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Resumen. Las normativas actuales de andlisis estructural especifican que las estructuras deben ser ana-
lizadas considerando la presencia de imperfecciones en su geometria, esto es, desvios respecto de la
geometria ideal o perfecta especificada en el disefio. Las normas también indican que se debe considerar
aquella imperfeccién que produzca el mayor efecto desestabilizante, sin embargo, no propone criterios
para obtenerlas. En este trabajo se presenta una metodologia para calcular la peor imperfeccién de una
estructura formada por vigas y columnas. Es bien conocido que la forma de la peor imperfeccién esta
asociada a los primeros modos de pandeo y en particular si la primera carga critica se encuentra sufi-
cientemente separada de la segunda, entonces la peor imperfeccion viene dada por el primer modo de
pandeo, este es el caso tipico de la mayoria de las estructuras aporticadas. Luego se propone un método
iterativo eficiente para encontrar los dos primeros modos de pandeo para verificar que el primer modo de
pandeo es efectivamente la peor imperfeccion.

Keywords: Steel Structures, stability, imperfections, buckling modes.

Abstract. Current structural analysis codes specify that structures must be analyzed considering the
presence of imperfections in their geometry—that is, deviations from the ideal or perfect geometry de-
fined in the design. These standards also state that the imperfection causing the greatest destabilizing
effect must be considered; however, they do not propose criteria for identifying it. This work presents a
methodology for calculating the worst imperfection in a structure composed of beams and columns. It
is well known that the shape of the worst imperfection is associated with the first buckling modes, and
particularly, if the first critical load is sufficiently separated from the second, then the worst imperfection
corresponds to the first buckling mode. This is typically the case for most frame structures. An efficient
iterative method is then proposed to find the first two buckling modes in order to verify that the first mode
indeed represents the worst imperfection.
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1. INTRODUCCION

Definimos a una imperfeccion como un desvio en la geometria de una estructura "perfec-
ta"generando una estructura "imperfecta". Las estructuras reales son imperfectas y el efecto de
las imperfecciones implica la aparicién de efectos de segundo orden que aumentan los esfuerzos
sobre la estructura y pueden llevarla a una pérdida de estabilidad (colapso estructural) (Bazant
y Cedolin, 2010; Godoy, 1996).

En los ultimos afios las normas méds modernas de Estados Unidos (ANSI/AISC, 2019) y
Europa (EUROCODE, 2009) (en nuestro pais el (INTI-CIRSOC, 2018)) recomiendan la incor-
poracién de imperfecciones en el andlisis y permiten su modelado directo para la verificacion de
la estabilidad de estructuras metdlicas. El modelado directo consiste en desplazar directamen-
te las coordenadas de los nodos de una estructura para representar directamente la geometria
imperfecta.

Estas normas recomiendan emplear la “peor” imperfeccion para analizar la estructura, esto
es utilizar aquella que causa el mayor efecto desestabilizante. Ha sido sugerido hace muchos
afios atrds (Timoshenko y Gere, 1961) que el primer modo de pandeo tiene esta propiedad y
se ha demostrado en la tesis (Toledo, 2021) que para que esto sea cierto las cargas criticas de
pandeo correspondientes al primero y segundo modo deben estar separadas. Si esto no ocurriera
hay que usar procedimientos especiales (que se muestran en la Tesis) para encontrar la peor
imperfeccién como una combinacién lineal de los modos de pandeo més bajos.

La determinacién de los modos de pandeo conlleva la utilizacién de rutinas complejas, es un
problema de autovalor y autovector conocido en inglés como "buckling problem". En estructu-
ras aporticadas, compuestas por vigas y columnas, en general, la carga critica del primer modo
de pandeo es sustancialmente mds baja que la del segundo modo, por lo que se puede asumir
como peor imperfeccion al primer modo de pandeo.

En este trabajo presentaremos un procedimiento iterativo simplificado para obtener sélo el
primer y segundo modo de pandeo y sus cargas criticas asociadas, de manera que si estin su-
ficientemente separadas se pueda utilizar con confianza al primer modo de pandeo como peor
imperfeccion para el anélisis.

2. ANALISIS DEL SISTEMA PERFECTO

Asumiremos que las cargas son proporcionales a un pardmetro de cargas A, esto es, todas las
cargas se incrementan o disminuyen de manera proporcional a este parametro (figura 1).
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Figura 1: Sistema estructural y cargas.
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Luego, bajo la accién de las cargas, el sistema estructural se deforma adoptando diferentes
configuraciones deformadas (figura 2).

ugl IUS
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Figura 2: Estructura deformada.

Asumiremos que estas configuraciones deformadas quedan completamente definidas por un
conjunto discreto de n coordenadas generalizadas u; que se pueden ordenar en un vector u de
coordenadas generalizadas como:

u:{u1 Uy U3 ... un}T (D)

Usualmente las coordenadas generalizadas estdn asociadas a los desplazamientos de cier-
tos puntos caracteristicos de la estructura (figura 2) y cuando el sistema estructural se modela
mediante elementos finitos las coordenadas generalizadas generalmente estardn asociadas a los
desplazamientos nodales de la discretizacion.

