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Resumen.

La intermitencia cadtica es una ruta por medio de la cual un sistema evoluciona hacia comportamien-
tos cadticos. Este fenémeno ha sido observado en varias ramas de la ciencia como la ingenierfa, fisica,
quimica, economia, biologia, neurociencias, etc. En la mecédnica de fluidos, particularmente en flujos
turbulentos, la intermitencia es un rasgo caracteristico. En los dltimos afios se ha desarrollado una teoria
nueva de intermitencia cadtica que permite comprender mejor la misma aplicada en mapas unidimensio-
nales. Este trabajo continda un esfuerzo por ampliar el estudio y la teoria a mapas de dos dimensiones.
Se trabaja sobre un mapa bidimensional que presenta intermitencia tipo I para sus mapas de retorno 10
y 14. Se describen las metodologias empleadas para tratar con intermitencia en atractores de multiples
puntos fijos. Se presenta la estrategia utilizada para calcular numéricamente las funciones caracteristicas
de la intermitencia, la RPD y la densidad de probabilidad de las longitudes laminares. Se comparan los
resultados numéricos con los obtenidos en mapas de una dimension.

Keywords: Chaotic Intermittency, RPD, Probability Density of the Laminar Lengths, Fixed Points, Two-
Dimensional Maps.

Abstract. Chaotic intermittency is a phenomenon observed in various branches of science, including
engineering, physics, chemistry, economics, biology, and neuroscience. In fluid mechanics, particularly
in turbulent flow, intermittency is a crucial characteristic. Recently, a new theory of chaotic intermit-
tency has emerged, providing a better understanding of the phenomenon, and has been applied to one-
dimensional maps. This work progresses with an effort to extend the new theory to two-dimensional
maps. In this context, a two-dimensional return map exhibiting type-I intermittency is analyzed, particu-
larly in its 10th and 14th iterations. The methodologies utilized to address intermittency with a significant
number of fixed points are presented. The approach to deriving the characteristic functions that describe
intermittency, including the reinjection probability density (RPD) function and the probability density of
laminar lengths, is detailed. Additionally, numerical results are compared to those obtained from one-
dimensional maps.
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1. INTRODUCCION

El estudio de la intermitencia como ruta hacia el caos se origina en el trabajo seminal de
Pomeau y Manneville (Pomeau y Manneville, 1980), siendo esta caracterizada por la alternan-
cia entre fases de comportamiento regular (fases laminares) y fases de comportamiento cadtico.
En el ambito de la mecanica de fluidos, el sistema de Lorenz se relaciona con la conveccién
de Rayleigh—Bénard, la ecuacién de Schrodinger no lineal, los flujos turbulentos, entre otros
fenémenos (Elaskar y del Rio, 2017). Extender la teoria al caso bidimensional brinda la posi-
bilidad de caracterizar y analizar una mayor diversidad de comportamientos (Schuster y Just,
2005; Nayfeh y Balachandran, 1995; Marek y Schreiber, 1995; Elaskar y del Rio, 2017).

La primera clasificacion de intermitencia propuso tres tipos, segun el tipo de bifurcaciéon que
se produzca en el mapa. En la intermitencia tipo I los valores propios de la matriz Jacobiana
evaluada en el punto fijo abandonan el circulo unitario a través de +1.

En los afios recientes, una nueva teoria de intermitencia cadtica fue desarrollada para mapas
unidimensionales, centrando el estudio en la funcién de distribucién de probabilidad de reinyec-
cion (RPD) y su relacion con la duracion de la longitud laminar media; en ella, la teoria cldsica
es un caso particular (del Rio y Elaskar, 2010, 2016, 2018, 2021, 2012; del Rio y Makarov,
2013; del Rio et al., 2014; Elaskar et al., 2017; Elaskar y del Rio, 2018, 2023a,b; Elaskar et al.,
2011, 2015, 2018).

