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Resumen. Las normativas actuales de análisis estructural especifican que las estructuras deben ser ana-

lizadas considerando la presencia de imperfecciones en su geometría, esto es, desvíos respecto de la

geometría ideal o perfecta especificada en el diseño. Las normas también indican que se debe considerar

aquella imperfección que produzca el mayor efecto desestabilizante, sin embargo, no propone criterios

para obtenerlas. En este trabajo se presenta una metodología para calcular la peor imperfección de una

estructura formada por vigas y columnas. Es bien conocido que la forma de la peor imperfección está

asociada a los primeros modos de pandeo y en particular si la primera carga crítica se encuentra sufi-

cientemente separada de la segunda, entonces la peor imperfección viene dada por el primer modo de

pandeo, este es el caso típico de la mayoría de las estructuras aporticadas. Luego se propone un método

iterativo eficiente para encontrar los dos primeros modos de pandeo para verificar que el primer modo de

pandeo es efectivamente la peor imperfección.

Keywords: Steel Structures, stability, imperfections, buckling modes.

Abstract. Current structural analysis codes specify that structures must be analyzed considering the

presence of imperfections in their geometry—that is, deviations from the ideal or perfect geometry de-

fined in the design. These standards also state that the imperfection causing the greatest destabilizing

effect must be considered; however, they do not propose criteria for identifying it. This work presents a

methodology for calculating the worst imperfection in a structure composed of beams and columns. It

is well known that the shape of the worst imperfection is associated with the first buckling modes, and

particularly, if the first critical load is sufficiently separated from the second, then the worst imperfection

corresponds to the first buckling mode. This is typically the case for most frame structures. An efficient

iterative method is then proposed to find the first two buckling modes in order to verify that the first mode

indeed represents the worst imperfection.

Mecánica Computacional Vol XLII, pp. 209-217
A. Caggiano, G. Etse, P. Folino, M. Goldschmit, M. Pucheta, M. Storti (Eds.)

J. Ballaben, D. Felix, R. Jaca (Issue eds.)
Buenos Aires, November 11-14, 2025

Copyright © 2025 Asociación Argentina de Mecánica Computacional
ISSN: 2591-3522 DOI: 10.70567/mc.v42.ocsid8562

http://www.frba.utn.edu.ar
http://www.frba.utn.edu.ar
https://creativecommons.org/licenses/by/4.0
http://www.amcaonline.org.ar
https://doi.org/10.70567/mc.v42.ocsid8562


1. INTRODUCCIÓN

Definimos a una imperfección como un desvío en la geometría de una estructura "perfec-

ta"generando una estructura "imperfecta". Las estructuras reales son imperfectas y el efecto de

las imperfecciones implica la aparición de efectos de segundo orden que aumentan los esfuerzos

sobre la estructura y pueden llevarla a una pérdida de estabilidad (colapso estructural) (Bazant

y Cedolin, 2010; Godoy, 1996).

En los últimos años las normas más modernas de Estados Unidos (ANSI/AISC, 2019) y

Europa (EUROCODE, 2009) (en nuestro país el (INTI-CIRSOC, 2018)) recomiendan la incor-

poración de imperfecciones en el análisis y permiten su modelado directo para la verificación de

la estabilidad de estructuras metálicas. El modelado directo consiste en desplazar directamen-

te las coordenadas de los nodos de una estructura para representar directamente la geometría

imperfecta.

Estas normas recomiendan emplear la “peor” imperfección para analizar la estructura, esto

es utilizar aquella que causa el mayor efecto desestabilizante. Ha sido sugerido hace muchos

años atrás (Timoshenko y Gere, 1961) que el primer modo de pandeo tiene esta propiedad y

se ha demostrado en la tesis (Toledo, 2021) que para que esto sea cierto las cargas críticas de

pandeo correspondientes al primero y segundo modo deben estar separadas. Si esto no ocurriera

hay que usar procedimientos especiales (que se muestran en la Tesis) para encontrar la peor

imperfección como una combinación lineal de los modos de pandeo más bajos.

