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Abstract. The gamma-Z coefficient is a widely utilised metric in Brazil for the assessment
of global stability in large structures, particularly buildings with more than four floors, as stip-
ulated in the Brazilian standard NBR 6118 - Design of concrete structures - Procedure (2023).
The standard under discussion permits the use of stiffness reducers, with the objective of esti-
mating the effects of physical non-linearity (PNL). The objective of this study was to analyse
the effectiveness of the gamma-Z in estimating second-order effects in two- and three-storey
structures, investigating how different stiffness reduction criteria impact the results. To this
end, modelling and simulations were carried out using the commercial software TQS for two
different structural models, discretised as space frames. Subsequent to the design of the struc-
tures, the average stiffness coefficients were obtained by processing them using the Nonlinear
Physical-Geometric Frame (NLPGF). The iterative process was repeated until the coefficients
converged. The gamma-Z results were then compared with those obtained using the P-delta
calculation method. The research demonstrated that the adoption of more accurate stiffness
reducers, replacing the conventional values of the Brazilian standard, results in a significant
improvement in the estimation of second-order effects in buildings with less than four floors.
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1 INTRODUCTION

The analysis of global stability is fundamental to ensuring structural safety, as it assesses
the risk of loss of resistant capacity due to the influence of second-order effects arising from
structural displacements.(Kimura, 2018). As established by Carvalho and Pinheiro (2009), the
forces calculated based on the initial geometry of the structure, without considering deforma-
tions, are termed first-order effects. Subsequent to the occurrence of deformations, such forces,
considered from the displacements of the structure, are designated as second-order effects.

In order to facilitate the consideration of these effects, ABNT NBR6118 (2023) classifies
structures as either fixed nodes, when second-order forces are less than 10% of first-order forces
and can be disregarded, or movable nodes, when they exceed 10%, requiring their consideration.
In light of the intricacy embedded within second-order calculations, the prevailing consensus
advocates the utilisation of stability parameters, such as the vz coefficient. This approach serves
to streamline the identification of the structural configuration and the estimation of the final
forces, a process that is facilitated by the employment of solely first-order results. However, it
is imperative to note that the application of this method is constrained to structures comprising
a minimum of four floors.

With the aim of investigating the application of the coefficient vz in small structures with less
than four floors, a study was conducted using TQS® software to assess the influence of stiffness
reduction on the estimation of second-order effects. In this study, two building models were
analysed, using stiffness reduction factors proposed in the works of Bueno (2014), Moreira and
Martins (2018), in ABNT NBR6118 (2023), and in the code ACI318 (2019). The structure was
validated using the P-A method for estimating second-order effects, in which stiffness reducers
obtained through the Physical Geometric Nonlinear Frame (PNLFG) were applied.

2 THEORETICAL BASIS

The stability coefficient vz was initially proposed by Franco and Vasconcellos (1991), and
was intended to simplify the process of obtaining second-order stresses. ABNT NBR6118
(2023) indicates that the coefficient vz can be determined from the results of a second-order
linear analysis for each loading case according to Eq. (1), being valid for structures with at least
four floors.

1
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AMtot, d - This is defined as the sum of all horizontal forces of the combination considered,
with their design values, in relation to the base of the structure (Overturning moment);

M1, tot, d — 1Tt is the sum of the products of all vertical forces acting on the structure, in the
combination considered, with their calculation values, by the horizontal displacements of their
respective points of application obtained from first-order analysis.

In order to make an accurate assessment of second-order effects in reinforced concrete struc-
tures, it is necessary to take into account physical nonlinearity (PNL). This is due to the fact that
PNL alters the stiffness of materials as a result of cracking, concrete creep and steel flow (Silva
et al., 2020). Traditionally, the analysis of PNL has been undertaken by means of moment-
curvature relationships, based on the secant stiffness of the sections.

As demonstrated in ABNT NBR6118 (2023), stiffness reduction coefficients are established
for beams and columns (Table 1). However, the application of these coefficients is restricted to
structures with more than four floors, necessitating a specific evaluation for smaller buildings.
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This approach was first introduced in studies by MacGregor (1993) and has since been incor-
porated into the standard. In order to circumvent this limitation, Bueno (2014) and Moreira and
Martins (2018) proposed the use of stiffness reduction factors adapted to small structures (Table

1).

References 2 Flooring | 3 Flooring

ay \ oy | oy \ oy
NBR 6118 (2023) 0.40 | 0.80 | 0.40 | 0.80
Bueno (2014) 0.30 | 0.60 | 0.30 | 0.70
Moreira and Martins (2018) | 0.15 | 0.71 | 0.14 | 0.72

Table 1: Stiffness reducers for structures with less than 4 floors.

Another method for achieving effective stiffness reduction in structural elements is to utilize
the elastic analysis proposed by the code ACI318 (2019). This approach to calculating the
moment of inertia is based on the parametric investigations of Khuntia and Ghosh (2004), who
developed specific equations for stiffness reduction in beams and columns. These equations
have been adapted in this study according to the guidelines of ACI318 (2019).

