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Resumen. El solucionador rhoCentralRfFoam, basado en rhoCentralFoam (OpenFOAM), está diseña-

do para resolver las ecuaciones de Euler para flujos compresibles químicamente reactivos con modelos

de reacción detallados. A diferencia del solver base, este incorpora la resolución de las ecuaciones de

transporte de las especies químicas. Al emplear una formulación central-upwind explícita, la definición

del flujo numérico en dichas ecuaciones resulta crítica, ya que condiciona directamente la estabilidad y

precisión de las soluciones. En este trabajo se analizan dos estrategias para su cálculo: (i) la multipli-

cación del flujo volumétrico por la variable conservada (rhoY), tratada como una única magnitud, y (ii)

la multiplicación del flujo volumétrico por las variables primitivas correspondientes, la densidad (rho) y

la fracción másica (Y), consideradas por separado. El objetivo de este trabajo es evaluar el impacto de

ambas formulaciones sobre la estabilidad y consistencia física de las soluciones, con el fin de identificar

el enfoque más preciso y estable.

Keywords: Chemically Reactive Flows, Species Transport Equations, rhoCentralRfFoam.

Abstract. The rhoCentralRfFoam solver, based on rhoCentralFoam (OpenFOAM), is designed to sol-

ve the Euler equations for chemically reactive compressible flows with detailed reaction models. Unlike

the base solver, it includes the solution of the chemical species transport equations. By employing an ex-

plicit central-upwind formulation, the definition of the numerical flux in these equations becomes critical,

as it directly influences the stability and accuracy of the solutions. This study analyzes two strategies for

its computation: (i) multiplying the volumetric flux by the conserved variable (rhoY), treated as a single

quantity, and (ii) multiplying the volumetric flux by the corresponding primitive variables, density (rho)

and mass fraction (Y), considered separately. The objective of this work is to evaluate the impact of

both formulations on the stability and physical consistency of the solutions, in order to identify the most

accurate and stable approach.
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1. INTRODUCCION

El estudio de los flujos químicamente reactivos a alta velocidad es fundamental en aplicacio-

nes relacionadas con detonaciones, sistemas de propulsión y, especialmente, en la evaluación

de riesgos y la seguridad frente a explosiones. Modelar adecuadamente este tipo de fenómenos

requiere resolver con precisión las ecuaciones fundamentales que los gobiernan: las ecuaciones

de Euler reactivas. A diferencia de su versión no reactiva, estas ecuaciones incluyen términos

adicionales que describen el transporte y la evolución de las especies químicas presentes en la

mezcla combustible (Kee et al., 2017).

En este contexto, rhoCentralRfFoam se presenta como un solucionador derivado de

rhoCentralFoam, el solucionador por defecto de OpenFOAM basado en densidad, adapta-

do para integrar las ecuaciones de Euler reactivas. Su desempeño numérico ha sido evaluado en

(Gutiérrez Marcantoni et al., 2017a,b, 2019), y su portabilidad actualizada según lo reportado

en (Frias et al., 2023). En su versión actual, el solucionador utiliza el esquema SSPRK (Strong

Stability Preserving Runge-Kutta) de tercer orden y tres etapas (Shu y Osher, 1988) para la

discretización del término transitorio, y el esquema Kurganov-Noelle-Petrova (KNP) de segun-

do orden (Kurganov et al., 2001) para el término convectivo. Además, incorpora la técnica de

partición de operadores de primer orden, implementada en los solucionadores químicos nativos

de OpenFOAM y conocida como OpenFOAM splitting (Zhou et al., 2022).

