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Resumen. Una de las formas de colapso de las estructuras es la falla por fluencia en secciones criticas.
El método clésico de la carga dltima de colapso, considera que una vez alcanzado el limite pldstico en una
seccion, la capacidad resistente en la rétula se mantiene constante mientras se desarrolla la plastificacion
en otras secciones. Se puede mostrar que este método sobrestima la carga de colapso. Una alternativa,
es considerar la pérdida de resistencia a través de la formacién de rétulas con ablandamiento mientras
se van alcanzando ciertos valores limites. En este trabajo, se describe un método numérico que aplica el
elemento finito de Euler-Bernoulli con discontinuidad fuerte de rotacién, en el modelado de rétulas plds-
ticas de ablandamiento, en vigas y porticos planos, usando control de desplazamientos. La formulacién
descrita fue implementada en c6digo abierto como extension del software ONSAS (www.onsas.org). Se
resuelven ejemplos numéricos de la literatura, cuyos resultados permiten validar la implementacién y
mostrar el potencial de su aplicacién.

Keywords: Computational Elastoplasticity, ultimate load, post-collapse, softening hinges.

Abstract. One of the causes of structural collapse is creep failure in critical sections. The classic analy-
sis of the ultimate load considers that once the plastic limit is reached in a section, the strength at the
hinge remains constant while plastic deformation develops in other sections. It can be shown that this
method overestimates the collapse load. As an alternative to this approach, the strength failure response
can be considered, by considering softening hinges that are formed upon reaching limit values. In this
work, a numerical method is described in detail to apply the Euler-Bernoulli finite element with strong
rotation discontinuity to the modeling of plastic softening hinges in beams and planar frames, using dis-
placements control. The described formulation was implemented as open-source extending the software
ONSAS (www.onsas.org). Numerical examples from the literature are solved, and the obtained results
validate the implementation and show the potential of its application.
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1. INTRODUCCION

En este trabajo, se describe un método numérico para el andlisis post-colapso de porticos
—con activacion de rétulas plasticas de ablandamiento—, mediante la implementacién del ele-
mento finito de Euler-Bernoulli con discontinuidad fuerte de rotacién (Armero y Ehrlich, 2006).
Este método es una alternativa al andlisis cldsico de la carga dltima de colapso, que supone mo-
mento de plastificacion constante y por lo tanto sobrestima la carga de colapso.

La respuesta de una estructura, considerando sus rétulas plasticas de ablandamiento, podria
modelarse con una ley constitutiva que incorpore la relacion de ablandamiento entre las medidas
de deformacién generalizadas y las correspondientes tensiones equivalentes. Sin embargo, de
esa forma, al refinar la malla, la disipacién de energia plastica tiende a cero, lo cual no se
ajusta a la fisica real. Es por ello que se debe aplicar un método de limitacién de la localizacion
(Ibrahimbegovic, 2009; Lasry y Belytschko, 1988).

2. ELEMENTO DE VIGA DE EULER-BERNOULLI CON DISCONTINUIDAD

En esta seccion se describe una formulacion del elemento finito de viga de Euler-Bernoulli
con discontinuidad fuerte de rotacidon basada en (Armero y Ehrlich, 2006; Juki¢ et al., 2013),
para el modelado de rétulas plasticas de ablandamiento.

2.1. Cinematica

Los grados de libertad del elemento finito son los desplazamientos nodales generalizados del
elemento estandar, a los que se adiciona un grado de libertad a« como se muestra en la Figura 1.
Este grado de libertad adicional representa la discontinuidad angular de la viga en la rétula
de ablandamiento. Para los desplazamientos axiales se utiliza la interpolacion lineal usual (en
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Figura 1: Grados de libertad de los nodos del elemento en coordenadas locales.

coordenadas locales):

T i

u@) = N"(@)u, N'(@)={1- . =}, u={u,uw) M

donde la deformacion axial e correspondiente estd dada por:

O e w1 L
e = — = B"(2)u, B(m)—{ Le’Le}' (2)

