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Resumen.
La intermitencia caótica es una ruta por medio de la cual un sistema evoluciona hacia comportamien-

tos caóticos. Este fenómeno ha sido observado en varias ramas de la ciencia como la ingeniería, física,

química, economía, biología, neurociencias, etc. En la mecánica de fluidos, particularmente en flujos

turbulentos, la intermitencia es un rasgo característico. En los últimos años se ha desarrollado una teoría

nueva de intermitencia caótica que permite comprender mejor la misma aplicada en mapas unidimensio-

nales. Este trabajo continúa un esfuerzo por ampliar el estudio y la teoría a mapas de dos dimensiones.

Se trabaja sobre un mapa bidimensional que presenta intermitencia tipo I para sus mapas de retorno 10

y 14. Se describen las metodologías empleadas para tratar con intermitencia en atractores de múltiples

puntos fijos. Se presenta la estrategia utilizada para calcular numéricamente las funciones características

de la intermitencia, la RPD y la densidad de probabilidad de las longitudes laminares. Se comparan los

resultados numéricos con los obtenidos en mapas de una dimensión.

.

Keywords: Chaotic Intermittency, RPD, Probability Density of the Laminar Lengths, Fixed Points, Two-

Dimensional Maps.

Abstract. Chaotic intermittency is a phenomenon observed in various branches of science, including

engineering, physics, chemistry, economics, biology, and neuroscience. In fluid mechanics, particularly

in turbulent flow, intermittency is a crucial characteristic. Recently, a new theory of chaotic intermit-

tency has emerged, providing a better understanding of the phenomenon, and has been applied to one-

dimensional maps. This work progresses with an effort to extend the new theory to two-dimensional

maps. In this context, a two-dimensional return map exhibiting type-I intermittency is analyzed, particu-

larly in its 10th and 14th iterations. The methodologies utilized to address intermittency with a significant

number of fixed points are presented. The approach to deriving the characteristic functions that describe

intermittency, including the reinjection probability density (RPD) function and the probability density of

laminar lengths, is detailed. Additionally, numerical results are compared to those obtained from one-

dimensional maps.
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1. INTRODUCCIÓN

El estudio de la intermitencia como ruta hacia el caos se origina en el trabajo seminal de

Pomeau y Manneville (Pomeau y Manneville, 1980), siendo esta caracterizada por la alternan-

cia entre fases de comportamiento regular (fases laminares) y fases de comportamiento caótico.

En el ámbito de la mecánica de fluidos, el sistema de Lorenz se relaciona con la convección

de Rayleigh–Bénard, la ecuación de Schrödinger no lineal, los flujos turbulentos, entre otros

fenómenos (Elaskar y del Río, 2017). Extender la teoría al caso bidimensional brinda la posi-

bilidad de caracterizar y analizar una mayor diversidad de comportamientos (Schuster y Just,

2005; Nayfeh y Balachandran, 1995; Marek y Schreiber, 1995; Elaskar y del Río, 2017).

La primera clasificación de intermitencia propuso tres tipos, según el tipo de bifurcación que

se produzca en el mapa. En la intermitencia tipo I los valores propios de la matriz Jacobiana

evaluada en el punto fijo abandonan el círculo unitario a través de +1.

En los años recientes, una nueva teoría de intermitencia caótica fue desarrollada para mapas

unidimensionales, centrando el estudio en la función de distribución de probabilidad de reinyec-

ción (RPD) y su relación con la duración de la longitud laminar media; en ella, la teoría clásica

es un caso particular (del Río y Elaskar, 2010, 2016, 2018, 2021, 2012; del Río y Makarov,

2013; del Río et al., 2014; Elaskar et al., 2017; Elaskar y del Río, 2018, 2023a,b; Elaskar et al.,

2011, 2015, 2018).

En (Kim y Kye, 2001) se estudia un sistema que muestra intermitencia tipo I en dos dimen-

siones, describiéndose la evolución temporal del sistema y obteniendo la relación característica.

2. FUNDAMENTOS TEÓRICOS

El sistema bajo estudio es el mapa bidimensional propuesto en (Kim y Kye, 2001), definido

por las ecuaciones:

xn+1 = 4αxn (1− xn) + βyn (1− xn) (1a)

yn+1 = 4αyn (1− yn) + βxn (1− yn) (1b)

Este mapa representa una generalización bidimensional de la forma normal cerca de una

bifurcación tangente. α actúa como un parámetro de capacidad de carga análogo al del mapa

logístico, y β acopla las dos variables del sistema.

2.1. Puntos fijos

Los puntos fijos son aquellos pares (x∗, y∗) tales que x∗ = F (x∗, y∗) y y∗ = G (x∗, y∗).
Estos puntos desaparecerán por medio de una bifurcación tangente, dando origen a la intermi-

tencia caótica.