En (Kim y Kye, 2001) se estudia un sistema que muestra intermitencia tipo I en dos dimen-
siones, describiéndose la evolucion temporal del sistema y obteniendo la relacidn caracteristica.

2. FUNDAMENTOS TEORICOS

El sistema bajo estudio es el mapa bidimensional propuesto en (Kim y Kye, 2001), definido
por las ecuaciones:

Tpi1 = dax, (1 —x,) + By, (1 — x,) (1a)
Yn+1 = 4043/71 (1 - yn) + an (1 - yn) (lb)

Este mapa representa una generalizacién bidimensional de la forma normal cerca de una
bifurcacién tangente. o actia como un pardmetro de capacidad de carga andlogo al del mapa
logistico, y 3 acopla las dos variables del sistema.

2.1. Puntos fijos

Los puntos fijos son aquellos pares (zx, yx*) tales que xx = F (xx,yx) y yx = G (z*, y*).
Estos puntos desaparecerdn por medio de una bifurcacion tangente, dando origen a la intermi-
tencia cadtica.

2.2. Region laminar

La region laminar £ se define como un subconjunto acotado del espacio de fases donde la
dindmica del sistema es aproximadamente periddica (laminar). Su geometria y tamafio deben
definirse con criterios especificos, siendo su escala tipicamente pequeiia en comparacion con la
extension total del espacio de fases explorado por la 6rbita cadtica.

Para sistemas unidimensionales, £ suele definirse como un intervalo centrado en la ubica-
cioén del punto fijo "fantasma"(desaparecido producto de la bifurcacién), de longitud 2¢. En dos
dimensiones, la eleccion de la geometria de £ no es trivial. Entre las definiciones comunes se
incluyen:
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Region circular (norma L?):
£={(a.y) €B: |(2.y) — (wpyp)ls < ) @
Regién rectangular (norma L*°):
L={(w.y) eR*: |z —af| <a, |y —ys| <} (3)
donde (z¢,yy) es el punto fijo.

2.3. Funcion de distribucion de probabilidad de reinyeccion RPD

La Funcién de distribucion de probabilidad de reinyeccidén (RPD, por sus siglas en inglés)
describe la densidad de probabilidad con la que las trayectorias cadticas son reinyectadas en la
region laminar L. Esta funcién, junto con el mapa local que gobierna la dindmica dentro del
canal, determina estadisticamente la distribucion de las longitudes de las fases laminares.

2.4. Longitud laminar

La longitud laminar [ es una variable aleatoria que cuantifica la duracién de una fase laminar,
medida en nimero de iteraciones del mapa (para sistemas discretos) o en unidades de tiempo
(para sistemas continuos). En intermitencia tipo I es una funcién de la distancia entre el mapa y
la llamada hiper-superficie diagonal (DHS por sus siglas en inglés), la cual en sistemas de una
dimension es la recta bisectriz x,, = 1.

3. RESULTADOS

En esta seccion se presentan resultados numéricos y se comparan con las expresiones tedricas
para diferentes valores de los parametros de control.

3.1. Calculo de puntos fijos

El estudio numérico se llevé a cabo para tres conjuntos de pardmetros «, /3, cuyos valores se
detallan en la Tabla 1. Estos valores fueron seleccionados para producir intermitencia tipo 1.

a B
aq :0.674149344 | 5, : 0.5
as : 0.77826511 | B5:0.3
as : 0.68900156 | B3 :0.5

Tabla 1: Valores de parametros trabajados.

Los pares (aj, 1) y (e, 52) muestran una bifurcacion tangente para el mapa de retorno
n + 14, el cual posee 14 puntos fijos. El par («g, f3) muestra una bifurcacién tangente para el
mapa de retorno n + 10, que posee 10 puntos fijos.