Para los desplazamientos transversales v se utiliza una interpolacién cibica para los valores

nodales de desplazamiento y rotacion, y un término adicional que representa la discontinuidad.
La expresion de v estd dada por:

v(x,zq) = NY(x)v + Ne(x)Q + M(m,xd)a, v = {uv, UQ}T, 0 = {0, 92}T, 3)
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donde x, es la posicién de la rétula en el elemento x4 € [0, L¢/2, L¢], N*(z) y N?(z) son
las matrices de funciones de interpolacién de Hermite y la funcién M (x,r4) se determina im-
poniendo que la curvatura continua sea nula al agotarse la capacidad resistente de la rétula de
ablandamiento y estd dada por la siguiente expresion:

M(z,2q) = (L~ =) [LBJCL; (L€ + 2z)z4]

+ (r —zq) [-1+ H ()] 4)

La funcién M introduce una discontinuidad en la curvatura cuando se activa la rétula plastica
de ablandamiento (es decir cuando « deja de ser nulo). La curvatura en el elemento estd dada
por: R
2 2
k(x) = %(w) = BY(2)v + B ()0 + %jj (x,xq), (5)
donde las matrices B tienen las derivadas de las funciones de interpolacion.
Al derivar M , se obtiene un término singular (con la funcién de delta de Dirac). De esta

forma la curvatura puede ser escrita como una suma de una parte continua % y otra singular <:

k(x) = B (z)v + BY(2)0 + G(z,x4)a + o 0, (6)

~~
R

R

donde considerando < = 0 (curvatura continua nula al agotarse la capacidad resistente de la
rétula de ablandamiento), se puede obtener G-

224 2x
_ 1+3<1_Le>(1_ﬁ>
G(z,z4) = — Te : (7)

El caso limite de curvatura nula al agotarse la capacidad resistente de la rétula puede ser repre-
sentado graficamente a través de la Figura 2, y por la expresion:

vy =1 +x4bh + (LS —zg)(a+61), 6=0;+a. (8)
U2, U2 02
o
Ui, v1 4
6

Figura 2: Rétula de ablandamiento con resistencia nula.

2.2. Equilibrio de un elemento

Considerando el equilibrio de un elemento de Euler-Bernoulli con discontinuidad, y apli-
cando el Principio de los Trabajos Virtuales (PTV), si G es el trabajo virtual de las fuerzas
internas y G¢*% el trabajo virtual de las fuerzas externas, se debe cumplir G™¢ = G*%¢ para
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todo desplazamiento virtual compatible con las condiciones de borde. Considerando la defor-
macion axial virtual y la curvatura virtual, respectivamente:

de(x) = B%(x)du, 9)
k() = B"(2)dv + B?(2)60 + (G(z, 4) + 6s,) Sc, (10)

siendo N la directa y M el momento flector, sustituimos las deformaciones virtuales en la
expresion del trabajo virtual de las fuerzas internas:

L L L Le
GMhe = / d0eN dx+/ kM dx = / sd”(BY) e dm—i—/ Sa(G + 6,,)M dx, (11)
0 0 0 o Jo B

Vv Vv
estandar adicional

donde dd, B¢ y o estan dados, respectivamente, por:

5d = {su”,6v" 567}, B — {]?] o ]ge}, o = {NM)". (12)

El trabajo virtual se compone de una parte estindar, y un término adicional que incorpora la
discontinuidad cinematica de rotacion. E1 PTV aplicado a un elemento se puede escribir como:

Gite — Gl = dt (F0C — £9°4°) £5a b =0, Vad, da, (13)
D e
=0 =0

siendo f"*¢ dado por:

LE
fint,e — / Bd’TO' dl‘, (14)
0
y h¢ dado por:
L€ _ Le 3 e -
he:/ (G + 0z )M dx = GMdx+ M|, = GMdx+t=0, (15)
0 0 —~— 0

S 80, Mdz

A partir de la ultima igualdad se puede obtener el momento en la discontinuidad,
Le
t= —/ GM dx. (16)
0

Finalmente, se procede al ensamblado a nivel de la estructura obteniendo las ecuaciones no

lineales:
Nelem

(Fmte —f0) =0,  h°=0 Ve (17)

e=1
2.3. Relaciones constitutivas

En el modelo considerado se asume que la respuesta vinculada a la deformacién axial es
eldstica lineal, siendo F el médulo eldstico, A el area de la seccién transversal del elemento y €
la deformacién continua axial, por lo tanto la directa estd dada por:

N = FAe. (18)
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Figura 3: Relaciones constitutivas.
Se considera la hipétesis de pequeiias rotaciones, y por lo tanto, la curvatura continua &, es la
suma de la curvatura eldstica k¢ y la plastica k”,
k=k+kK, K=k +Fk". (19)

En el régimen elastoplastico el dngulo « es cero, por lo tanto la curvatura discreta k es cero. La
ecuacion constitutiva momento-curvatura es:

M = EIR® = EI(R — RP), (20)

donde [ es la inercia flexional de la seccién. El comportamiento constitutivo estd dado por la
relacién momento-curvatura para el caso de endurecimiento, segin la Figura 3a, y para el caso
de ablandamiento de acuerdo a la Figura 3b.

2.4. Flexion elastoplastica con endurecimiento

Dado el momento M en cada punto de integracién, la funcién de fluencia es:
o(M.q) = |M| - (M. - q), 1)

donde ¢ es una funcién del endurecimiento &, dada por:

_ _  M,— M.
_Khlgv Slf S y—7
_ Ky (22)
1= Ko = .
—(M, —M.)|(1——=) — Kp&, encaso contrario,
K
siendo K1 y K2 médulos de endurecimiento plastico. Ademads, la regla de flujo pléstico:
kP =~Asgn(M), £=47. (23)

El factor multiplicador 7 es no negativo por definicién, por lo tanto £ y ¢ son funciones crecien-
tes, mientras que <P puede aumentar o disminuir dependiendo del signo de M. Se cumplen las
condiciones de carga y descarga de Kuhn-Tucker, y la condicién de persistencia:

>0, <0, 76=0, 7¢=0. (24)
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2.5. Rétulas plasticas de ablandamiento en la flexion

Si en alguno de los puntos de integracion se supera el M, se activa la rétula pléstica, se
detiene la plastificacion (kP constante) en el resto del elemento y comienza el proceso de ablan-
damiento. Se considera la funcién de falla:

¢(t,q) = [t| = (My — q). (25)
La variable ¢ representa un momento de ablandamiento, y crece linealmente con una variable
interna de ablandamiento &,

G=mi{—K.& M), K,<0 &=>5sen(t), €=7. 26)

Las condiciones de carga y descarga, y la condicion de persistencia o consistencia, son:

7>0, $<0, 79=0, 75¢=0. 27)
3. IMPLEMENTACION COMPUTACIONAL

A diferencia de lo realizado en trabajos previos, en este trabajo se implemento y utilizé un
codigo abierto para generar los resultados. La implementacion fue realizada como una extension
del software abierto ONSAS (Pérez Zerpa et al., 2025). El software ONSAS aplica métodos de
resolucion como Newton-Raphson o Arc-Length (Bazzano y Pérez Zerpa, 2017), para resolver
las ecuaciones del PTV en intervalos de tiempo [t,,?,.1]. En el Algoritmo 1 se presenta un
pseudo-codigo con el esquema de resolucion de las variables de desplazamiento d y las nuevas
variables internas 1) de los procesos de plastificacion.

Algoritmo 1 Pseudo-cédigo de software ONSAS.

d,={u’, vl OT}T, W, = {RP, &, &ny Qny a4, f;ﬁ’e
d§, v, ns, At, (to, n =0)
dfz A dgv "jjn <~ ¢0’ (tn>
while n < n; do
d,i1, ¥, < time_iteration(d,, 1, £:%")
d;, <~ d; 1, ¥, < V0, (thp1),nn+1
end while

La rutina time_iteration obtiene la solucién del PTV para el tiempo ¢,.,;, a partir de la
solucién en el tiempo £, a través de la aplicacion de un método iterativo.

En el Algoritmo 2 se presenta un pseudo-cddigo de la rutina time_ iteration. Para el célculo
de las fuerzas internas u otras magnitudes a nivel del elemento, se utilizan 3 puntos de inte-
gracion de Gauss-Lobatto. En particular, la variable x; que en cada elemento indica donde se
forma la rétula, debe tomar como valor la coordenada = de uno de los puntos de integracion
(aquel en el que se supere el momento dltimo).