El tratamiento del término convectivo constituye un aspecto crítico al trabajar con esquemas

centrados en flujos compresibles. El esquema numérico debe considerar no solo el transporte

de propiedades llevado a cabo por el flujo, sino también el efecto de las ondas presentes, para

evitar inestabilidades en las soluciones (Toro, 2013). Sin embargo, la forma en que se calcula la

cantidad transportada, utilizada posteriormente en el flujo de cálculo del esquema centrado, ha

sido descrita de manera limitada por (Greenshields et al., 2010), quien menciona problemas de

acotación en la temperatura al construir interpolaciones de la energía total a partir de la propia

energía total en la implementación de rhoCentralFoam.

Este trabajo presenta un estudio comparativo que evalúa dos formas naturales de definir

las densidades de las especies para construir las interpolaciones utilizadas en la resolución del

término convectivo: una consiste en emplear directamente la densidad de cada especie, ρYi; la

otra, en considerar por separado la densidad total ρ y la fracción de masa Yi de cada especie.

El método de evaluación se basa en el análisis de dos métricas: la fracción de masa con-

junta de las especies reactivas, definida como la suma punto a punto de todas las especies que

participan activamente en la reacción y que, en mezclas combustibles homogéneas, idealmente

permanece constante en todo el dominio y en todo instante de tiempo; y la fracción de masa

de la especie inerte, que presenta la misma propiedad. Estas cantidades se comparan con los

valores teóricos en cada punto del dominio, y la desviación respecto a dichos valores ideales se

cuantifica mediante la norma del error L2, proporcionando así una medida global del error en

cada instante.

2. METODOLOGIA

En la presente sección se describen las herramientas empleadas para alcanzar los objeti-

vos de este trabajo. Además, se ofrece una breve descripción del modelo de resolución interna

implementado en rhoCentralRfFoam, destacando los aspectos relevantes para la interpo-

lación de las densidades de las especies, el tratamiento del término convectivo y la descripción

matemática de las ecuaciones de Euler reactivas.
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2.1. Ecuaciones de Euler Reactivas

Las ecuaciones de Euler reactivas representan un conjunto de ecuaciones de gobierno que

describen el flujo de alta velocidad de mezclas combustibles. De manera general, estas ecuacio-

nes se pueden expresar como:

∂U

∂t
+∇ · F(U) = S(U) (1)

donde U es el vector de variables de estado, F(U) es el vector de flujo convectivo y S(U)
es el vector de términos fuente. Estos vectores se definen como:
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Aquí, ρ es la densidad del fluido; u, v, w son las componentes de la velocidad en las direc-

ciones x, y, z, respectivamente; E es la energía total por unidad de masa; p es la presión; Yk es

la fracción de masa de la especie química k; ω̇T representa la tasa de generación o consumo de

energía debido a reacciones químicas; y ω̇k es la tasa de producción o consumo de la especie

química k.

Si se asume que cada especie química en la mezcla combustible se comporta como un gas

ideal, el sistema de Eqs. (2) puede cerrarse mediante la adición de la ecuación de estado de los

gases ideales:

p = ρ
Ru

W
T, W =

(

N
∑

k=1

Yk

Wk

)−1

(3)

donde T es la temperatura, Wk la masa molar de la especie k, W la masa molar promedio de

la mezcla, y Ru la constante universal de los gases.

2.2. Discretización del término convectivo

Cada término convectivo presente en el sistema de Eqs. (2) puede integrarse sobre el volumen

de control y linealizarse de la siguiente manera:

∫

V

∇ · [uΨ]dV =

∫

S

dS · [uΨ] ≈
∑

f

Sf · ufΨf =
∑

f

ϕfΨf (4)

donde u es el vector velocidad, Ψ representa la cantidad transportada, Sf es el vector área de

la cara f del volumen de control,
∑

f denota la suma sobre todas las caras, y ϕf = Sf · uf

corresponde al flujo volumétrico a través de la cara f .