La determinación de los modos de pandeo conlleva la utilización de rutinas complejas, es un

problema de autovalor y autovector conocido en inglés como "buckling problem". En estructu-

ras aporticadas, compuestas por vigas y columnas, en general, la carga crítica del primer modo

de pandeo es sustancialmente más baja que la del segundo modo, por lo que se puede asumir

como peor imperfección al primer modo de pandeo.

En este trabajo presentaremos un procedimiento iterativo simplificado para obtener sólo el

primer y segundo modo de pandeo y sus cargas críticas asociadas, de manera que si están su-

ficientemente separadas se pueda utilizar con confianza al primer modo de pandeo como peor

imperfección para el análisis.

2. ANÁLISIS DEL SISTEMA PERFECTO

Asumiremos que las cargas son proporcionales a un parámetro de cargas λ, esto es, todas las

cargas se incrementan o disminuyen de manera proporcional a este parámetro (figura 1).

Figura 1: Sistema estructural y cargas.
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Luego, bajo la acción de las cargas, el sistema estructural se deforma adoptando diferentes

configuraciones deformadas (figura 2).

Figura 2: Estructura deformada.

Asumiremos que estas configuraciones deformadas quedan completamente definidas por un

conjunto discreto de n coordenadas generalizadas ui que se pueden ordenar en un vector u de

coordenadas generalizadas como:

u =
{

u1 u2 u3 ... un

}T
(1)

Usualmente las coordenadas generalizadas están asociadas a los desplazamientos de cier-

tos puntos característicos de la estructura (figura 2) y cuando el sistema estructural se modela

mediante elementos finitos las coordenadas generalizadas generalmente estarán asociadas a los

desplazamientos nodales de la discretización.

2.1. Ecuaciones de Equilibrio

Asumiremos que el sistema estructural es conservativo, esto es, todas las cargas que actúan

sobre la estructura y por lo tanto el sistema posee una función de energía potencial V que se

puede expresar como

V (u, λ) = U(u)− λW (u) (2)

Donde U(u) es la energía potencial de deformación, que asumimos que sólo depende de las

coordenadas generalizadas u. Las fuerzas externas son asumidas proporcionales a un parámetro

o factor de cargas λ y la función W (u) representa el trabajo de las fuerzas externas.

Para obtener las ecuaciones de equilibrio debemos derivar la energía potencial total respecto

de las coordenadas generalizadas u

Vu =
∂V

∂u
=

{

∂V

∂u1

∂V

∂u2

∂V

∂u3

...
∂V

∂un

}T

(3)

Notemos que hemos indicado al vector de derivadas parciales respecto de las coordenadas

generalizadas con un subíndice u en negrita significando que debemos derivar respecto de cada

coordenada generalizada y que el resultado será un vector.

Luego las ecuaciones de equilibrio se obtienen igualando a cero las derivadas de la energía

potencial total respecto de las coordenadas generalizadas, esto es

r(u, λ) = Vu = Uu − λWu = 0 (4)
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Si definimos al vector de fuerzas internas generalizadas f(u) asociado a la energía de defor-

mación U como

f(u) = Uu(u) (5)

En general, este vector será una función no lineal de las coordenadas generalizadas ui que

dependerá de la complejidad de la función U(u).
De manera similar definimos un vector p de fuerzas externas generalizadas de referencia,

que se obtiene derivando el trabajo de las fuerzas externas W como:

p = Wu (6)

Luego podemos escribir las ecuaciones de equilibrio como

r(u, λ) = f(u)− λp = 0 (7)

Las soluciones u, λ a estas ecuaciones son curvas y por ser ecuaciones no lineales pueden

existir múltiples soluciones.

Si el vector de fuerzas internas generalizadas f(u) es una función no lineal de las coordena-

das generalizadas ui tendremos un conjunto de soluciones u, λ que se pueden representar como

curvas en diagramas de respuesta de ui, λ, esto es, que muestran la variación simultánea del

parámetro λ y una coordenada generalizada ui.

Figura 3: Diagrama de respuesta de una estructura perfecta e imperfecta.

