentran construidas con materiales funcionalmente graduados. El análisis propuesto es una continuación de trabajos presentados anteriormente que agrega la presencia de singularidades en el dominio de la placa, dadas por la existencia de uno o más huecos de forma rectangular, que resulten necesarios debido a diferentes requerimientos de diseño. Para obtener dichos valores, se recurre a la modelización numérica, mediante la aplicación del método de Ritz y del método de elementos finitos. En los casos en que resulte posible, se comparan los valores obtenidos con los hallados en la literatura técnico-científica disponible.

Keywords: rectangular plates, vibrations, natural frequencies, holes, Ritz.

Abstract. In the present work, we seek to determine the natural frequency coefficients of transverse vibration of thin rectangular FG plates, with continuous variation of their mechanical properties throughout their thickness and presence of voids in their domain. FG plates owe their name to the fact that they are built with functionally graded materials. The proposed analysis is a continuation of works presented previously that adds the presence of singularities in the domain of the plate, given by the existence of one or more rectangular holes, which are necessary due to different design requirements. To obtain these values, numerical modeling is used, through the application of the Ritz method and the finite element method. In cases where it is possible, the values obtained are compared with those found in the available technical-scientific literature.

1. INTRODUCCIÓN

El material funcionalmente graduado propuesto en el presente estudio, que denominaremos material FG por su sigla, (Quintana et al., 2019), consiste en una mezcla, en proporciones variables en el espesor, de un material cerámico y de un material metálico, que se combinan con el fin de aprovechar convenientemente las ventajas de ambos compuestos. Las primeras investigaciones, que utilizan materiales FG, se deben a científicos japoneses que propusieron agregar al material metálico de base, el material cerámico que le confiriera aislación térmica a la estructura, (Koizumi, 1997). Al considerar la utilización de un material FG en el análisis dinámico de una placa rectangular delgada, con presencia de huecos en su interior, se propone una adaptación o generalización de los algoritmos correspondientes a la placa de material homogéneo (Felix et al., 2003), siendo la combinación de ambos algoritmos, el objeto del presente trabajo. Entre los trabajos posteriores al mencionado se destacan los aportes de (Zhao et al., 2009) y (Mohammadi et al., 2010), quienes se enfocaron en el comportamiento estático, y los trabajos de (Chakraverty y Pradhan, 2014) y (Quintana et al., 2019), que analizaron las vibraciones transversales de dicho tipo de placas.

En primer lugar se aplica el método de Ritz para determinar los primeros coeficientes de frecuencia de vibración transversal de una placa de material homogéneo con presencia de un hueco en su interior. Los modelos propuestos se definieron, considerando diferentes condiciones de contorno de la placa, diferentes dimensiones relativas de los huecos y diferentes leyes de variación de las propiedades mecánicas de los materiales componentes en del espesor de la misma.

2. CARACTERÍSTICAS DEL MODELO ANALIZADO

2.1. Distribución de las propiedades del material en el espesor de la placa

La Fig.1 muestra esquemáticamente la geometría y distribución del material en el modelo analizado. La placa FG es isótropa en el plano, presenta un hueco en su interior y está constituida

Figura 1: Placa rectangular delgada, funcionalmente graduada e isótropa en el plano, con un hueco y con distribución asimétrica de las propiedades mecánicas del material en el espesor.

por una mezcla de un material cerámico y un material metálico, en proporciones que varían en

el espesor de la misma. Se considera el caso en que las propiedades mecánicas de dicha mezcla, $E(\bar{z})$ y $\rho(\bar{z})$ varían en forma continua y asimétrica en el espesor, de acuerdo a la siguiente ley de variación, Quintana et al. (2019):

$$E(\bar{z}) = E_m + (E_c - E_m) \left(\frac{\bar{z}}{h} + \frac{1}{2}\right)^n con - \frac{h}{2} \le \bar{z} \le \frac{h}{2} ; \ n \ge 0$$
(1a)

$$\rho(\bar{z}) = \rho_m + (\rho_c - \rho_m) \left(\frac{\bar{z}}{h} + \frac{1}{2}\right)^n \, con - \frac{h}{2} \le \bar{z} \le \frac{h}{2} \; ; \; n \ge 0 \tag{1b}$$