In the columns, stiffness was calculated individually for each element and floor using Eq. (2),
applying the arithmetic mean of the results to the model, with limits from 0.35/, to 0.85/,. The
calculation for the beams follows a similar methodology, applying Eq. (3), using the average of
the values obtained and restricting between 0.25/, and 0.501,,.
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Eq. (2) and Eq. (3) take into account a range of parameters, including the steel area (Ag7T),
the design moment (M,,), the section width (b,,), and the steel ratio (p), in accordance with the
detailed structural requirements.

Nonlinear analysis can be performed with tools such as the Nonlinear Physical and Geomet-
ric Portal (NLPGP), which discretises the structure into bars and calculates stiffnesses via mo-
ment—curvature relationships (TQS Informatica, 2020). For this, it is necessary that the forces
and the detailed sizing of the elements be processed. In parallel, the P-A process, which con-
sists of an iterative method that adjusts the geometric stiffness matrix, quantifies second-order
effects using the RM2M1 parameter proposed by TQS®, which reports second- and first-order
moments (Eq. 4).

M2
RM2M1 = — 4)
Ml

3 METHODOLOGY

In order to evaluate the effectiveness of the coefficient z in estimating second-order effects
in two- to four-story buildings, two building models (Models A and B) were analyzed with
variations in the stiffness reduction method. The models were simulated using the TQS® system
to consider physical and geometric nonlinearities, and divided into two study topics: Physical
Nonlinearity (PNL) and Nonlinearity Geometric (NLG).
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3.1 Structural models

As illustrated in Figure (1a), the Model A structure is a rectangular building composed of
eight beams and twelve pillars, with a ceiling height of three metres. The majority of the
beams had a base measuring 14 centimetres and a height ranging from 30 to 50 centimetres.
With regard to the columns, the base varied between 14 and 19 centimetres in diameter, and
the height between 30, 40, and 50 centimetres. As illustrated in Figure (1b), Model B Bacarji
and Pinheiro (1996) comprises 11 beams and 12 columns, which vary in section according
to the number of floors. The majority of the beams were found to have a base measuring 14
centimetres, with a height ranging between 35 and 50 centimetres, depending on the specific
level. In the case of the columns, the base varied between 14 and 19 centimetres and underwent
dimensional adjustments in height according to the number of floors, varying between 30, 40,
50, and 60 centimetres.
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Figure 1: (a) Structural model A; (b) Structural model B.

3.2 Active Loads

According to ABNT NBR6118 (2023), the structural analysis process is required to encom-
pass all potential actions that may exert an influence on the structure. This is to be achieved
by giving due consideration to the ultimate and service limit states. As outlined in ABNT
NBR6120 (2019), the self-weight of structural elements is one of the actions to be considered.

In the context of wind actions, the protocol outlined in ABNT NBR6123 (2023) was adhered
to, with the TQS® software tool serving to facilitate the incorporation of data pertaining to the
building in question and the subsequent determination of the static wind force. This determina-
tion was made with reference to a fundamental speed of 45 meters per second, as determined by
the geographical location of the structure in proximity to Alegrete/RS, as depicted on the iso-
pleth graph. In the models analysed, wind action prevailed, as 30% of wind action was greater
than that of unsteadiness.

In concluding the assessment of overall model stability, eight combinations of actions, as
specified by ABNT NBR6118 (2023), were utilised. The weighting coefficients assigned to
these actions were 1.4 for permanent actions, with reduction coefficients of 1.5 and 0.5 for
overloads and 1.4 an 0.6 for dynamic wind pressure.
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3.3 Physical Nonlinearity

The influence of PNL variation was analysed through the variation of stiffness reduction
factors. Initially, the factors recommended by ABNT NBR6118 (2023) were applied without
consideration of the limitation provided for in the standard. Subsequently, the stiffness reducers
proposed by Bueno (2014) and Moreira and Martins (2018) were tested, according to the values
presented in (Table 1)

In order to validate the results, the Nonlinear Physical and Geometric Portal (NLPGP)
method of the TQS® system was utilised. The spatial model under consideration comprised
beams and columns discretised into bars of up to 50 centimetres. The stiffness of each bar
was calculated on the basis of its geometry, detailed reinforcement, and applied forces, using
moment-curvature relationships.

Subsequent to the initial dimensioning stage, the NLPGP was processed in order to obtain
the average stiffness coefficients of the beams and columns. The coefficients were then adjusted
in accordance with the system’s predetermined criteria, and the structure underwent a resizing
process. As illustrated in Figure (2), the procedural flowchart is presented.
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Figure 2: Flowchart of the methodology used in the NLPGP:

3.4 Global stability

Initially, the coefficient, designated as vz, was used as a metric for estimation, with sys-
tematic adjustments to the stiffness reducers implemented in accordance with a predetermined
methodology. The modeling of the elements and the global processing followed the flow illus-
trated in Figure (3), with all variables kept constant except for the stiffness reducers.

