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Resumen. Una de las formas de colapso de las estructuras es la falla por fluencia en secciones críticas.
El método clásico de la carga última de colapso, considera que una vez alcanzado el límite plástico en una
sección, la capacidad resistente en la rótula se mantiene constante mientras se desarrolla la plastificación
en otras secciones. Se puede mostrar que este método sobrestima la carga de colapso. Una alternativa,
es considerar la pérdida de resistencia a través de la formación de rótulas con ablandamiento mientras
se van alcanzando ciertos valores límites. En este trabajo, se describe un método numérico que aplica el
elemento finito de Euler-Bernoulli con discontinuidad fuerte de rotación, en el modelado de rótulas plás-
ticas de ablandamiento, en vigas y pórticos planos, usando control de desplazamientos. La formulación
descrita fue implementada en código abierto como extensión del software ONSAS (www.onsas.org). Se
resuelven ejemplos numéricos de la literatura, cuyos resultados permiten validar la implementación y
mostrar el potencial de su aplicación.

Keywords: Computational Elastoplasticity, ultimate load, post-collapse, softening hinges.

Abstract. One of the causes of structural collapse is creep failure in critical sections. The classic analy-
sis of the ultimate load considers that once the plastic limit is reached in a section, the strength at the
hinge remains constant while plastic deformation develops in other sections. It can be shown that this
method overestimates the collapse load. As an alternative to this approach, the strength failure response
can be considered, by considering softening hinges that are formed upon reaching limit values. In this
work, a numerical method is described in detail to apply the Euler-Bernoulli finite element with strong
rotation discontinuity to the modeling of plastic softening hinges in beams and planar frames, using dis-
placements control. The described formulation was implemented as open-source extending the software
ONSAS (www.onsas.org). Numerical examples from the literature are solved, and the obtained results
validate the implementation and show the potential of its application.
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1. INTRODUCCIÓN

En este trabajo, se describe un método numérico para el análisis post-colapso de pórticos
—con activación de rótulas plásticas de ablandamiento—, mediante la implementación del ele-
mento finito de Euler-Bernoulli con discontinuidad fuerte de rotación (Armero y Ehrlich, 2006).
Este método es una alternativa al análisis clásico de la carga última de colapso, que supone mo-
mento de plastificación constante y por lo tanto sobrestima la carga de colapso.

La respuesta de una estructura, considerando sus rótulas plásticas de ablandamiento, podría
modelarse con una ley constitutiva que incorpore la relación de ablandamiento entre las medidas
de deformación generalizadas y las correspondientes tensiones equivalentes. Sin embargo, de
esa forma, al refinar la malla, la disipación de energía plástica tiende a cero, lo cual no se
ajusta a la física real. Es por ello que se debe aplicar un método de limitación de la localización
(Ibrahimbegovic, 2009; Lasry y Belytschko, 1988).

2. ELEMENTO DE VIGA DE EULER-BERNOULLI CON DISCONTINUIDAD

En esta sección se describe una formulación del elemento finito de viga de Euler-Bernoulli
con discontinuidad fuerte de rotación basada en (Armero y Ehrlich, 2006; Jukić et al., 2013),
para el modelado de rótulas plásticas de ablandamiento.

2.1. Cinemática

Los grados de libertad del elemento finito son los desplazamientos nodales generalizados del
elemento estándar, a los que se adiciona un grado de libertad α como se muestra en la Figura 1.
Este grado de libertad adicional representa la discontinuidad angular de la viga en la rótula
de ablandamiento. Para los desplazamientos axiales se utiliza la interpolación lineal usual (en

Figura 1: Grados de libertad de los nodos del elemento en coordenadas locales.

coordenadas locales):

u(x) = N
u(x)u, N

u(x) =
{

1−
x

Le
,

x

Le

}

, u = {u1, u2}
⊤, (1)

donde la deformación axial ϵ correspondiente está dada por:

ϵ =
∂u

∂x
= B

u(x)u
︸ ︷︷ ︸

ϵ̄

, B
u(x) =

{

−
1

Le
,

1

Le

}

. (2)