2.2. Región laminar

La región laminar L se define como un subconjunto acotado del espacio de fases donde la

dinámica del sistema es aproximadamente periódica (laminar). Su geometría y tamaño deben

definirse con criterios específicos, siendo su escala típicamente pequeña en comparación con la

extensión total del espacio de fases explorado por la órbita caótica.

Para sistemas unidimensionales, L suele definirse como un intervalo centrado en la ubica-

ción del punto fijo "fantasma"(desaparecido producto de la bifurcación), de longitud 2c. En dos

dimensiones, la elección de la geometría de L no es trivial. Entre las definiciones comunes se

incluyen:
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Región circular (norma L2):

L =
{

(x, y) ∈ R
2 : |(x, y)− (xf , yf )|2 ≤ c

}

(2)

Región rectangular (norma L∞):

L =
{

(x, y) ∈ R
2 : |x− xf | ≤ a, |y − yf | ≤ b

}

(3)

donde (xf , yf ) es el punto fijo.

2.3. Función de distribución de probabilidad de reinyección RPD

La Función de distribución de probabilidad de reinyección (RPD, por sus siglas en inglés)

describe la densidad de probabilidad con la que las trayectorias caóticas son reinyectadas en la

región laminar L. Esta función, junto con el mapa local que gobierna la dinámica dentro del

canal, determina estadísticamente la distribución de las longitudes de las fases laminares.

2.4. Longitud laminar

La longitud laminar l es una variable aleatoria que cuantifica la duración de una fase laminar,

medida en número de iteraciones del mapa (para sistemas discretos) o en unidades de tiempo

(para sistemas continuos). En intermitencia tipo I es una función de la distancia entre el mapa y

la llamada hiper-superficie diagonal (DHS por sus siglas en inglés), la cual en sistemas de una

dimensión es la recta bisectriz xn = xn+1.

3. RESULTADOS

En esta sección se presentan resultados numéricos y se comparan con las expresiones teóricas

para diferentes valores de los parámetros de control.

3.1. Cálculo de puntos fijos

El estudio numérico se llevó a cabo para tres conjuntos de parámetros α, β, cuyos valores se

detallan en la Tabla 1. Estos valores fueron seleccionados para producir intermitencia tipo I.

α β

α1 : 0.674149344 β1 : 0.5

α2 : 0.77826511 β2 : 0.3

α3 : 0.68900156 β3 : 0.5

Tabla 1: Valores de parámetros trabajados.

Los pares (α1, β1) y (α2, β2) muestran una bifurcación tangente para el mapa de retorno

n + 14, el cual posee 14 puntos fijos. El par (α3, β3) muestra una bifurcación tangente para el

mapa de retorno n+ 10, que posee 10 puntos fijos.

Para calcular los puntos fijos, se modificó levemente el parámetro α, aumentándolo de forma

progresiva hasta observar la desaparición de la dinámica intermitente y la estabilización del sis-

tema en una órbita periódica estable. Una vez identificados los valores de α críticos, se procedió

a caracterizar los atractores.
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La figura 1 muestra la evolución temporal para los tres casos indicados en la tabla 1 para el

mapa de retorno n+ 1, donde se aprecian los múltiples puntos fijos.

Para cada conjunto de parámetros, se integró numéricamente el sistema hasta que la diná-

mica había abandonado el régimen transitorio. Posteriormente, los puntos fijos del mapa co-

rrespondiente se estimaron filtrando y aislando estados repetidos de la órbita periódica, con una

tolerancia predeterminada.
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Figura 1: Evolución del sistema para los tres pares de parámetros.

Los 10 puntos fijos obtenidos en el caso de (α3, β3) se muestran en la tabla 3 en conjunto

con sus valores propios.

n x y λ1 λ2 n x y λ1 λ2

1 0.2812 0.7793 0.9902 0.0841 6 0.7793 0.2812 0.9902 0.0841

2 0.8372 0.505 0.9902 0.0841 7 0.505 0.8372 0.9902 0.0841

3 0.4168 0.8961 0.9902 0.0841 8 0.8961 0.4168 0.9902 0.0841

4 0.9312 0.2782 0.9902 0.0841 9 0.2782 0.9312 0.9902 0.0841

5 0.186 0.8895 0.9902 0.0841 10 0.8895 0.186 0.9902 0.0841

Tabla 2: Valores de los puntos fijos y valores propios para a ≈ 0,689.

Siguiendo el mismo procedimiento, se obtiene la localización de los puntos fijos para los

casos correspondientes a (α1, β1) y (α2, β2) (se omite la introducción de la tabla análoga para

(α1, β1) 3 por razones de espacio).