Notemos que el comportamiento de la estructura imperfecta es asintótico al de la estructura

perfecta y dependerá de la amplitud de las imperfecciones.

3. CARGAS CRÍTICAS DE LA ESTRUCTURA

El problema conocido como de cargas de pandeo (buckling problem) se puede expresar ma-

tricialmente como (Toledo, 2021):

(K0 + λKG)ϕ = 0 (8)

siendo K0 la matriz de rigidez tangente en la configuración indeformada definida como:
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K0 = Uuu(0) =











U0
,11 U0

,12 . . . U0
,1n

U0
,21 U0

,22 . . .
...

...
...

. . .
...

U0
,n1 . . . . . . U0

,nn











(9)

donde U0
ij son derivadas segundas de la energía de deformación respecto de las coordenadas

generalizadas ui, uj y el índice superior 0 indica que las cantidades se evalúan en el origen.

Además, KG es la matriz de rigidez geométrica definida como

KG = U0
uuu

d0 (10)

donde U0
uuu

es un tensor de tercer orden que involucra las derivadas terceras de la energía de

deformación y d0 es la solución de

K0 d0 = p (11)

Usando un algoritmo como el método de Lanzcos Cullum y Willoughby (2002); Peng-Li

(1990) o el método de iteración en un subespacio (Bathe, 2013), que son los métodos usual-

mente empleados en el análisis estructural podemos calcular los primeros modos de pandeo y

sus respectivas cargas críticas asociadas.

4. DETERMINACIÓN DE LA PEOR IMPERFECCIÓN

El conjunto de autovectores ϕi es un conjunto linealmente independiente que forma una base

en el espacio de las coordenadas generalizadas ui, esto es cualquier vector de este espacio se

puede describir como una combinación lineal de estos modos. Asumiendo que las imperfeccio-

nes puedan ser descriptas por el mismo conjunto de coordenadas generalizadas ui utilizado para

describir las deformaciones de la estructura, entonces podremos representar s cualquier imper-

fección mediante un vector w en el espacio de las coordenadas generalizadas. Luego, como

los autovectores son independientes entre sí puedo asumir que el vector de imperfección w se

puede representar por una combinación lineal de estos autovectores como

w = β1ϕ1 + β2ϕ2 + β3ϕ3 + · · ·+ βnϕn (12)

Donde hemos asumido que los autovectores ϕi están ordenados según el valor creciente de

los módulos de sus autovalores asociados λi, esto es, |λ1| < |λ2| < . . . < |λn|.
El vector tangente ρ[1] al camino de equilibrio es un indicador de la rigidez de la estructura

en cada punto. Si este vector se aplana indica pérdida de rigidez. En la tesis (Toledo, 2021) se

demuestra que la influencia de las imperfecciones sobre el vector tangente viene dada por un

vector v[1,1] que se puede expresar como

v[1,1] =
β1

λ1

ϕ1 +
β2

λ2

ϕ2 +
β3

λ3

ϕ3 + · · ·+
βn

λn

ϕn (13)

Analizando esta ecuación podemos concluir que las formas de imperfección w que más

influencian la componente v[1,1] son las asociadas a los modos más bajos de pandeo, esto es,

aquellos con menor λi.

Luego podemos hacer una analogía con los modos de vibración de una estructura donde la

respuesta estructural en vibraciones libres viene dominada por los modos más bajos, en este
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caso las formas de imperfecciones más influyentes vienen dadas por la forma de los modos de

pandeo más bajos.

Si los valores de las primeras cargas críticas se encuentran bien separados, entonces pode-

mos asumir que la peor imperfección tiene la forma del primer modo y podemos expresar a la

componente v[1,1] como

v[1,1] ≈
β1

λ1

ϕ1 (14)

Debemos resaltar que este hecho ya ha sido mencionado por varios autores, por ejemplo,

(Timoshenko y Gere, 1961), donde se especifica que para vigas columnas la peor imperfección

corresponde a la forma del primer modo de pandeo.