Para los desplazamientos transversales v se utiliza una interpolación cúbica para los valores
nodales de desplazamiento y rotación, y un término adicional que representa la discontinuidad.
La expresión de v está dada por:

v(x, xd) = N
v(x)v +N

θ(x)θ + M̂(x, xd)α, v = {v1, v2}
⊤, θ = {θ1, θ2}

⊤, (3)
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donde xd es la posición de la rótula en el elemento xd ∈ [0, Le/2, Le], Nv(x) y N
θ(x) son

las matrices de funciones de interpolación de Hermite y la función M̂(x,xd) se determina im-
poniendo que la curvatura continua sea nula al agotarse la capacidad resistente de la rótula de
ablandamiento y está dada por la siguiente expresión:

M̂(x, xd) =
(Le − x)2 [Lex− (Le + 2x)xd]

Le3
+ (x− xd) [−1 +Hxd

(x)] . (4)

La función M̂ introduce una discontinuidad en la curvatura cuando se activa la rótula plástica
de ablandamiento (es decir cuando α deja de ser nulo). La curvatura en el elemento está dada
por:

κ(x) =
∂2v

∂x2
(x) = B

v(x)v +B
θ(x)θ +

∂2M̂

∂x2
(x, xd)α, (5)

donde las matrices B tienen las derivadas de las funciones de interpolación.
Al derivar M̂ , se obtiene un término singular (con la función de delta de Dirac). De esta

forma la curvatura puede ser escrita como una suma de una parte continua κ̄ y otra singular ¯̄κ:

κ(x) = B
v(x)v +B

θ(x)θ + Ḡ(x, xd)α
︸ ︷︷ ︸

κ̄

+ δ
xd
α

︸︷︷︸
¯̄κ

, (6)

donde considerando κ̄ = 0 (curvatura continua nula al agotarse la capacidad resistente de la
rótula de ablandamiento), se puede obtener Ḡ:

Ḡ(x, xd) = −

1 + 3

(

1−
2xd

Le

)(

1−
2x

Le

)

Le
. (7)

El caso límite de curvatura nula al agotarse la capacidad resistente de la rótula puede ser repre-
sentado gráficamente a través de la Figura 2, y por la expresión:

v2 = v1 + xdθ1 + (Le − xd)(α + θ1), θ2 = θ1 + α. (8)

Figura 2: Rótula de ablandamiento con resistencia nula.

2.2. Equilibrio de un elemento

Considerando el equilibrio de un elemento de Euler-Bernoulli con discontinuidad, y apli-
cando el Principio de los Trabajos Virtuales (PTV), si Gint,e es el trabajo virtual de las fuerzas
internas y Gext,e el trabajo virtual de las fuerzas externas, se debe cumplir Gint,e = Gext,e para
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todo desplazamiento virtual compatible con las condiciones de borde. Considerando la defor-
mación axial virtual y la curvatura virtual, respectivamente:

δϵ(x) = B
u(x)δu, (9)

δκ(x) = B
v(x)δv +B

θ(x)δθ +
(
Ḡ(x, xd) + δxd

)
δα, (10)

siendo N la directa y M el momento flector, sustituimos las deformaciones virtuales en la
expresión del trabajo virtual de las fuerzas internas:

Gint,e =

∫ Le

0

δϵN dx+

∫ Le

0

δκM dx =

∫ Le

0

δdT (Bd)Tσ dx

︸ ︷︷ ︸

estándar

+

∫ Le

0

δα(Ḡ+ δxd
)M dx

︸ ︷︷ ︸

adicional

, (11)

donde δd, Bd y σ están dados, respectivamente, por:

δd = {δuT , δvT , δθT}T , B
d =

{
B

u
0 0

0 B
v

B
θ

}

, σ = {N,M}T . (12)

El trabajo virtual se compone de una parte estándar, y un término adicional que incorpora la
discontinuidad cinemática de rotación. El PTV aplicado a un elemento se puede escribir como:

Gint,e −Gext,e = δdT (f int,e − f
ext,e)

︸ ︷︷ ︸

=0

+δα he

︸︷︷︸

=0

= 0, ∀ δd, δα, (13)

siendo f
int,e dado por:

f
int,e =

∫ Le

0

B
d,Tσ dx, (14)

y he dado por:

he =

∫ Le

0

(Ḡ+ δxd
)M dx =

∫ Le

0

ḠM dx+ M |xd
︸ ︷︷ ︸

∫
Le

0
δxdMdx

=

∫ Le

0

ḠM dx+ t = 0, (15)

A partir de la última igualdad se puede obtener el momento en la discontinuidad,

t = −

∫ Le

0

ḠM dx. (16)

Finalmente, se procede al ensamblado a nivel de la estructura obteniendo las ecuaciones no
lineales:

Nelem

A
e=1

(
f
int,e − f

ext,e
)
= 0, he = 0 ∀e. (17)

2.3. Relaciones constitutivas

En el modelo considerado se asume que la respuesta vinculada a la deformación axial es
elástica lineal, siendo E el módulo elástico, A el área de la sección transversal del elemento y ϵ̄
la deformación continua axial, por lo tanto la directa está dada por:

N = EAϵ̄. (18)
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(a) Momento-Curvatura en endureci-
miento.