Dado un desplazamiento generalizado d,,, las variables elastoplasticas internas del elemento
¥, = {k2, &,,&,, ), y en caso de activacién de la rétula, la coordenada x4, se verifica que
no se supere el valor M, en cada punto de integracién del elemento. Se aplica un método de
tipo Newton-Raphson con control indirecto de desplazamientos (Jirdsek y Bazant, 2002) para
resolver el sistema global y determinar d,,, 1, iterando hasta obtener convergencia (k < k + 1).
Lograda la convergencia, se determina n <— n + 1, se actualizan las variables elastopldsticas
internas 1),, que corresponden al nuevo desplazamiento d,,, y en caso de activacion de la rétula,
la coordenada z.
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Algoritmo 2 ONSAS time_iteration

ext
d,, ¥, £, tolerance

k k int, k int
k' < 09 dn-i,-]_ — dn’ ’(pn—i-]_ — ,()bn? fn-‘rl — f’rzn

Netem .
oA ¢ e,k
while [|A__, <f,ff1’e — £ ) < tolerance do

foreinl,..., n.do
£05F KSF pfth < frame2D_plastic_internal_force(d ", v°)
end for
Akd];ﬁl « solve(K} £ — £,
ditl =dk,, + Adk

n+1 L n+1 .

k k+1 +1
dn+1 — dn—i—l’ ¢n+1 — ¢n+1
k< k+1

end while

k k
dn-i-l <~ dn—i—l’ ¢n+1 < 7'/)71—1—1

4. RESULTADOS NUMERICOS

Se presentan ejemplos de estructuras con falla resistente del material, se obtiene la secuencia
de activacion de las rétulas plasticas de ablandamiento y la carga de colapso.

4.1. Ejemplo 1, Pértico de dos pisos

El pértico de la Figura 4 se modela con 32 elementos del tipo Euler-Bernoulli con dis-
continuidad de rotacion. La altura de cada piso es 2 m, y la longitud de las vigas es 3,5 m.
Se consideran los siguientes pardmetros: médulo de elasticidad E = 28,6 10° kN/m?, inercia
I = 0,0016 m*. Para el comportamiento no lineal material dado por la Figura 3, en el ca-
so de las vigas: M, = 30kNm, M, = 150kNm, M, = 170kNm, K;; = 11,190 kNm?,
Ko = 137TkNm?, K, = —1310kNm, y para los pilares: M, = 100kNm, M, = 245kNm,
M, = 265kNm, Kj; = 12,450 kNm?, K, = 195kNm?, K, = —2410kNm.

AF

Figura 4: Pértico / Plasticidad / Rétulas de Ablandamiento.

La carga aplicada en este ejemplo es con un tramo decreciente de A, y luego creciente, hasta
reproducir completamente el comportamiento post-colapso. Se carga el nodo 9 con una carga
horizontal, y se aplica el método de control indirecto de desplazamientos.
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300 - Pértico / Plasticidad (Factor de Carga) ~ Pértico / Plasticidad - Elemento 1

@
=3
S

200

N

=3

S
T

100 § € 100} 5
2 z :
z H , = H
< ok R ——— VT 2 9 A T ity
w 5 ] =
< o c o
~ 5 €
r £ g 100 E
-100 § S- A :;
£
-200 -200 - |
300 ! ‘ ! L ! ; ; i 300 ‘ ! ‘ ! ‘ T ; |
-0.1 0 0.1 0.2 0.3 0.4 05 0.6 0.7 -0.1 0 0.1 0.2 03 0.4 05 0.6 0.7
Desplazamiento up, (m) Desplazamiento up (m)
(a) Factor de Carga/Desplazamiento. (b) Momento/Desplazamiento (Elemento 1).
. P
Figura 5: Andlisis del colapso
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Figura 6: Andlisis post-colapso

En la Figura 5a, se muestra la activacion de las rétulas y el colapso de la estructura. En la
Figura 5b, 6a, 6b, se grafica el momento en el primer punto de integracion, donde se activa cada
una de las rétulas, en los elementos 1, 25 y 17, respectivamente. Se muestra la activacion de 6
rétulas de ablandamiento, en los elementos 32, 24, 16, 1, 25 y 17 —producida en ese orden—.
El colapso de la estructura ocurre luego de la activacion de la cuarta rétula, en el elemento 1
—en el primer punto de integracion—, ver Tabla 1.