Dada la naturaleza compresible del problema en estudio, las interpolaciones en las caras,

expresadas en la ecuación (4), deben realizarse con cuidado para evitar inestabilidades en la
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solución. Para ello, es necesario considerar el transporte en todas las direcciones, debido a la

propagación de ondas. Al tener en cuenta este transporte, el procedimiento de interpolación di-

vide la contribución superficial según las dos direcciones del flujo, hacia afuera y hacia adentro

de la celda, en el contexto unidimensional, de manera que:

∑

f

ϕfΨf =
∑

f

[αϕf+Ψf+ + (1− α)ϕf−Ψf− + ωf (Ψf− −Ψf+)] , (5)

donde la dirección f+ coincide con +Sf , mientras que f− corresponde a −Sf , y α es un

coeficiente que introduce un sesgo según la dirección upwind en el cálculo. Los dos primeros

términos en el lado derecho de la ecuación (5) representan la evaluación del flujo en las direc-

ciones f+ y f−, respectivamente. El último término se introduce únicamente cuando el término

convectivo forma parte de una derivada sustancial, ∇ · [u(ρu)], y corresponde a un término de

difusión numérica adicional asociado al flujo volumétrico ωf , que se emplea para estabilizar

la interpolación en presencia de gradientes pronunciados. Para el esquema KNP, OpenFOAM

calcula estas cantidades considerando que:

af+ = máx (cf+ |Sf |+ ϕf+, cf− |Sf |+ ϕf−, 0) ,

af− = máx (cf+ |Sf | − ϕf+, cf− |Sf | − ϕf−, 0) ,
(6)

donde af+ y af− son las velocidades del sonido en las direcciones f+ y f−, ponderadas por

la superficie de la cara, y cf± =
√

γRu

W
Tf± son las velocidades del sonido en la cara f en las

direcciones f+ y f−, respectivamente, siendo γ la relación de calores específicos de la mezcla

combustible. De este modo, se define:

α =
af+

af+ + af−
(7)

y el flujo volumétrico difusivo se calcula como:

ωf = α(1− α) (af+ + af−) . (8)

El procedimiento de interpolación de la variable Ψ emplea una función limitadora de flu-

jo β(r) perteneciente a la familia de esquemas Total Variation Diminishing (TVD), capaz de

ajustar su valor para modificar el orden del esquema (entre primero y segundo orden) en fun-

ción de la relación de gradientes sucesivos r, la cual permite detectar la presencia de gradientes

pronunciados.

En particular, la interpolación en la dirección f+ se expresa como:

Ψf+ = (1− gf+)ΨP + gf+ΨN (9)

donde ΨP es el valor de la variable en la celda propietaria, ΨN el valor en la celda vecina, y

gf+ = β(r)(1 − wf ). En este contexto, wf es un factor geométrico que ajusta la interpolación

entre celdas.

Cuando β(r) = 0, se obtiene una interpolación upwind de primer orden; cuando β(r) = 1,

se recupera la interpolación lineal de segundo orden; en general, 0 ≤ β(r) ≤ 2, de modo que

β(r) = 2 corresponde a una interpolación downwind. En la práctica, β(r) se define mediante

funciones limitadoras TVD simétricas, que permiten combinar estabilidad numérica con reso-

lución precisa de gradientes.
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2.3. Métricas

Al discretizar el término convectivo de las ecuaciones de conservación de las especies quí-

micas según la expresión (4), es posible establecer dos formas naturales de describir la cantidad

que se transporta:

1) Ψf = ρf (Yi)f o bien 2) Ψf = (ρYi)f . (10)

Para evaluar el desempeño numérico de rhoCentralRfFoam frente a estas dos formas de

calcular la densidad parcial de la especie i en los límites interceldas, se seleccionan dos métricas:

la primera corresponde a la fracción de masa conjunta de las especies reactivas, definida como

la suma punto a punto de todas las especies químicas que participan activamente en el proceso

químico; la segunda corresponde a la fracción de masa de la especie inerte presente en la mezcla

reactiva.