en las que E_m y ρ_m representan el módulo elástico y la densidad del material metálico y E_c y ρ_c representan el módulo elástico y la densidad del material cerámico, mientras que n es un coeficiente exponencial que define la forma en que cambian las propiedades del material en el espesor. Las Ecs.(1a,b) pueden independizarse del espesor h de la placa y ser referidas al material metálico, con el fin de obtener una expresión adimensional que defina la ley de variación de las propiedades mecánicas de la mezcla en el espesor de la placa. Tenemos así los siguientes parámetros adimensionales: $z = \bar{z}/h$, $E_{rat} = E_c/E_m$, $E^*(z) = E(z)/E_m$, $\rho_{rat} = \rho_c/\rho_m$ y $\rho^*(z) = \rho(z)/\rho_m$ resultando finalmente:

$$E^*(z) = \frac{E(z)}{E_m} = 1 + (E_{rat} - 1)\left(z + \frac{1}{2}\right)^n \ con - \frac{1}{2} \le z \le \frac{1}{2} \ ; \ n \ge 0$$
(2a)

$$\rho^*(z) = \frac{\rho(z)}{\rho_m} = 1 + (\rho_{rat} - 1)\left(z + \frac{1}{2}\right)^n \ con - \frac{1}{2} \le z \le \frac{1}{2} \ ; \ n \ge 0$$
(2b)

La Figura 2 muestra las leyes adimensionales de variación del módulo elástico y de la densidad del material en el espesor de la placa.

Figura 2: Ley de variación de las propiedades del material en el espesor de la placa, para diferentes valores del exponente n.

Debido a la distribución asimétrica del módulo elástico E(z) en el espesor de la placa se produce un corrimiento del centro elástico respecto al centro geométrico de la sección transversal de la misma, ubicándose éste en el centroide del diagrama E(z). Si denominamos z_0 a la forma adimensional de dicho corrimiento, el mismo puede obtenerse con la expresión del centro elástico, Kumar et al. (2018), dada en este caso en forma adimensional:

1 / 9

$$z_0 = \frac{\int_{-1/2}^{1/2} E(z)zdz}{\int_{-1/2}^{1/2} E(z)dz} = \frac{n(E_{rat} - 1)}{2(n+2)(E_{rat} + n)}$$
(3)

Obtenido el corrimiento z_0 , que nos da el desplazamiento del plano neutro, de acuerdo a Reddy (2003), podemos obtener el coeficiente de rigidez flexional de la placa FG, D^{FG} , mediante la siguiente expresión que contempla el desplazamiento z_0 del plano neutro de la misma, debido a la distribución asimétrica del módulo elástico E(z) en su espesor, Kumar et al. (2018):

$$D^{FG} = h^3 \int_{-1/2}^{1/2} \frac{E(z)}{1 - \nu^2} (z - z_0)^2 dz = \frac{12 D_c}{E_{rat}} \left(c_0(n) - c_1(n) z_0 + c_2(n) z_0^2 \right)$$
(4)

siendo:

$$D_c = \frac{E_c h^3}{12(1-\nu^2)}$$
(5a)

$$c_0(n) = \frac{3E_{rat}(n^2 + n + 2) + (n^3 + 3n^2 + 8n)}{12(n+1)(n^2 + 5n + 6)}$$
(5b)

$$c_1(n) = \frac{n(E_{rat} - 1)}{(n+1)(n+2)}$$
(5c)

$$c_2(n) = \frac{E_{rat} + n}{n+1} \tag{5d}$$

asumiendo en la Ec.(4), que el módulo de Poisson ν se mantiene constante en todo el dominio de la placa. Si en dicha ecuación, hacemos n = 0, se obtiene el coeficiente de rigidez flexional, D_c , de la placa homogénea de material cerámico, resultando de la Ec.(3), $z_0 = 0$.

La Figura 3a, muestra la variación del coeficiente de rigidez flexional $D_{FG}^* = D_{FG}/h^3$, independizado del espesor de la placa, con el exponente *n*, dado en las Ecs.(1a,b).