| Rétula || Elemento | Punto de Integracion | Desplazamiento u,(m) | Fuerza AF(kN) |

1 32 3 —0,01682 195,45
2 24 3 —0,00618 278,99
3 16 3 0,00580 295,64
4 1 1 0,00593 295,72
5 25 1 0,03708 282,67
6 17 1 0,05352 273,85

Tabla 1: Portico de 2 Pisos / Rotulas de Ablandamiento / Carga de Colapso.
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4.2. Ejemplo 2, Portico Darvall-Mendis

En este ejemplo, se resuelve el pértico que fue estudiado por primera vez por (Darvall y
Mendis, 1985) y luego por (Armero y Ehrlich, 2006; Juki¢ et al., 2013), ver Figura 7. No se
considera plasticidad con endurecimiento del material, si se considera el ablandamiento plastico
de las rétulas. Los pardmetros para los pilares son: M,, = 158,18 kN.m, y para las vigas: M, =
169,48 kN.m, el médulo de ablandamiento de las rétulas es igual a: K's = a 10EI/(0,55L),
siendo E = 20,68 10° kN.m?, I = 0,001 m* y L = 3,048 m. El modelo consta de 8 elementos de
Euler-Bernoulli con discontinuidad de rotacion. En el caso de plasticidad perfecta de las rétulas,
cuando no tienen ablandamiento (a = 0), la primera rétula se activa en el punto de aplicacién
de la carga, en los elementos 4 y 5 (nodo 5). La segunda rétula se produce en el elemento 7
(nodo 7), y la tercera en el elemento 2 (nodo 3), esta tltima termina generando un mecanismo
local, y por lo tanto produciendo el colapso de la estructura.

0,55L | \F

3 4 5_6

it it

Figura 7: Pértico Darvall-Mendis / Ré6tulas de ablandamiento.

450 - Darvall-Mendis Frame / Rétulas de Ablandamiento
400
350
300
Z 250
=3
% 200
150
100 —a— ONSAS AF(u), a =0
—a— ONSAS AF(u,), a = -0,04
50 | ONSAS AF(u,), a = -0,06
—u— ONSAS AF(u,), a = -0,0718
0 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

Desplazamiento u, (cm)

Figura 8: Pértico Darvall-Mendis / Ré6tulas de ablandamiento.
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Darvall y Mendis | Armero y Ehrlich Brank et al. ONSAS | Softening Hinges

a Rétula | u,(cm) | AF(KN) | u,(cm) | AF(KN) | w,(cm) | AF(kN) uy(cm) | AF'(kN)
0 1 0,50 336 0,50 337 0,50 336 0,49 336
2 1,14 427 1,14 428 1,13 427 1,14 428
3 1,34 433 1,34 434 1,34 434 1,34 434
-0,04 1 0,50 336 0,50 337 0,50 336 0,49 336
2 1,14 387 1,18 388 1,19 383 1,19 388
-0,06 1 0,50 336 0,50 337 0,50 336 0,49 336
2 1,19 357 1,22 358 1,23 350 1,22 360
-0,0718 1 0,50 336 0,50 337 0,50 336 0,49 336

Tabla 2: Portico de Darvall-Mendis / Rétulas de ablandamiento / Carga de Colapso.

Se puede observar en la Figura 8 y en la Tabla 2, que al disminuir el pardimetro a del médulo
de ablandamiento de las rétulas, la carga tltima de colapso se reduce en forma significativa.

S. CONCLUSIONES

Se presentan los resultados numéricos obtenidos al aplicar la implementacién de cédigo
abierto desarrollada sobre ONSAS para el modelado con rétulas de ablandamiento. En el ejem-
plo 1, se obtiene la secuencia de activacion de las rétulas de ablandamiento, los desplazamien-
tos, las fuerzas correspondientes a la activacién de cada rétula, y la carga dltima de colapso.
En el ejemplo 2, se muestra que la carga ultima de colapso de la estructura depende del mé-
dulo plastico de ablandamiento de las rétulas. Se muestra que la carga de colapso se reduce en
22,58 % al variar el parametro del médulo de ablandamiento. Se comparan los resultados con la
literatura de referencia, lo cual permite validar la implementacién desarrollada para este trabajo.
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