Para calcular los puntos fijos, se modific6 levemente el pardmetro «,, aumentdndolo de forma
progresiva hasta observar la desaparicion de la dindmica intermitente y la estabilizacion del sis-
tema en una Orbita periddica estable. Una vez identificados los valores de « criticos, se procedid
a caracterizar los atractores.
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La figura 1 muestra la evolucion temporal para los tres casos indicados en la tabla 1 para el
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mapa de retorno n + 1, donde se aprecian los multiples puntos fijos.

Para cada conjunto de pardmetros, se integré numéricamente el sistema hasta que la diné-
mica habia abandonado el régimen transitorio. Posteriormente, los puntos fijos del mapa co-
rrespondiente se estimaron filtrando y aislando estados repetidos de la érbita periddica, con una

tolerancia predeterminada.

Los 10 puntos fijos obtenidos en el caso de (s, 33) se muestran en la tabla 3 en conjunto

Figura 1: Evolucion del sistema para los tres pares de pardmetros.
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n x Yy A1 Ao | n x Yy A1 Ao

1 10.2812 | 0.7793 | 0.9902 | 0.0841 | 6 | 0.7793 | 0.2812 | 0.9902 | 0.0841
2 10.8372 | 0.505 | 0.9902 | 0.0841 | 7 | 0.505 | 0.8372 | 0.9902 | 0.0841
3104168 | 0.8961 | 0.9902 | 0.0841 | 8 | 0.8961 | 0.4168 | 0.9902 | 0.0841
4 109312 | 0.2782 | 0.9902 | 0.0841 | 9 | 0.2782 | 0.9312 | 0.9902 | 0.0841
51 0.186 | 0.8895 | 0.9902 | 0.0841 | 10 | 0.8895 | 0.186 | 0.9902 | 0.0841

Siguiendo el mismo procedimiento, se obtiene la localizacién de los puntos fijos para los
casos correspondientes a (ay, 51) y (g, 52) (se omite la introduccién de la tabla andloga para

Tabla 2: Valores de los puntos fijos y valores propios para a ~ 0,689.

(o, B1) 3 por razones de espacio).

El andlisis de estabilidad lineal para el caso («azs, 33) requiere el célculo de la matriz Jacobiana
del sistema iterado k—veces, donde k = 10 es el periodo del ciclo, evaluada en el punto fijo

(z*,y*) del mapa compuesto F'0:
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n €T Y Al )\2 n e Yy /\1 )\2

1 ]0.2387 | 0.8212 | 0.8345 | 0.1693 | 8 | 0.8212 | 0.2387 | 0.8345 | 0.1693
0.7532 | 0.4699 | 0.8349 | 0.1692 | 9 | 0.4699 | 0.7532 | 0.8349 | 0.1692
0.6135 | 0.8952 | 0.836 | 0.1685 | 10 | 0.8952 | 0.6135 | 0.836 | 0.1685
0.842 | 0.3113 | 0.8366 | 0.1682 | 11 | 0.3113 | 0.842 | 0.8366 | 0.1682
0.4289 | 0.8414 | 0.8366 | 0.1682 | 12 | 0.8414 | 0.4289 | 0.8366 | 0.1682
0.9067 | 0.4359 | 0.8362 | 0.1688 | 13 | 0.4359 | 0.9067 | 0.8362 | 0.1688
0.2756 | 0.9189 | 0.8339 | 0.1696 | 14 | 0.9189 | 0.2756 | 0.8339 | 0.1696

Tabla 3: Valores de los puntos fijos y valores propios para a ~ 0,778.

~N | QN0 B W N

El calculo analitico de DF'° resulta prohibitivamente complejo. Para superar esta dificultad se
aplica numéricamente la regla de la cadena, multiplicando secuencialmente las matrices Jaco-
bianas del mapa original F' evaluadas en cada punto de la 6rbita 10-periédica {(z, yf)}gl, que

converge al punto fijo de F'1:

DF*(x* y*) = DF(F*(2*,y*)) * DF(F"*2(z*,9))... DF (z*, y*) (5)

Los valores propios son naturalmente los mismos, pues el método de célculo implica:

DF*(x* y*) = DF(x},y5) * DF(Fa§,y5)...DE(x%, y}) (6)

El espectro de valores propios o(J) de la matriz Jacobiana presenta las caracteristicas de una
bifurcacién tangente: un autovalor \; ~ 1y un segundo autovalor |\;| < 1. Esta configuracién
confirma la inestabilidad neutra en direccién del autovector asociado a A, (variedad central) y
una dindmica fuertemente contractiva en la direccién del autovector de \,. La presencia de este
par de valores propios es consistente con la observacion del régimen de intermitencia tipo 1, el
cual se manifiesta tipicamente en las proximidades de este tipo de bifurcacion.

3.2. Funcion RPD

Para calcular 1a RPD se definié una regién laminar de forma circular de radio c centrada en
cada punto fijo (z*,4*) usando la norma L? previamente definida. La funcién RPD se caracte-
riz6 numéricamente desde dos perspectivas:

1. Unidimensional: Calculando las distribuciones ¢(x), ¢(y) y la distribucion radial ¢(r).

2. Bidimensional: Calculando la distribucion conjunta ¢(z, y) para capturar posibles corre-
laciones espaciales.

Las figuras 2a y 2b ilustran, para (aq, f2) y (a3, 83) respectivamente, la geometria del atrac-
tor cadtico en el espacio de fases (z,y), la localizacién de los puntos fijos del ciclo periddico
inestable y las regiones laminares circulares definidas a su alrededor. Solo se muestran los pun-
tos tales que y > x ya que por simetria la otra mitad del atractor es idéntica.

Los eventos de reinyeccion se identificaron por un criterio algoritmico. Un punto (x,,, y,,) se
considera reinyectado en la regién laminar £ si satisface:
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0.925 1
0.881 1
= 0.838 1
0.794 1
0.751 &
0.2 0288 0375 0462 0.5
i xr
(a) Atractor cadtico para puntos y, > x, (es simé- (b) Atractor cadtico para puntos y,, > x, (es simé-
trico respecto a la bisectriz x,, = y,), con las re-  trico respecto a la bisectriz x,, = y,,), con las re-
giones laminares en rojo, con pardmetros (a3, 33).  giones laminares en rojo, con pardmetros (a, 32).

Figura 2: Atractores cadticos.

(xn7yn) S E y (xn—layn—l) ¢ L (7)

donde L = {(x,y) ER?: \/(z—zp)+ (y—ys)? < c}
El criterio se implementé monitorizando la funcién distancia d(n) al punto fijo (ec. 8). Se

registré una reinyeccion cuando la trayectoria cumple: d(n) > cy d(n + 1) < c¢. Siendo la
distancia:

d(n) = /(x(n) — 2*)2 + (y(n) — y*)? (8)
Para cada punto fijo se almacenaron las coordenadas (z,y) de todos los puntos identifi-
cados como reinyectados, asi como su distancia radial » = d(n + 1). Las funciones RPD

o(x), p(y), ¢(r) y ¢(x,y) se estimaron posteriormente construyendo histogramas normaliza-
dos de estas cantidades, los cuales aproximan su densidad de probabilidad subyacente.

En la figura 3 se presentan los resultados de este procedimiento para un punto fijo del mapa
de retorno n + 10, correspondiente a los pardmetros («as, f3). La figura 4 muestra lo mismo para
el mapan + 14y (az, f2).

Las figuras de las RPD calculadas no revelan la presencia de simetrias evidentes ni sugieren
relaciones funcionales simples o universales que caractericen la dindmica de reinyeccion.

La representacion bidimensional ¢(z, y), exhibe un perfil marcadamente irregular y ruidoso,
con la apariciéon de picos de probabilidad localizados en regiones especificas del espacio de
fases.

La causa probable del aspecto ruidoso de ¢(z,y) es una limitacion estadistica inherente al
método de calculo. Para una malla con resolucién de 100 x 100 bines (resultando en 10000
celdas bidimensionales) y un tamafio muestral de N ~ 200000 puntos de reinyeccion, la cuenta
promedio por bin es aproximadamente 20 puntos. Este nimero resulta insuficiente para obtener
una estimacion suave de la RPD.