Con la densidad $\rho^*(z)$ dada en la Ec.(2b) podemos obtener el denominado coeficiente inercial para la placa FG, I_0^{FG} , mediante la expresión:

$$I_0^{FG} = h \int_{-1/2}^{1/2} \rho(z) dz = \frac{\rho_c h}{\rho_{rat}} \left(\frac{\rho_{rat} - 1}{n+1} + 1 \right)$$
(6)

puede observarse en la Ec.(6) que el coeficiente inercial I_0^H , de la placa homogénea de material cerámico, se obtiene haciendo n = 0, resultando $I_0^H = \rho_c h$.

La Figura 3b, muestra la variación del coeficiente inercial $I_0^{FG^*} = I_0^{FG}/h$, independizado del espesor de la placa, con el exponente *n*, dado en las Ecs.(1a,b).

3. ECUACIONES DEL SISTEMA GOBERNANTE

Cuando la placa objeto de estudio realiza vibraciones transversales libres, podemos evaluar la energía potencial total de la misma mediante la funcional gobernante del problema, la cuál para el modelo planteado se expresa en la forma:

$$J[W] = U_{max}^{FG} - T_{max}^{FG}$$

$$\tag{7}$$

En la Ec.(7), U_{max}^{FG} representa la energía máxima de deformación mientras que T_{max}^{FG} representa la correspondiente energía cinética máxima, ambas para la placa FG en el espesor. Combinando la teoría de placas delgadas, isótropas en el plano, (Reddy, 2003); la teoría de placas

Figura 3: Propiedades de la placa versus el exponente n: a) D_{FG}^* , b) $I_0^{FG^*}$.

FG en el espesor de la placa, (Kumar et al., 2018) y teniendo además en cuenta la presencia de un hueco en su interior, (Felix et al., 2005).

Dichas energías se pueden expresar en la siguiente forma:

$$U_{max}^{FG} = \frac{1}{2} D^{FG} \int_{\bar{A}_n} \left(\frac{\partial^2 W}{\partial \bar{x}^2} \right)^2 d\bar{x} d\bar{y} + D^{FG} \nu \int_{\bar{A}_n} \frac{\partial^2 W}{\partial \bar{x}^2} \frac{\partial^2 W}{\partial \bar{y}^2} d\bar{x} d\bar{y} + \frac{1}{2} D^{FG} \int_{\bar{A}_n} \left(\frac{\partial^2 W}{\partial \bar{y}^2} \right)^2 d\bar{x} d\bar{y} + (1 - \nu) D^{FG} \int_{\bar{A}_n} \left(\frac{\partial^2 W}{\partial \bar{x} \bar{y}} \right)^2 d\bar{x} d\bar{y}$$

$$T_{max}^{FG} = \frac{1}{2} I_0^{FG} \omega_{FG}^2 \int_{\bar{A}_n} W^2 d\bar{x} d\bar{y}$$
(8a)
(8b)

siendo $\bar{A}_n = \bar{A}_p - \bar{A}_h$, el área de integración neta que resulta de restar al área de la placa el área del hueco. La forma adimensional de las Ecs.(8) resulta:

$$U_{max}^{FG} = \frac{D^{FG}b}{2a^3} \int_{A_n} W_{xx}^2 dx dy + \frac{D^{FG}\nu}{ab} \int_{A_n} W_{xx} W_{yy} dx dy + \frac{D^{FG}a}{2b^3} \int_{A_n} W_{yy}^2 dx dy + \frac{(1-\nu)D^{FG}}{ab} \int_{A_n} W_{xy}^2 dx dy$$

$$T_{max}^{FG} = \frac{1}{2} I_0^{FG} \omega_{FG}^2 a b \int_{A_n} W^2 dx dy$$
(9a)
(9b)

siendo $A_n = A_p - A_h$, el área neta normalizada de integración.