(b) Momento-Ángulo en ablandamiento.

Figura 3: Relaciones constitutivas.

Se considera la hipótesis de pequeñas rotaciones, y por lo tanto, la curvatura continua κ̄, es la
suma de la curvatura elástica κ̄e y la plástica κ̄p,

κ = κ̄+ ¯̄κ, κ̄ = κ̄e + κ̄p. (19)

En el régimen elastoplástico el ángulo α es cero, por lo tanto la curvatura discreta ¯̄κ es cero. La
ecuación constitutiva momento-curvatura es:

M = EIκ̄e = EI(κ̄− κ̄p), (20)

donde I es la inercia flexional de la sección. El comportamiento constitutivo está dado por la
relación momento-curvatura para el caso de endurecimiento, según la Figura 3a, y para el caso
de ablandamiento de acuerdo a la Figura 3b.

2.4. Flexión elastoplástica con endurecimiento

Dado el momento M en cada punto de integración, la función de fluencia es:

ϕ̄(M,q̄) = |M | − (Mc − q̄), (21)

donde q̄ es una función del endurecimiento ξ̄, dada por:

q̄ =







−Kh1ξ̄, si ξ̄ ≤
My −Mc

Kh1

,

−(My −Mc)

(

1−
Kh2

Kh1

)

−Kh2ξ̄, en caso contrario,
(22)

siendo Kh1 y Kh2 módulos de endurecimiento plástico. Además, la regla de flujo plástico:

˙̄κp = ˙̄γ sgn(M), ˙̄ξ = ˙̄γ. (23)

El factor multiplicador ˙̄γ es no negativo por definición, por lo tanto ξ̄ y q̄ son funciones crecien-
tes, mientras que ˙̄κp puede aumentar o disminuir dependiendo del signo de M . Se cumplen las
condiciones de carga y descarga de Kuhn-Tucker, y la condición de persistencia:

˙̄γ ≥ 0, ϕ̄ ≤ 0, ˙̄γϕ̄ = 0, ˙̄γ ˙̄ϕ = 0. (24)
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2.5. Rótulas plásticas de ablandamiento en la flexión

Si en alguno de los puntos de integración se supera el Mu, se activa la rótula plástica, se
detiene la plastificación (κ̄p constante) en el resto del elemento y comienza el proceso de ablan-
damiento. Se considera la función de falla:

¯̄ϕ(t,¯̄q) = |t| − (Mu − ¯̄q). (25)

La variable ¯̄q representa un momento de ablandamiento, y crece linealmente con una variable
interna de ablandamiento ¯̄ξ,

¯̄q = mı́n{−Ks
¯̄ξ,Mu}, Ks < 0 α̇ = ˙̄̄γ sgn(t), ˙̄̄

ξ = ˙̄̄γ. (26)

Las condiciones de carga y descarga, y la condición de persistencia o consistencia, son:

˙̄̄γ ≥ 0, ¯̄ϕ ≤ 0, ˙̄̄γ ¯̄ϕ = 0, ˙̄̄γ
˙̄̄
ϕ = 0. (27)

3. IMPLEMENTACIÓN COMPUTACIONAL

A diferencia de lo realizado en trabajos previos, en este trabajo se implementó y utilizó un
código abierto para generar los resultados. La implementación fue realizada como una extensión
del software abierto ONSAS (Pérez Zerpa et al., 2025). El software ONSAS aplica métodos de
resolución como Newton-Raphson o Arc-Length (Bazzano y Pérez Zerpa, 2017), para resolver
las ecuaciones del PTV en intervalos de tiempo [tn, tn+1]. En el Algoritmo 1 se presenta un
pseudo-código con el esquema de resolución de las variables de desplazamiento d y las nuevas
variables internas ψ de los procesos de plastificación.