El análisis de estabilidad lineal para el caso (α3, β3) requiere el cálculo de la matriz Jacobiana

del sistema iterado k−veces, donde k = 10 es el periodo del ciclo, evaluada en el punto fijo

(x∗, y∗) del mapa compuesto F 10:

J = DF 10(x∗, y∗) (4)
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n x y λ1 λ2 n x y λ1 λ2

1 0.2387 0.8212 0.8345 0.1693 8 0.8212 0.2387 0.8345 0.1693

2 0.7532 0.4699 0.8349 0.1692 9 0.4699 0.7532 0.8349 0.1692

3 0.6135 0.8952 0.836 0.1685 10 0.8952 0.6135 0.836 0.1685

4 0.842 0.3113 0.8366 0.1682 11 0.3113 0.842 0.8366 0.1682

5 0.4289 0.8414 0.8366 0.1682 12 0.8414 0.4289 0.8366 0.1682

6 0.9067 0.4359 0.8362 0.1688 13 0.4359 0.9067 0.8362 0.1688

7 0.2756 0.9189 0.8339 0.1696 14 0.9189 0.2756 0.8339 0.1696

Tabla 3: Valores de los puntos fijos y valores propios para a ≈ 0,778.

El cálculo analítico de DF 10 resulta prohibitivamente complejo. Para superar esta dificultad se

aplica numéricamente la regla de la cadena, multiplicando secuencialmente las matrices Jaco-

bianas del mapa original F evaluadas en cada punto de la órbita 10-periódica {(x∗i , y
∗

i )}
10

i=1
, que

converge al punto fijo de F 10:

DF k(x∗, y∗) = DF (F k−1(x∗, y∗)) ∗DF (F k−2(x∗, y∗))...DF (x∗, y∗) (5)

Los valores propios son naturalmente los mismos, pues el método de cálculo implica:

DF k(x∗, y∗) = DF (x∗9, y
∗

9) ∗DF (Fx
∗

8, y
∗

8)...DF (x
∗

1, y
∗

1) (6)

El espectro de valores propios σ(J) de la matriz Jacobiana presenta las características de una

bifurcación tangente: un autovalor λ1 ≈ 1 y un segundo autovalor |λ2| ≪ 1. Esta configuración

confirma la inestabilidad neutra en dirección del autovector asociado a λ1 (variedad central) y

una dinámica fuertemente contractiva en la dirección del autovector de λ2. La presencia de este

par de valores propios es consistente con la observación del régimen de intermitencia tipo I, el

cual se manifiesta típicamente en las proximidades de este tipo de bifurcación.

3.2. Función RPD

Para calcular la RPD se definió una región laminar de forma circular de radio c centrada en

cada punto fijo (x∗, y∗) usando la norma L2 previamente definida. La función RPD se caracte-

rizó numéricamente desde dos perspectivas:

1. Unidimensional: Calculando las distribuciones ϕ(x), ϕ(y) y la distribución radial ϕ(r).

2. Bidimensional: Calculando la distribución conjunta ϕ(x, y) para capturar posibles corre-

laciones espaciales.

Las figuras 2a y 2b ilustran, para (α2, β2) y (α3, β3) respectivamente, la geometría del atrac-

tor caótico en el espacio de fases (x, y), la localización de los puntos fijos del ciclo periódico

inestable y las regiones laminares circulares definidas a su alrededor. Solo se muestran los pun-

tos tales que y > x ya que por simetría la otra mitad del atractor es idéntica.

Los eventos de reinyección se identificaron por un criterio algorítmico. Un punto (xn, yn) se

considera reinyectado en la región laminar L si satisface:
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(a) Atractor caótico para puntos yn > xn (es simé-

trico respecto a la bisectriz xn = yn), con las re-

giones laminares en rojo, con parámetros (α3, β3).

(b) Atractor caótico para puntos yn > xn (es simé-

trico respecto a la bisectriz xn = yn), con las re-

giones laminares en rojo, con parámetros (α2, β2).

Figura 2: Atractores caóticos.

(xn, yn) ∈ L y (xn−1, yn−1) /∈ L (7)

donde L =
{

(x, y) ∈ R
2 :

√

(x− xf )2 + (y − yf )2 ≤ c
}

El criterio se implementó monitorizando la función distancia d(n) al punto fijo (ec. 8). Se

registró una reinyección cuando la trayectoria cumple: d(n) > c y d(n + 1) ≤ c. Siendo la

distancia:

d(n) =
√

(x(n)− x∗)2 + (y(n)− y∗)2 (8)

Para cada punto fijo se almacenaron las coordenadas (x, y) de todos los puntos identifi-

cados como reinyectados, así como su distancia radial r = d(n + 1). Las funciones RPD

ϕ(x), ϕ(y), ϕ(r) y ϕ(x, y) se estimaron posteriormente construyendo histogramas normaliza-

dos de estas cantidades, los cuales aproximan su densidad de probabilidad subyacente.