De acuerdo al principio de mínima energía potencial total, cuando la placa efectúe vibraciones transversales libres, lo hará de manera tal que la funcional de energía, que gobierna el sistema analizado alcance un valor mínimo. Cada una de estas formas naturales que adopta la amplitud de desplazamiento, y que minimizan la funcional es una de las formas modales o modos naturales de vibración del sistema. Se impone la condición descripta, estableciendo que la primera variación de la funcional gobernante sea igual a cero, es decir:

$$\delta J[W] = \delta U_{max}^{FG} - \delta T_{max}^{FG} = 0 \tag{10}$$

Al reemplazar las Ecs.(9) en la Ec. variacional (10) y multiplicarla por $a b/D^{FG}$ se tiene la

expresión analítica exacta que permite obtener los coeficientes de frecuencia natural o autovalores Ω^{FG} de la placa funcionalmente graduada en estudio:

$$\lambda^{-2} \int_{A_n} W_{xx} \, \delta W_{xx} dx dy + \nu \int_{A_n} \left(W_{xx} \, \delta W_{xx} + W_{yy} \, \delta W_{yy} \right) dx dy + \lambda^2 \int_{A_n} W_{yy} \, \delta W_{yy} dx dy + (1 - \nu) \int_{A_n} W_{xy} \, \delta W_{xy} dx dy - \frac{I_0^{FG}}{D^{FG}} \omega_{FG}^2 \, a^4 \lambda^{-2} \int_{A_n} W \, \delta W dx dy = 0$$

$$(11)$$

Por otra parte, el caso particular de la placa homogénea podrá resolverse haciendo el exponente n de las Ecs.(4) y (6) igual a cero, resultando:

$$\lambda^{-2} \int_{A_n} W_{xx} \, \delta W_{xx} dx dy + \nu \int_{A_n} \left(W_{xx} \, \delta W_{xx} + W_{yy} \, \delta W_{yy} \right) dx dy + \lambda^2 \int_{A_n} W_{yy} \, \delta W_{yy} dx dy + (1 - \nu) \int_{A_n} W_{xy} \, \delta W_{xy} dx dy - \frac{\rho_c h}{D_c} \omega_H^2 \, a^4 \lambda^{-2} \int_{A_n} W \, \delta W dx dy = 0$$
(12)

Comparando las expresiones (11) y (12), se observa que los términos integrales son idénticos, con lo cual se tiene:

$$\frac{I_0^{FG}}{D^{FG}}\omega_{FG}^2 a^4 = \frac{\rho_c h}{D_c}\omega_H^2 a^4 = \Omega_H^2$$
(13)

Finalmente, multiplicando la Ec.(13) por $D^{FG}\rho_c h/I_0^{FG}D_c$ se alcanza la siguiente relación:

$$\Omega_{FG}^{2} = \frac{\rho_{c}h}{D_{c}}\omega_{FG}^{2} a^{4} = \Omega_{H}^{2} \frac{D^{FG}\rho_{c}h}{I_{0}^{FG}D_{c}}$$
(14)

La Ec. (14) puede resumirse definiendo:

$$C_n = \sqrt{\frac{D^{FG}\rho_c h}{I_0^{FG}D_c}} \tag{15}$$

con lo cual la relación entre coeficientes de frecuencia resulta:

$$\Omega_{FG} = C_n \,\Omega_H \tag{16}$$

siendo:

$$\Omega_{FG} = \sqrt{\frac{\rho_c h}{D_c}} \,\omega_{FG} \,a^2; \quad \Omega_H = \sqrt{\frac{\rho_c h}{D_c}} \,\omega_H \,a^2 \tag{17}$$

El coeficiente C_n , permite calcular los coeficientes de frecuencia de las placa funcionalmente graduada a partir de los coeficientes de frecuencia de la correspondiente placa homogénea, es decir con idénticas condiciones de borde y huecos en su dominio.

Resulta importante aclarar que la relación obtenida, entre Ω_{FG} y Ω_H , dada por la Ec.(16) es independiente de la función aproximante W_a elegida, con lo cual la misma solo se requiere para obtener los Ω_H . En el presente trabajo, para obtener los coeficientes Ω_H , se utilizaron como funciones aproximantes funciones-viga. Un desarrollo detallado de las mismas puede hallarse en Felix et al. (2003).

4. RESULTADOS NUMÉRICOS

Con los algoritmos expuestos, se obtuvieron los primeros coeficientes de frecuencia natural de una placa rectangular delgada e isótropa en el plano, de material funcionalmente graduado en el espesor de la misma. En todos los casos, se consideran 3 tipos de dominio:

- Maciza, que denominaremos *Placa_m*.
- Con un hueco centrado de coordenadas adimensionales $x_1 = y_1 = 0,4, x_2 = y_2 = 0,6,$ que denominaremos $Placa_{h_1}$
- Con un hueco centrado de coordenadas adimensionales $x_1 = y_1 = 0,3$, $x_2 = y_2 = 0,7$, que denominaremos $Placa_{h_2}$.