5. APROXIMACIONES AL PRIMER Y SEGUNDO MODO

Los métodos de Lanczos y de iteración en un subespacio son muy eficientes para el cálculo

de autovalores y autovectores. Sin embargo, estos métodos están preparados para calcular un

gran número de autovalores y autovectores y en nuestro caso sólo deseamos conocer el primer

y segundo modo. Luego es más conveniente utilizar un método más simple que nos permita

determinar un par autovalor y autovector por vez, como el Método de las Potencias.

Método de las Potencias (máximo autovalor)

Problema:
Ax = λx

Pasos:

1. Escoger x(0).

2. Iterar:

y(k) = Ax(k), x(k+1) =
y(k)

∥y(k)∥
.

3. Estimar autovalor (cociente de Rayleigh):

λ
(k)
máx =

(x(k))TAx(k)

(x(k))Tx(k)
.

Resultado: λmáx (autovalor dominante) y x (autovector asociado).

En este caso hemos obtenido el máximo autovalor (en valor absoluto) y su autovector asocia-

do. Si quisiéramos encontrar el menor autovalor deberíamos utilizar el Método de las Potencias

Inverso.
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Método de Potencias Inverso (mínimo autovalor)

Problema:
A−1x = µx

Pasos:

1. Escoger x(0).

2. Iterar resolviendo:

Ay(k) = x(k), x(k+1) =
y(k)

∥y(k)∥
.

3. Estimar:

µ(k) =
(x(k))Ty(k)

(x(k))Tx(k)
, λ

(k)
mı́n =

1

µ(k)
.

Resultado: λmı́n (autovalor más pequeño) y x (autovector asociado).

Para encontrar el menor autovalor del problema generalizado seguimos los siguientes pasos:

Método de las Potencias Inversas Generalizado para pandeo

Problema:

Kϕ = −λKGϕ, A = K−1KG, µ = −
1

λ
.

Pasos:

1. Escoger vector inicial x(0).

2. Resolver en cada iteración:

Ky(k) = KGx
(k).

3. Normalizar:

x(k+1) =
y(k)

∥y(k)∥
.

4. Calcular cociente de Rayleigh:

µ(k) =
(x(k))Ty(k)

(x(k))Tx(k)
.

5. Menor autovalor:

λ(k) = −
1

µ(k)
.

Resultado: λ1, ϕ1 (primer modo de pandeo).

Una vez obtenido el primer modo puedo obtener el segundo modo aplicando el método de

las potencias inversas con ortogonalizacion
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Segundo modo de pandeo

Ortogonalización

1. Ejecutar de nuevo el método de potencias inverso.

2. En cada iteración, forzar ortogonalidad respecto al primer modo:

y(k) ← y(k) − (ϕT
1 y

(k))ϕ1.

3. Normalizar y continuar iteraciones.

Resultado: λ2, ϕ2 (segundo modo de pandeo).

Ahora podemos comparar los autovalores, esto es, si λ2/λ1 > tol entonces el primer modo

es dominante para las imperfecciones.

6. INFLUENCIA DE LAS IMPERFECCIONES

Si se considera que el primer modo es dominante en las imperfecciones entonces debemos

modficar la geometría de la estructura desplazando los nodos por un factor de amplificación que

dependerá de las tolerancias constructivas.

Las imperfecciones sólo afectarán las coordenadas nodales, por lo que todo el proceso de

ensamblaje de matrices y vectores no se ve afectado y este es el procedimiento adoptado por

la mayoría de los programas de análisis estructural, aunque no es el único. En la referencia

(Jouglard y Perez, 2024) se ha presentado un elemento finito que contempla en su formulación

la presencia de imperfecciones con mayor precisión que los elementos clásicos de vigas.

7. CONCLUSIONES

Se ha presentado una metodología simplificada para el cálculo de la peor imperfección en

estructuras aporticadas donde el primer modo es la imperfección dominante. El proceso de de-

terminación de los primeros dos modos es bastante más simple que los procedimientos actual-

mente disponibles. Además, se puede efectuar el cálculo de los modos fuera de los programas

de análisis e incorporar la información de imperfección directamente con las coordenadas des-

plazadas, no requiriendo este último procedimiento ninguna modificación de los programas de

análisis.
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