En una mezcla combustible homogéneamente distribuida a lo largo de todo el dominio físico,

estas métricas conservan sus valores iniciales punto a punto en cada instante de tiempo. Esto

permite emplear su desviación respecto al valor ideal como un indicador del error numérico

introducido por el solucionador al aplicar cualquiera de los enfoques establecidos en la ecuación

(10). La magnitud de este error se cuantifica mediante la norma L2 de la siguiente manera:

||e||2 =

(

N
∑

j=1

|Yj − Yh,j|
2

)1/2

, (11)

donde Yj representa el valor exacto de la métrica en el nodo j, Yh,j corresponde al valor

aproximado, obtenido numéricamente, en el mismo punto, y N es el tamaño de la malla en

estudio.

3. RESULTADOS

En esta sección se presentan los resultados del estudio comparativo, en el que se evaluaron

las dos formas de calcular el flujo intercelda en la discretización de las ecuaciones de balance

de las especies químicas (ec. 10) mediante las métricas definidas y resumidas en cada instante

de tiempo según la ecuación (11). Además, se describe el caso de prueba empleado, necesario

para realizar los cálculos con ambas versiones del rhoCentralRfFoam.

3.1. Ignición por reflexión de onda de choque en régimen fuerte

Como caso de prueba para evaluar el desempeño numérico del solucionador frente a los

dos enfoques presentados previamente, se seleccionó el problema de ignición por reflexión de

onda de choque en régimen fuerte, descrito en Oran et al. (1982), cuyas condiciones iniciales se

muestran en la Tabla 1.

El caso analizado corresponde a un tubo de detonación unidimensional con un extremo cerra-

do y el otro habilitado para la reposición continua de la mezcla fresca H2-O2-AR en proporción

estequiométrica. Inicialmente coexisten dos estados termomecánicos distintos, el estado no per-

turbado y el estado incidente, separados por un diafragma. Al romperse el diafragma, se genera

el patrón de ondas característico del problema de Riemann. Una onda de choque intensa, deno-

minada onda incidente, se desplaza hacia la pared cerrada del extremo izquierdo del tubo. Al

alcanzarla, se produce la reflexión de la onda, momento en el cual invierte su sentido y pasa a

denominarse onda reflejada.
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Variable No perturbado Incidente Reflejado
Temperatura 298 [K] 621 [K] 1036 [K]

Presión 6687.45 [Pa] 36679.65 [Pa] 131722.5 [Pa]

Velocidad del fluido 0 [m/s] 476 [m/s] —–

Velocidad de onda de choque —– 754 [m/s] 450 [m/s]

Tabla 1: Condiciones iniciales de los estados: No perturbado, Incidente y Reflejado.

Figura 1: Lineas de contorno constante de temperatura en el plano físico.

Las simulaciones de prueba se llevaron a cabo en un dominio espacial de 40 cm y un tiempo

final de 700µs. La malla numérica se conformó por 32000 elementos. Se empleó un número

de Courant máximo de 0.05 con el fin de minimizar las oscilaciones espurias generadas por

la interacción entre la refinación de la malla y la discretización numérica. La discontinuidad

inicial se ubicó a 20 cm de la pared reflectante. Para el cálculo de los flujos interceldas se utilizó

el limitador vanAlbada en todos los campos interpolados, mientras que la cinética química

detallada se evaluó mediante el modelo propuesto por Oran Oran et al. (1982).

3.2. Fracción de masa conjunta de las especies reactivas

La figura 2 muestra la evolución temporal de la norma L2 del error para la fracción de masa

conjunta de las especies reactivas. Las curvas corresponden al enfoque 1 (en negro) y al enfoque

2 (en rojo), según la definición de la ecuación (10). Se incluye además un zoom que permite

apreciar las pequeñas variaciones presentes en las curvas. Ambas gráficas emplean escala loga-

rítmica en el eje de ordenadas para facilitar la visualización de los valores más pequeños de la

métrica.