Se adoptan en todos los casos, 5 tipos diferentes de distribución de los materiales de la mezcla, (cerámico y metal) en el espesor, definidas por el coeficiente exponencial n de las Ecs. (1a,b).

Los casos mencionados se resolvieron para 2 condiciones de borde diferentes: a) Simplemente apoyada en el contorno, (A-A-A) y b) Con 2 lados enfrentados, simplemente apoyados y los otros 2 empotrados, (E-A-E-A). Para cada condición de contorno se tuvieron en cuenta 2 relaciones de lado: $\lambda = a/b = 1$ y $\lambda = a/b = 0,5$. La Tabla 1 muestra los primeros 6 coeficientes de frecuencia de la placa FG, isótropa en el plano, tanto maciza como hueca y simplemente apoyada en su contorno, que tiene la relación de lados $\lambda = 1$. Se observa en todos los casos, que los coeficientes de frecuencia disminuyen, conforme se incrementa el valor del exponente n. Ésto se debe a que cuanto más elevado es n, mayor es la proporción de aluminio en la mezcla y por lo tanto la placa será menos rígida.

n	Modelo	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6
0	$Placa_m$	19.7392	49.3480	49.3480	78.9568	98.6960	98.6960
	$Placa_{h_1}$	19.2396	48.3699	48.3699	76.6255	95.7256	103.736
	$Placa_{h_2}$	20.8393	42.0566	42.0566	71.9067	85.2666	119.439
0.5	$Placa_m$	16.7142	41.7854	41.7854	66.8566	83.5708	83.5708
	$Placa_{h_1}$	16.2911	40.9572	40.9572	64.8826	81.0555	87.8387
	$Placa_{h_2}$	17.6456	35.6114	35.6114	60.8870	72.1994	101.135
1	$Placa_m$	15.0610	37.6524	37.6524	60.2439	75.3048	75.3048
	$Placa_{h_1}$	14.6798	36.9061	36.9061	58.4651	73.0384	79.1506
	$Placa_{h_2}$	14.4562	32.0891	32.0891	54.8646	65.0582	91.1317
2	$Placa_m$	13.6931	34.2327	34.2327	54.7723	68.4653	68.4653
	$Placa_{h_1}$	14.6798	33.5542	33.5542	53.1550	66.4047	71.9618
	$Placa_{h_2}$	14.4562	29.1746	29.1746	49.8816	59.1493	82.8548
5	$Placa_m$	12.9831	32.4578	32.4578	51.9325	64.9156	64.9156
	$Placa_{h_1}$	12.6545	31.8145	31.8145	50.3991	62.9618	68.2308
	$Placa_{h_2}$	13.7067	27.6620	27.6620	47.2954	56.0826	78.5590

Tabla 1: Primeros coeficientes de frecuencia $\Omega_i^{FG} = \sqrt{\rho_c h/D_c} \omega_i^{FG} a^2$, de una placa FG rectangular e isótropa, A-A-A, con $\lambda = 1$. a) Maciza, b) Con hueco menor, c) Con hueco mayor.

Para los mismos casos anteriores, en la Tabla 2 se muestran los primeros 6 coeficientes de frecuencia de la placa FG, con una relación de lados $\lambda = 0.5$.

Con el fin de visualizar la variación de las propiedades dinámicas de la placa con el cambio en la composición de los materiales componentes, en la Figura 4 se muestra como varían los