En la figura 3 se presentan los resultados de este procedimiento para un punto fijo del mapa

de retorno n+10, correspondiente a los parámetros (α3, β3). La figura 4 muestra lo mismo para

el mapa n+ 14 y (α2, β2).
Las figuras de las RPD calculadas no revelan la presencia de simetrías evidentes ni sugieren

relaciones funcionales simples o universales que caractericen la dinámica de reinyección.

La representación bidimensional ϕ(x, y), exhibe un perfil marcadamente irregular y ruidoso,

con la aparición de picos de probabilidad localizados en regiones específicas del espacio de

fases.

La causa probable del aspecto ruidoso de ϕ(x, y) es una limitación estadística inherente al

método de cálculo. Para una malla con resolución de 100 × 100 bines (resultando en 10000
celdas bidimensionales) y un tamaño muestral de N ≈ 200000 puntos de reinyección, la cuenta

promedio por bin es aproximadamente 20 puntos. Este número resulta insuficiente para obtener

una estimación suave de la RPD.

3.3. Longitudes laminares

Las probabilidades de longitudes laminares, denotadas como ψ(l), se calcularon empleando

dos metodologías distintas con el objetivo de comparar su consistencia.
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Figura 3: Funciones RPD para (α3, β3)
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Figura 4: Funciones RPD para (α2, β2).
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1. Método de la Hipersuperficie Diagonal (DHS): Este enfoque global calcula la distancia

Euclidiana en el espacio de fases extendido a la hipersuperficie diagonal, definida por

xn+1 = xn u yn+1 = yn. La distancia se calcula como:

dDHS =
√

(xn − xs)2 + (xn+1 − xs)2 + (yn − ys)2 + (yn+1 − ys)2, (9)

donde xs = (xn + xn+1)/2 y ys = (yn + yn+1)/2 representan las coordenadas del punto

más cercano a (xn, yn) sobre la DHS. Este método genera una única función ψ(l).

2. Método de Distancia a Punto Fijo: Este enfoque local utiliza la distancia Euclidiana en

el plano (x, y) (definida en la Ec. 8) a un punto fijo específico (x∗, y∗). Una fase laminar

se considera iniciada cuando la trayectoria es reinyectada en la región laminar de dicho

punto fijo (i.e., d(n) ≤ c). Este método produce una función ψ(l) independiente para cada

punto fijo del ciclo.

(a) Funciones ψ(l) calculadas con el método de

la hipersuperficie y en cuatro puntos fijos para

(α3, β3)

con el método de la distancia al punto fijo.

(b) Funciones ψ(l) calculadas con el método de

la distancia (general) y en cada punto fijo para

(α2 β2)

.

Figura 5: Comparación de las funciones ψ(l) obtenidas con distintos métodos y parámetros.

Las figuras 5a y 5b muestran la comparación de las funciones ψ(l) obtenidas mediante ambos

métodos para los dos conjuntos de parámetros. Los resultados revelan que las funciones ψ(l)
son similares, independientemente del método de cálculo empleado.

4. CONCLUSIONES

En este trabajo se ha contribuido a la descripción del fenómeno de intermitencia caótica en

un mapa bidimensional. Para tal fin se estudia la dinámica del sistema alrededor de ciclos de 10

y 14 iteraciones que se obtienen para diferentes valores de los parámetros de control α y β.

Se ha obtenido la matriz JacobianaDF k(x∗, y∗) y se ha realizado la caracterización espectral

de la misma (con valores propios λ1 ≈ 1 y |λ2| ≪ 1). Dicho análisis confirma que la dinámica

observada corresponde a intermitencia caótica tipo I, originada en una bifurcación tangente.

La significativa disparidad en la magnitud de los valores propios sugiere que la dinámica

esencial de la intermitencia puede proyectarse sobre la dirección asociada al autovector v1. Per-

mitiendo estudiar el fenómeno en una dimensión reducida. Se han evaluado numéricamente las
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funciones RPD no encontrándose un comportamiento regular de las mismas y sí una dependen-

cia en la dirección en la que es considerado el mecanismo de reinyección, siendo este un tema

que será necesario analizar más detalladamente en trabajos futuros.

La coincidencia entre las distribuciones ψ(l) calculadas mediante el método global (DHS)

y el método local (distancia al punto fijo) confirma que la estadística de las fases laminares

es una propiedad global del sistema. Validando el uso del método de la DHS, más eficiente

computacionalmente.
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