3.3. Longitudes laminares

Las probabilidades de longitudes laminares, denotadas como (1), se calcularon empleando
dos metodologias distintas con el objetivo de comparar su consistencia.
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1. Método de la Hipersuperficie Diagonal (DHS): Este enfoque global calcula la distancia
Euclidiana en el espacio de fases extendido a la hipersuperficie diagonal, definida por
Tpt1 = T UWYn11 = Y, La distancia se calcula como:

dDHS = \/(xn - xs)Q + (xn-i-l - -Ts)Q + (yn - ys)2 + (yn+1 - ys)Qa (9)

donde s = (T, + Tpt1)/2 Y Ys = (Yn + Ynt1)/2 representan las coordenadas del punto
mads cercano a (z,, y,) sobre la DHS. Este método genera una tnica funcién ¢ (1).

2. Método de Distancia a Punto Fijo: Este enfoque local utiliza la distancia Euclidiana en
el plano (z,y) (definida en la Ec. 8) a un punto fijo especifico (z*, y*). Una fase laminar
se considera iniciada cuando la trayectoria es reinyectada en la regién laminar de dicho
punto fijo (i.e., d(n) < ¢). Este método produce una funcién ¢(!) independiente para cada
punto fijo del ciclo.

_ 5 0.5
T —— general ¢(1) . —s— general ¢(l)
. ‘ PDLL xfo —+— PDLL xi0
D] «— PDLL xfl i
‘ «— PDLL xfl1
—s— PDLL xf2 —— PDLL xi?
}] —+— PDLL xf3 —— PDLL xf3
= = 025
¥ 025 -
A
N o ﬂv.sﬁk\
0 60 110 0 20 40
{ l

(a) Funciones (1) calculadas con el método de  (b) Funciones () calculadas con el método de
la hipersuperficie y en cuatro puntos fijos para  la distancia (general) y en cada punto fijo para

(a3, B3) (a2 B2)

con el método de la distancia al punto fijo. .
Figura 5: Comparacion de las funciones (/) obtenidas con distintos métodos y pardmetros.

Las figuras 5a 'y 5b muestran la comparacion de las funciones (1) obtenidas mediante ambos
métodos para los dos conjuntos de pardmetros. Los resultados revelan que las funciones (1)
son similares, independientemente del método de calculo empleado.

4. CONCLUSIONES

En este trabajo se ha contribuido a la descripcion del fendmeno de intermitencia cadtica en
un mapa bidimensional. Para tal fin se estudia la dindmica del sistema alrededor de ciclos de 10
y 14 iteraciones que se obtienen para diferentes valores de los pardmetros de control oy (.

Se ha obtenido la matriz Jacobiana D F*(x*, 3/*) y se ha realizado la caracterizacion espectral
de la misma (con valores propios A\; = 1y |A2| < 1). Dicho andlisis confirma que la dindmica
observada corresponde a intermitencia cadtica tipo I, originada en una bifurcacion tangente.

La significativa disparidad en la magnitud de los valores propios sugiere que la dindmica
esencial de la intermitencia puede proyectarse sobre la direccion asociada al autovector v;. Per-
mitiendo estudiar el fendmeno en una dimension reducida. Se han evaluado numéricamente las
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funciones RPD no encontrandose un comportamiento regular de las mismas y si una dependen-
cia en la direccion en la que es considerado el mecanismo de reinyeccion, siendo este un tema
que serd necesario analizar mds detalladamente en trabajos futuros.

La coincidencia entre las distribuciones () calculadas mediante el método global (D H.S)
y el método local (distancia al punto fijo) confirma que la estadistica de las fases laminares
es una propiedad global del sistema. Validando el uso del método de la DH .S, més eficiente
computacionalmente.
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