n	Modelo	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6
0	$Placa_m$	12.3370	19.7392	32.0762	41.9458	49.3480	49.3480
	$Placa_{h_1}$	11.6153	19.6086	32.3189	39.7093	48.2980	48.7132
	$Placa_{h_2}$	11.8566	19.1071	26.1980	34.3719	43.8481	52.9614
0.5	$Placa_m$	10.4463	16.7142	27.1605	35.5176	41.7854	41.7854
	$Placa_{h_1}$	9.83520	16.6036	27.3660	33.6238	40.8963	41.2478
	$Placa_{h_2}$	10.0395	16.1789	22.1832	29.1044	37.1284	44.8451
1	$Placa_m$	9.41310	15.0610	24.4741	32.0046	37.6524	37.6524
	$Placa_{h_1}$	8.86240	14.9613	24.6592	30.2981	36.8513	37.1680
	$Placa_{h_2}$	9.04650	14.5787	19.9890	26.2257	33.4560	40.4094
2	$Placa_m$	8.55820	13.6931	22.2512	29.0978	34.2327	34.2327
	$Placa_{h_1}$	8.05750	13.6025	22.4196	27.5463	33.5043	33.7923
	$Placa_{h_2}$	8.22490	13.2546	18.1735	23.8437	30.4174	36.7393
5	$Placa_m$	8.11440	12.9831	21.0976	27.5891	32.4578	32.4578
	$Placa_{h_1}$	7.63970	12.8972	21.2572	26.1181	31.7672	32.0402
	$Placa_{h_2}$	7.79840	12.5674	17.2313	22.6075	28.8403	34.8345

Tabla 2: Primeros coeficientes de frecuencia $\Omega_i^{FG} = \sqrt{\rho_c h/D_c} \omega_i^{FG} a^2$, de una placa FG rectangular e isótropa, A-A-A, con $\lambda = 0, 5$. a) Maciza, b) Con hueco menor, c) Con hueco mayor.

primeros coeficientes de frecuencia de una placa FG simplemente apoyada en su contorno y con una relación de lados $\lambda = 1/2$ versus la variación continua de la composición del material dada por el exponente n.

Figura 4: Variación de los coeficientes de frecuencia, $\Omega_i^{FG} = \sqrt{\rho_c h/D_c} \omega_i^{FG} a^2$ de una placa FG A-A-A, con hueco centrado, de coordenadas $x_1 = y_1 = 0.4$, $x_2 = y_2 = 0.6$. $\lambda = 0.5$.

Mientras que, de un modo similar, en la Figura 5 se muestran como varían los primeros coeficientes de frecuencia de una placa FG empotrada en dos bordes opuestos y simplemente apoyada en los otros dos lados, con una relación de lados $\lambda = 0.5$.

La Tabla 3 muestra los primeros 6 coeficientes de frecuencia de una placa FG, isótropa en el plano y con 2 lados enfrentados simplemente apoyados y los otros 2 empotrados, que tiene una relación de lados $\lambda = 1$.

n	Modelo	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6
0	$Placa_m$	28.9521	54.7557	69.3260	94.5876	102.254	129.099
	$Placa_{h_1}$	29.6763	54.5889	69.1750	92.1246	103.416	132.936
	$Placa_{h_2}$	35.9582	49.4806	57.1134	88.3265	105.582	132.680
0.5	$Placa_m$	24.5152	46.3643	58.7018	80.0920	86.5840	109.315
	$Placa_{h_1}$	25.1284	46.2231	58.5738	78.0064	87.5680	112.564
	$Placa_{h_2}$	30.4476	41.8976	48.3607	74.7904	89.4018	112.347
1	$Placa_m$	22.0904	41.7784	52.8956	72.1701	78.0200	98.5027
	$Placa_{h_1}$	22.6430	41.6512	52.7803	70.2908	78.9067	101.430
	$Placa_{h_2}$	27.4360	37.7535	43.5774	67.3929	80.5591	101.235
2	$Placa_m$	20.0840	37.9839	48.0914	65.6153	70.9339	89.5563
	$Placa_{h_1}$	20.5864	37.8683	47.9866	63.9067	71.7400	92.2178
	$Placa_{h_2}$	24.9442	34.3246	39.6195	61.2720	73.2424	92.0403
5	$Placa_m$	19.0427	36.0146	45.5980	62.2133	67.2561	84.9130
	$Placa_{h_1}$	19.5191	35.9049	45.4986	60.5933	68.0205	87.4366
	$Placa_{h_2}$	23.6509	32.5450	37.5653	58.0952	69.4450	87.2683

Tabla 3: Primeros coeficientes de frecuencia $\Omega_i^{FG} = \sqrt{\rho_c h/D_c} \omega_i^{FG} a^2$, de una placa FG rectangular e isótropa, E-A-E-A, con $\lambda = 1$. a) Maciza, b) Con hueco menor, c) Con hueco mayor.