The P-A numerical method was used to ascertain the ultimate equilibrium position of the
structure through iterative corrections in the geometric stiffness matrix. Second-order effects
were quantified on a global scale by employing the RM2M 1 parameter, which serves to compare
second- and first-order moments.
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Following the global processing of the structure by the TQS® system, a global stability report
was generated. This enabled the evaluation of the influence of the coefficient vz and the P-A
process on the estimation of second-order effects.

Global
Stability Analysis
Global P-A
NLPGP

Model I

Global Stability
PNL CONSIDERATION™ ) Report

NBR 6118
(2023) 1

Bueno (2014)

Global
Stability Analysis
Global y-Z

Moreira (2018)

ACI 318 (2019)

|

Figure 3: Flowchart of PNL analysis methodology

4 RESULTS
4.1 Results Physical Nonlinearity

As illustrated in Table (2), the stiffness reduction coefficients obtained by the NLPGP method
and by Eq. (2) and Eq. (3) from ACI318 (2019) for beams and columns demonstrate that the
differences are more pronounced in beams. For columns, the differences were less pronounced,
with an average variation of less than 3%, suggesting enhanced precision in the ACI equations
for these elements. The structural models were designated A and B, with the corresponding
number of floors assigned P2, P3, and P4.

NLPGP ACI 318
Beams | Columns | Beams \ Columns
AP2 | 0.172 0.718 0.278 0.726
BP2 | 0.192 0.708 0.288 0.665
AP3 | 0.161 0.725 0.287 0.679
BP3 0.159 0.672 0.286 0.674
AP4 | 0.150 0.695 0.301 0.673
BP4 | 0.168 0.701 0.297 0.676

Model

Table 2: Stiffness reducers for structures with less than four floors.
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4.2 Global stability analysis results

Figure (4) addresses the analysis of geometric nonlinearity in the structural models studied,
evaluating the impact of stiffness reducers on the stability coefficients vz. The classifications
between “fixed nodes” and “mobile nodes” vary according to the PNL methodology adopted,
with greater instability observed in three- and four-story models.

Model A (1a), the vertical directions (90° and 270°) showed greater susceptibility to insta-
bility. Two-story models (AP2N and AP2ACI) were classified as “fixed nodes,” with vz close
to 1,10, while three-story (AP3) and four-story (AP4) models showed more flexible behavior,
classified as “movable nodes.” The variations between the methods based on ABNT NBR6118
(2023), ACI318 (2019), and the reducers of Bueno (2014) and Moreira and Martins (2018) were
highlighted, especially in structures with up to three floors, since the factors in these studies do
not apply to models with four floors.
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Figure 4: Global stability result model A
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Model B Figure (5), instability was more pronounced in the horizontal directions (0° and
180°), and all models were classified as “mobile nodes.” The dimensional adaptations of the
columns in models BP3 and BP2 showed greater robustness in BP3. The coefficient yz varied
according to the applied reducers, with the BPx-M and BPx-PNLFG models being the closest to
the validation model (BPxP-A). The greatest discrepancy was recorded in the BP4N structure,
with a variation of 3,85% in relation to the BP4 PNLFG P-A model.
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Figure 5: Global stability result model B
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S CONCLUSIONS

In this study, the performance of the vz coefficient was analyzed under various structural
stiffness values using the P-A process combined with the Nonlinear Physical and Geometric
Portal (NLPGP). The results obtained from this analysis demonstrated that:

In the physical nonlinearity (PNL) analysis, the stiffness of the beams exhibited substan-
tial variations (0,150 to 0,301) in relation to the reduction factors stipulated by ABNT
NBR6118 (2023);

The reduction in column stiffness exhibited a range from 0.665 to 0.726, exhibiting re-
duced discrepancy relative to the established normative values. It was determined that a
decrease in reinforcement rates results in a reduction of beam stiffness, while the impact
of the acting forces on columns is more pronounced;

The values obtained by NLPGP were lower than those of ACI318 (2019), which indicated
greater stiffness for beams and less for columns, as can be seen in models ACI AP3, AP4,
BP2, and BP4;

The coefficients proposed in ACI318 (2019) yielded estimates of 2 that were lower than
those of the reference model. This finding underscores the critical role of meticulous
selection of stiffness factors in structural assessment;

Preliminary findings from the Nonlinearity Geometric (NLG) analysis suggest that the
coefficient vz, may serve as a reliable metric for estimating second-order effects in struc-
tures comprising up to four floors. However, it is crucial to note that the variability in
structural stiffness exerts a substantial influence on the efficacy of this coefficient;

A comparison was made of the coefficient vz with the P-A method, with both employing
the same stiffness reducers. Variations of up to 5% in the coefficient were observed,
depending on the model;

The reducers proposed by Bueno (2014) and Moreira and Martins (2018) demonstrated
greater adherence to the validation models, while those from ABNT NBR6118 (2023)
and ACI318 (2019) exhibited greater discrepancies.
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