Se observa que ambos enfoques presentan inicialmente la misma evolución en la norma del

error, manteniendo valores idénticos hasta aproximadamente 284,5µs. Para tiempos mayores,

el enfoque 2 muestra un aumento significativo en la magnitud del error en comparación con el

enfoque 1. En este régimen temporal se hace evidente la diferencia entre ambos métodos, lo

cual evidencia una pérdida de precisión en la resolución de las ecuaciones de transporte de las

especies asociada a la forma en que las variables reactivas transportadas se discretizan en los
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límites interceldas.
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Figura 2: Variación temporal de la norma del error asociado a la fracción de masa conjunta de las especies reactivas.

3.3. Fracción de masa de la especie inerte

Por otro lado, en la figura 3 se presenta la variación temporal de la norma L2 del error

asociado a la fracción de masa de la especie inerte. Nuevamente, la curva en negro corresponde

al enfoque 1 mientras que la curva roja corresponde al enfoque 2, según la definición establecida

en la ecuación (10). Para mayor claridad en la representación de los resultados, la figura 3 se

representa con escala logarítmica en el eje de ordenadas junto a un acercamiento en la zona

donde las curvas presentan variaciones pequeñas en comparación a las notablemente visibles

presentes en dicha figura.

Para la variable en estudio, se observa nuevamente el mejor desempeño del enfoque 1 so-

bre el enfoque 2. Para tiempos menores a aproximadamente 284,5µs, el error presentado por

ambos enfoques es coincidente y se mantiene constante. Para tiempos posteriores, el enfoque

1 conserva esta característica hasta aproximadamente 400µs, instante que representa el tiempo

característico donde los efectos químicos se evidencian visiblemente, como se observa en la

figura 1. Este comportamiento se debe a que esta medida del error solo considera una única

especie inerte, que mantiene su fracción másica constante durante estos intervalos de tiempo

característicos (284,5µs para el enfoque 2 y 400µs para el enfoque 1). Para tiempos posterio-

res en cada caso, el incremento en la norma del error evidencia una pérdida de precisión en la

resolución de las ecuaciones de transporte asociada, para el enfoque 2, a la forma en que la es-

pecie inerte transportada se discretiza en los límites de los volúmenes de control; mientras que

para el enfoque 1, se debe principalmente al desencadenamiento de los mecanismos químicos

intensos.

3.4. CONCLUSIONES

El análisis comparativo de los dos enfoques numéricos para la resolución de las ecuaciones

de transporte de las especies químicas revela diferencias significativas en su desempeño. Ambos
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Figura 3: Variación temporal de la norma del error asociado a la fracción de masa de la especie inerte.

métodos muestran un comportamiento idéntico durante la fase inicial (t <284,5µs), donde los

efectos químicos están ausentes, manteniendo valores coincidentes en la norma L2 del error

tanto para las especies reactivas como para la especie inerte.

Sin embargo, para tiempos superiores, se evidencia una clara superioridad del enfoque 1.

En el caso de las especies reactivas, el enfoque 2 presenta un aumento significativo en el error

asociado a la discretización en los límites interceldas. Para la especie inerte, mientras el enfoque

1 mantiene un error constante hasta aproximadamente 400 µs, el enfoque 2 muestra un deterioro

prematuro de la precisión a partir de 284.5 µs.

Estos resultados demuestran que el enfoque 1 ofrece una mayor robustez numérica, preser-

vando la precisión durante un intervalo temporal más extenso. La degradación del desempeño

del enfoque 2 está fundamentalmente asociada a problemas en la discretización de las variables

en los límites de los volúmenes de control, mientras que el incremento posterior del error en el

enfoque 1 se atribuye principalmente a la activación de los intensos mecanismos químicos del

sistema.

En consecuencia, el enfoque 1 se establece como el método preferente para la simulación

de flujos reactivos, particularmente en aplicaciones donde se requiere mantener la precisión

numérica durante periodos extendidos previos al inicio de la actividad química significativa.
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