Figura 5: Variación de los coeficientes de frecuencia, $\Omega_i^{FG} = \sqrt{\rho_c h/D_c} \omega_i^{FG} a^2$ vs. *n* de una placa FG E-A-E-A, con hueco centrado de coordenadas $x_1 = y_1 = 0.4$, $x_2 = y_2 = 0.6$. $\lambda = 1$.

En las Figuras 4 y 5 también se puede observar que las frecuencias se reducen rápidamente para valores del exponente n que oscilan entre 0 y 2, haciéndose luego las curvas asintóticas al eje horizontal.

5. CONCLUSIONES

Se desarrollaron los algoritmos que permiten calcular los primeros coeficientes de frecuencia natural de vibración transversal, en una placa isótopa en el plano, funcionalmente graduada en el espesor, tanto maciza como con presencia de un hueco de distintas dimensiones en su interior. Con dichos algoritmos se resolvieron algunos casos, a modo de ejemplo, en los cuales se consideraron diferentes condiciones de borde y diferentes relaciones de lado λ de la placa, así

como diferentes dimensiones del hueco. De los algoritmos desarrollados, su implementación y los resultados obtenidos surgen las siguientes conclusiones:

- Es posible obtener los coeficientes de frecuencia de la placa funcionalmente graduada en el espesor, Ω_i^{FG} a partir de los coeficientes de frecuencia de la placa homogénea, siempre que esta última tenga las mismas propiedades geométricas y condiciones de borde.
- Su implementación resulta sencilla y de muy bajo esfuerzo computacional, debido a que solo se requiere en cada caso, obtener el coeficiente C_n de transformación de la frecuencia de la placa homogénea, en el correspondiente coeficiente de frecuencia de la placa funcionalmente graduada.
- En cuanto a los resultados obtenidos en los ejemplos dados, se observa claramente la relación existente entre la pérdida de rigidez de la placa, conforme se incrementa el valor del exponente n, que define las propiedades del material resultante y la disminución en todos los coeficientes de frecuencia.
- En todos los casos resueltos, el mayor gradiente del valor de los coeficientes de frecuencia se observa, para valores muy bajos del exponente n, como puede apreciarse en las Figuras 4 y 5.

AGRADECIMIENTOS

El trabajo se desarrolló en el Departamento de Ingeniería de la Universidad Nacional del Sur (DI-UNS) y bajo el auspicio de la Secretaría General de Ciencia y Tecnología de la UNS, (SGCyT-UNS), del Instituto de ingeniería II-UNS y de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, (CIC).

REFERENCIAS

- Chakraverty S. y Pradhan K.K. Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. *Aerosp. Sci.Technol.*, 36:132–156, 2014.
- Felix D., Bambill D., Rossit C., Rossi R., y P.A.A. L. Natural frequencies of a vibrating repaired panel in an ocean structure. *Ocean Eng.*, 30:955–963, 2003.
- Felix D.H., Rossit C.A., A. L.P.A., y Bambill D.V. Frecuencias naturales y modos normales de vibración transversal de una placa rectangular ortÓtropa, libre de vinculación. *Mecánica Computacional*, 24:3267–3286, 2005.
- Koizumi M. FGM activities in Japan. Compos. Part B: Eng., 28(1-2):1-4, 1997.
- Kumar S., Ranjan V., y Jana P. Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. *Compos. Struct.*, 197:39–53, 2018.
- Mohammadi M., Saidi A.R., y Jomehzadeh E. Levy solution for buckling analysis of functionally graded rectangular plates. *Appl. Compos. Mater.*, 17(2):81–93, 2010.
- Quintana M.V., Gilardi G.J., Grossi R.O., Bambill D.V., y Rossit C.A. Vibraciones libres de placas delgadas funcionalmente graduadas. *Mecánica Computacional*, 37:329–338, 2019.
- Reddy J.N. *Mechanics of Composite Laminated Plates and Shell: Theory and Analysis.* C.R.C. Press, 2003.
- Zhao X., Lee Y.Y., y Liew K.M. Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. *J. Sound Vib.*, 319(3-5):918–939, 2009.