2.1. Ecuaciones de Equilibrio

Asumiremos que el sistema estructural es conservativo, esto es, todas las cargas que actian
sobre la estructura y por lo tanto el sistema posee una funcién de energia potencial V que se
puede expresar como

V(u,A) =U(u) — \W(u) (2)

Donde U (u) es la energia potencial de deformacién, que asumimos que sélo depende de las
coordenadas generalizadas u. Las fuerzas externas son asumidas proporcionales a un pardmetro
o factor de cargas \ y la funcion W (u) representa el trabajo de las fuerzas externas.

Para obtener las ecuaciones de equilibrio debemos derivar la energia potencial total respecto
de las coordenadas generalizadas u

yo_V _fov o ov oV ov "
v ou N {8u1 (9u2 8u3 E)un}

Notemos que hemos indicado al vector de derivadas parciales respecto de las coordenadas
generalizadas con un subindice u en negrita significando que debemos derivar respecto de cada
coordenada generalizada y que el resultado serd un vector.

Luego las ecuaciones de equilibrio se obtienen igualando a cero las derivadas de la energia
potencial total respecto de las coordenadas generalizadas, esto es

3)

r(u,\) =V, =U,— AW, =0 4)
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Si definimos al vector de fuerzas internas generalizadas f(u) asociado a la energia de defor-
macién U como

f(u) = Us(u) (5)

En general, este vector serd una funcion no lineal de las coordenadas generalizadas u; que
dependerd de la complejidad de la funcién U (u).

De manera similar definimos un vector p de fuerzas externas generalizadas de referencia,
que se obtiene derivando el trabajo de las fuerzas externas I/ como:

Luego podemos escribir las ecuaciones de equilibrio como

r(u,\) =f(u)—A\p=0 (7)

Las soluciones u, A a estas ecuaciones son curvas y por ser ecuaciones no lineales pueden
existir multiples soluciones.

Si el vector de fuerzas internas generalizadas f(u) es una funcién no lineal de las coordena-
das generalizadas u; tendremos un conjunto de soluciones u, A que se pueden representar como
curvas en diagramas de respuesta de u;, A, esto es, que muestran la variacién simultanea del
pardmetro A y una coordenada generalizada ;.

- perfecta
. ‘NE
imperfecta ~~~o--o

Figura 3: Diagrama de respuesta de una estructura perfecta e imperfecta.

Notemos que el comportamiento de la estructura imperfecta es asintotico al de la estructura
perfecta y dependerd de la amplitud de las imperfecciones.

3. CARGAS CRITICAS DE LA ESTRUCTURA

El problema conocido como de cargas de pandeo (buckling problem) se puede expresar ma-
tricialmente como (Toledo, 2021):

(Ko + \K¢) ¢ = 0 (8)

siendo K la matriz de rigidez tangente en la configuracién indeformada definida como:
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uy, U5, ... UY,
0 0 :

Ko Uuu<0): U121 U:22 (9)
ve, ... ... U0,

donde Uioj son derivadas segundas de la energia de deformacién respecto de las coordenadas
generalizadas u;, u; y el indice superior 0 indica que las cantidades se evaldan en el origen.
Ademas, K es la matriz de rigidez geométrica definida como

K;=U"°

uuu

dy (10)

donde U?,_,, es un tensor de tercer orden que involucra las derivadas terceras de la energia de

uuu
deformacién y dg es la solucién de

Kod():p (11)

Usando un algoritmo como el método de Lanzcos Cullum y Willoughby (2002); Peng-Li
(1990) o el método de iteracion en un subespacio (Bathe, 2013), que son los métodos usual-
mente empleados en el andlisis estructural podemos calcular los primeros modos de pandeo y
sus respectivas cargas criticas asociadas.

4. DETERMINACION DE LA PEOR IMPERFECCION

El conjunto de autovectores ¢, es un conjunto linealmente independiente que forma una base
en el espacio de las coordenadas generalizadas u;, esto es cualquier vector de este espacio se
puede describir como una combinacién lineal de estos modos. Asumiendo que las imperfeccio-
nes puedan ser descriptas por el mismo conjunto de coordenadas generalizadas u; utilizado para
describir las deformaciones de la estructura, entonces podremos representar s cualquier imper-
feccion mediante un vector w en el espacio de las coordenadas generalizadas. Luego, como
los autovectores son independientes entre si puedo asumir que el vector de imperfeccién w se
puede representar por una combinacion lineal de estos autovectores como

W = 1) + Bapy + B33 + -+ + Bu, (12)

Donde hemos asumido que los autovectores ¢, estdn ordenados segtin el valor creciente de
los médulos de sus autovalores asociados A;, esto es, [A1]| < |Aa] < ... <[\,

El vector tangente p!!l al camino de equilibrio es un indicador de la rigidez de la estructura
en cada punto. Si este vector se aplana indica pérdida de rigidez. En la tesis (Toledo, 2021) se
demuestra que la influencia de las imperfecciones sobre el vector tangente viene dada por un
vector vI! que se puede expresar como

py_By B, B P
v )\1¢’1‘|’ )\2¢2+ )\3¢3+ + X, P

Analizando esta ecuacion podemos concluir que las formas de imperfeccion w que mas
influencian la componente v son las asociadas a los modos mas bajos de pandeo, esto es,
aquellos con menor ;.