Algoritmo 1 Pseudo-código de software ONSAS.

dn = {u⊤, v⊤, θ⊤}⊤, ψn = {κ̄p
n, ξ̄n,

¯̄ξn, αn, xd}, f
ext, e
n+1

d
e
0, ψ0, nf ,∆t, (t0, n = 0)

d
e
n ← d

e
0, ψn ← ψ0, (tn)

while n < nf do
dn+1, ψn+1 ← time_iteration(dn, ψn, f extn+1)
d
e
n ← d

e
n+1, ψn ← ψn+1, (tn+1), n← n+ 1

end while

La rutina time_iteration obtiene la solución del PTV para el tiempo tn+1, a partir de la
solución en el tiempo tn, a través de la aplicación de un método iterativo.

En el Algoritmo 2 se presenta un pseudo-código de la rutina time_ iteration. Para el cálculo
de las fuerzas internas u otras magnitudes a nivel del elemento, se utilizan 3 puntos de inte-
gración de Gauss-Lobatto. En particular, la variable xd que en cada elemento indica donde se
forma la rótula, debe tomar como valor la coordenada x de uno de los puntos de integración
(aquel en el que se supere el momento último).

Dado un desplazamiento generalizado dn, las variables elastoplásticas internas del elemento
ψn = {κ̄p

n, ξ̄n,
¯̄ξn, αn}, y en caso de activación de la rótula, la coordenada xd, se verifica que

no se supere el valor Mu en cada punto de integración del elemento. Se aplica un método de
tipo Newton-Raphson con control indirecto de desplazamientos (Jirásek y Bažant, 2002) para
resolver el sistema global y determinar dn+1, iterando hasta obtener convergencia (k ← k+ 1).
Lograda la convergencia, se determina n ← n + 1, se actualizan las variables elastoplásticas
internas ψn que corresponden al nuevo desplazamiento dn, y en caso de activación de la rótula,
la coordenada xd.
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Algoritmo 2 ONSAS time_iteration

dn, ψn, f
ext
n+1, tolerance

k ← 0, dk
n+1 ← dn, ψk

n+1 ← ψn, f
int, k
n+1 ← f

int
n

while

∥
∥
∥
∥
A

Nelem

e=1

(

f
ext, e
n+1 − f

int, ,e, k
n+1

)
∥
∥
∥
∥
< tolerance do

for e in 1,. . . , ne do
f
int, e,k
n+1 , Ke, k

n+1, ψ
k+1

n+1 ← frame2D_plastic_internal_force(d e, k
n+1,ψ

e
n)

end for
∆d

k
n+1 ← solve(Kk

n+1, f
ext
n+1 − f

int,k
n+1 )

d
k+1

n+1 = d
k
n+1 +∆d

k
n+1

d
k
n+1 ← d

k+1

n+1, ψ
k
n+1 ← ψk+1

n+1

k ← k + 1
end while
dn+1 ← d

k
n+1, ψn+1 ← ψk

n+1

4. RESULTADOS NUMÉRICOS

Se presentan ejemplos de estructuras con falla resistente del material, se obtiene la secuencia
de activación de las rótulas plásticas de ablandamiento y la carga de colapso.

4.1. Ejemplo 1, Pórtico de dos pisos

El pórtico de la Figura 4 se modela con 32 elementos del tipo Euler-Bernoulli con dis-
continuidad de rotación. La altura de cada piso es 2 m, y la longitud de las vigas es 3,5 m.
Se consideran los siguientes parámetros: módulo de elasticidad E = 28,6 106 kN/m2, inercia
I = 0,0016m4. Para el comportamiento no lineal material dado por la Figura 3, en el ca-
so de las vigas: Mc = 30 kNm, My = 150 kNm, Mu = 170 kNm, Kh1 = 11,190 kNm2,
Kh2 = 137 kNm2, Ks = −1310 kNm, y para los pilares: Mc = 100 kNm, My = 245 kNm,
Mu = 265 kNm, Kh1 = 12,450 kNm2, Kh2 = 195 kNm2, Ks = −2410 kNm.

Figura 4: Pórtico / Plasticidad / Rótulas de Ablandamiento.

La carga aplicada en este ejemplo es con un tramo decreciente de λ, y luego creciente, hasta
reproducir completamente el comportamiento post-colapso. Se carga el nodo 9 con una carga
horizontal, y se aplica el método de control indirecto de desplazamientos.
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(a) Factor de Carga/Desplazamiento. (b) Momento/Desplazamiento (Elemento 1).