Luego podemos hacer una analogia con los modos de vibracion de una estructura donde la
respuesta estructural en vibraciones libres viene dominada por los modos mds bajos, en este

(13)
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caso las formas de imperfecciones mas influyentes vienen dadas por la forma de los modos de
pandeo mds bajos.

Si los valores de las primeras cargas criticas se encuentran bien separados, entonces pode-
mos asumir que la peor imperfeccion tiene la forma del primer modo y podemos expresar a la
componente vI!) como

B
A

BB

ol (14)

Debemos resaltar que este hecho ya ha sido mencionado por varios autores, por ejemplo,
(Timoshenko y Gere, 1961), donde se especifica que para vigas columnas la peor imperfecciéon
corresponde a la forma del primer modo de pandeo.

5. APROXIMACIONES AL PRIMER Y SEGUNDO MODO

Los métodos de Lanczos y de iteraciéon en un subespacio son muy eficientes para el calculo
de autovalores y autovectores. Sin embargo, estos métodos estan preparados para calcular un
gran nimero de autovalores y autovectores y en nuestro caso sélo deseamos conocer el primer
y segundo modo. Luego es mds conveniente utilizar un método mds simple que nos permita
determinar un par autovalor y autovector por vez, como el Método de las Potencias.

Método de las Potencias (maximo autovalor)

Problema:
Ax = \x

Pasos:

1. Escoger x(0.

2. Iterar: )
y® — Ax® ) Y

 ly®Ir

3. Estimar autovalor (cociente de Rayleigh):

* (X(k))TAX(k)
mix = (BT

Resultado: )\, ;. (autovalor dominante) y x (autovector asociado).

En este caso hemos obtenido el maximo autovalor (en valor absoluto) y su autovector asocia-
do. Si quisiéramos encontrar el menor autovalor deberiamos utilizar el Método de las Potencias
Inverso.
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Método de Potencias Inverso (minimo autovalor)

Problema:
A'x = pux

Pasos:
1. Escoger x(©.
2. Iterar resolviendo:

Ay® — x® gkt _ Y

3. Estimar: Tk
(k) _ (x")Ty® A%
P = ) Tx®) min = %)

Resultado: )\, (autovalor mas pequefio) y x (autovector asociado).

J

Para encontrar el menor autovalor del problema generalizado seguimos los siguientes pasos:

Método de las Potencias Inversas Generalizado para pandeo

Problema:

K¢p=- Kep, A=K 'Kg, p= —

Pasos:
1. Escoger vector inicial x(©),

2. Resolver en cada iteracion:
Ky(k) = K(;X(k).

3. Normalizar: i
(k+1) _ Y( ) ‘
ly®]|

4. Calcular cociente de Rayleigh:

(k) _ (x*)Ty®
B = x®)Tx®)
5. Menor autovalor:

I
A R

Resultado: )\, ¢, (primer modo de pandeo).

. v

Una vez obtenido el primer modo puedo obtener el segundo modo aplicando el método de
las potencias inversas con ortogonalizacion
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Segundo modo de pandeo

Ortogonalizacion
1. Ejecutar de nuevo el método de potencias inverso.

2. En cada iteracidn, forzar ortogonalidad respecto al primer modo:
vy = y® — (o1yV) ¢,

3. Normalizar y continuar iteraciones.

Resultado: \,, ¢, (segundo modo de pandeo).

Ahora podemos comparar los autovalores, esto es, si A\y/\; > tol entonces el primer modo
es dominante para las imperfecciones.

6. INFLUENCIA DE LAS IMPERFECCIONES

Si se considera que el primer modo es dominante en las imperfecciones entonces debemos
modficar la geometria de la estructura desplazando los nodos por un factor de amplificacién que
dependerd de las tolerancias constructivas.

Las imperfecciones s6lo afectardn las coordenadas nodales, por lo que todo el proceso de
ensamblaje de matrices y vectores no se ve afectado y este es el procedimiento adoptado por
la mayoria de los programas de andlisis estructural, aunque no es el tnico. En la referencia
(Jouglard y Perez, 2024) se ha presentado un elemento finito que contempla en su formulacién
la presencia de imperfecciones con mayor precision que los elementos cldsicos de vigas.

7. CONCLUSIONES

Se ha presentado una metodologia simplificada para el cdlculo de la peor imperfeccién en
estructuras aporticadas donde el primer modo es la imperfecciéon dominante. El proceso de de-
terminacion de los primeros dos modos es bastante mds simple que los procedimientos actual-
mente disponibles. Ademads, se puede efectuar el cdlculo de los modos fuera de los programas
de anélisis e incorporar la informacién de imperfeccion directamente con las coordenadas des-
plazadas, no requiriendo este tltimo procedimiento ninguna modificacién de los programas de
andlisis.
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