Figura 5: Análisis del colapso

(a) Momento/Desplazamiento (Elemento 25). (b) Momento/Desplazamiento (Elemento 17).

Figura 6: Análisis post-colapso

En la Figura 5a, se muestra la activación de las rótulas y el colapso de la estructura. En la
Figura 5b, 6a, 6b, se grafica el momento en el primer punto de integración, donde se activa cada
una de las rótulas, en los elementos 1, 25 y 17, respectivamente. Se muestra la activación de 6
rótulas de ablandamiento, en los elementos 32, 24, 16, 1, 25 y 17 —producida en ese orden—.
El colapso de la estructura ocurre luego de la activación de la cuarta rótula, en el elemento 1
—en el primer punto de integración—, ver Tabla 1.

Rótula Elemento Punto de Integración Desplazamiento uh(m) Fuerza λF(kN)

1 32 3 −0,01682 195,45
2 24 3 −0,00618 278,99
3 16 3 0,00580 295,64
4 1 1 0,00593 295,72
5 25 1 0,03708 282,67
6 17 1 0,05352 273,85

Tabla 1: Pórtico de 2 Pisos / Rótulas de Ablandamiento / Carga de Colapso.
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4.2. Ejemplo 2, Pórtico Darvall-Mendis

En este ejemplo, se resuelve el pórtico que fue estudiado por primera vez por (Darvall y
Mendis, 1985) y luego por (Armero y Ehrlich, 2006; Jukić et al., 2013), ver Figura 7. No se
considera plasticidad con endurecimiento del material, sí se considera el ablandamiento plástico
de las rótulas. Los parámetros para los pilares son: Mu = 158,18 kN.m, y para las vigas: Mu =
169,48 kN.m, el módulo de ablandamiento de las rótulas es igual a: Ks = a 10E I /(0,55L),
siendo E = 20,68 106 kN.m2, I = 0,001 m4 y L = 3,048 m. El modelo consta de 8 elementos de
Euler-Bernoulli con discontinuidad de rotación. En el caso de plasticidad perfecta de las rótulas,
cuando no tienen ablandamiento (a = 0), la primera rótula se activa en el punto de aplicación
de la carga, en los elementos 4 y 5 (nodo 5). La segunda rótula se produce en el elemento 7
(nodo 7), y la tercera en el elemento 2 (nodo 3), esta última termina generando un mecanismo
local, y por lo tanto produciendo el colapso de la estructura.

Figura 7: Pórtico Darvall-Mendis / Rótulas de ablandamiento.

Figura 8: Pórtico Darvall-Mendis / Rótulas de ablandamiento.
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Darvall y Mendis Armero y Ehrlich Brank et al. ONSAS | Softening Hinges
a Rótula uv(cm) | λF (kN) uv(cm) | λF (kN) uv(cm) | λF (kN) uv(cm) | λF (kN)

0 1 0,50 336 0,50 337 0,50 336 0,49 336
2 1,14 427 1,14 428 1,13 427 1,14 428
3 1,34 433 1,34 434 1,34 434 1,34 434

-0,04 1 0,50 336 0,50 337 0,50 336 0,49 336
2 1,14 387 1,18 388 1,19 383 1,19 388

-0,06 1 0,50 336 0,50 337 0,50 336 0,49 336
2 1,19 357 1,22 358 1,23 350 1,22 360

-0,0718 1 0,50 336 0,50 337 0,50 336 0,49 336

Tabla 2: Pórtico de Darvall-Mendis / Rótulas de ablandamiento / Carga de Colapso.

Se puede observar en la Figura 8 y en la Tabla 2, que al disminuir el parámetro a del módulo
de ablandamiento de las rótulas, la carga última de colapso se reduce en forma significativa.

5. CONCLUSIONES

Se presentan los resultados numéricos obtenidos al aplicar la implementación de código
abierto desarrollada sobre ONSAS para el modelado con rótulas de ablandamiento. En el ejem-
plo 1, se obtiene la secuencia de activación de las rótulas de ablandamiento, los desplazamien-
tos, las fuerzas correspondientes a la activación de cada rótula, y la carga última de colapso.
En el ejemplo 2, se muestra que la carga última de colapso de la estructura depende del mó-
dulo plástico de ablandamiento de las rótulas. Se muestra que la carga de colapso se reduce en
22,58% al variar el parámetro del módulo de ablandamiento. Se comparan los resultados con la
literatura de referencia, lo cual permite validar la implementación desarrollada para este trabajo.
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