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Resumen. Se presenta un enfoque para el diseño óptimo de un sistema de resonadores, distribuidos a 
lo largo de la altura, para el control de vibraciones laterales en edificios de planta asimétrica 
sometidos a carga sísmica. El modelo estructural del edificio con resonadores distribuidos se basa en 
una generalización de la teoría de Vlasov. Se obtiene un modelo reducido del sistema a partir de un 
análisis modal del edificio sin resonadores. Con dicho modelo simplificado se determina la función de 
respuesta compleja ante una aceleración basal armónica de módulo unitario. Esto permite obtener el 
desplazamiento cuadrático medio de la respuesta, conociendo la densidad de potencia espectral del 
sismo de diseño. Los parámetros óptimos del sistema de resonadores se determinan de manera tal de 
minimizar tal indicador. Se presenta la formulación teórica del modelo así como ejemplos numéricos.  
 
Keywords: asymmetric tall buildings, vibration attenuation, locally resonant beams, optimization. 

Abstract. This work presents an approach for the optimal design of a system of resonators, distributed 
along the height, aimed at controlling lateral vibrations in asymmetric-plan buildings subjected to 
seismic loading. The structural model of the building with distributed resonators is based on a 
generalization of Vlasov’s theory. A reduced-order model of the system is obtained from the modal 
analysis of the building without resonators. Using this simplified model, the complex response 
function is determined under a unit-amplitude harmonic base acceleration. This allows evaluation of 
the mean square displacement response, given the power spectral density of the design earthquake. 
The optimal parameters of the resonator system are identified to minimize this response indicator. The 
formulation is presented along with numerical examples illustrating the proposed methodology. 
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1 INTRODUCCIÓN   
En el diseño estructural de edificios altos, el análisis de las vibraciones laterales inducidas 

por acciones horizontales, como las de origen eólico o sísmico, resulta de suma importancia. 
Consecuentemente, se han investigado e implementado diversos sistemas de control, entre los 
cuales destacan los sistemas de aislamiento de base, los dispositivos de disipación de energía 
y los resonadores, también denominados amortiguadores de masa sintonizada (Vellar et al., 
2019). Estos últimos son relativamente sencillos de instalar en estructuras existentes y han 
demostrado eficacia en múltiples aplicaciones reales (Lin et al., 1999). De hecho, se han 
empleado en numerosos edificios y torres a nivel mundial, como el 601 Lexington Avenue en 
Nueva York, la John Hancock Tower en Boston, la Crystal Tower en Osaka y la 101 Tower en 
Taipei, entre otros. Inicialmente, estos dispositivos, ubicados usualmente en el piso superior, 
se implementaron de manera aislada para mitigar efectos resonantes en una frecuencia 
específica; posteriormente, se comenzó a explorar su uso simultáneo para atenuar múltiples 
frecuencias y ampliar su efectividad. 

Recientemente, se ha propuesto un nuevo concepto para el control pasivo de la dinámica 
lateral de edificios, basado en la instalación de un número significativo de resonadores 
distribuidos periódicamente a lo largo de toda la altura de la estructura (Fonseca Dal Poggetto 
et al., 2019). Este enfoque se relaciona con el de los materiales localmente resonantes, cuya 
investigación ha experimentado un notable auge en los últimos años (Dominguez et al., 
2022a, 2017; Cortínez y Dominguez, 2022). Una ventaja de este concepto se relaciona con el 
empleo de resonadores de menor masa que permite reducir las fuerzas concentradas en cada 
piso. Asimismo, algunos investigadores han propuesto la idea de utilizar como masa de los 
resonadores a las propias losas del edificio, evitando así agregar masa adicional (Xiang y 
Nishitani, 2014; Mahmoud y Chulahwat, 2015) o resonadores formados por subestructuras 
abarcando algunos pisos (Yan et al., 2023). La utilización del concepto de metamateriales 
localmente resonantes ha sido utilizado también para la atenuación de turbinas eólicas fuera 
de costa (Machado y Dutkiewicz, 2025), de puentes (Casalotti et al., 2014, 2018) y también 
para la construcción de fundaciones localmente resonantes (Zhou et al., 2023). 

Los autores han desarrollado recientemente un modelo estructural de un edificio alto de 
planta asimétrica con una distribución periódica de resonadores. El enfoque se basa en una 
generalización de la teoría de Vlasov, que permite considerar distintas tipologías estructurales 
habituales (pórticos, muros de corte y núcleos). Mediante dicho modelo (edificio localmente 
resonante) se analizaron las propiedades de atenuación y formación de bandgaps en la 
dinámica flexo-torsional ante cargas armónicas. En base a este modelo, en este trabajo se 
presenta una metodología de diseño óptimo del sistema de resonadores distribuidos para un 
edificio sometido a carga sísmica. 

Se obtiene un modelo reducido del sistema a partir de un análisis modal del edificio sin 
resonadores. Con dicho modelo simplificado se determina la función de respuesta compleja 
ante una aceleración basal armónica de módulo unitario. A partir de la misma, considerando la 
teoría de vibraciones aleatorias, se obtiene el desplazamiento cuadrático medio de la 
respuesta, conociendo la densidad de potencia espectral del sismo de diseño. Los parámetros 
óptimos del sistema de resonadores se determinan de manera tal de minimizar tal indicador. 
Se presenta la formulación teórica del modelo así como ejemplos numéricos para ilustrar la 
metodología de diseño. 
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2 FORMULACIÓN TEÓRICA 

2.1 Ecuaciones gobernantes para la dinámica lateral de un edificio asimétrico con 
resonadores distribuidos: edificio localmente resonante 

 
Figura 1: a) Planta genérica de un edificio, b) vista lateral de un edificio genérico, c) sistemas de coordenadas, 

cargas genéricas y resonadores. 

Se considera un edificio constituido por pórticos, muros de corte y núcleos como se 
muestra en la Figura 1a). Se realizan las siguientes hipótesis: a) las losas son rígidas en su 
propio plano y poseen rigidez despreciable perpendicularmente al mismo, b) las losas están 
infinitamente próximas entre sí (altura del piso/altura del edificio <<1) y c) los materiales se 
comportan de manera elástica lineal. La cinemática se describe mediante un sistema de 
coordenadas global x,y,z con origen en el centro de masa C del edificio, y además se utiliza un 
sistema de coordenadas local xl, yl, zl para cada subestructura (núcleo, muro de corte o pórtico) 
con origen en su correspondiente centro de corte, como se muestra en la Figura 1c). A partir 
de las hipótesis a) y b), se postula que las subestructuras se describen mediante 
desplazamientos horizontales dependientes de la coordenada vertical x: 

( , ), ( , ), ( , )v v x t w w x t x t    , donde v y w son los desplazamientos transversales 
correspondientes al centro de masa de la sección y   es el giro torsional alrededor del eje x 
(pasante por el centro de gravedad de cada piso). Asimismo, existe un sistema de resonadores 
(amortiguadores de masa sintonizada) aplicados en cada uno de los pisos del edificio. Cada 
resonador consiste de una masa Mj conectada al edificio mediante un resorte de rigidez Kj, 
orientado en la dirección indicada por el ángulo j  (Figura 1c), emplazado en las coordenadas 

jy , jz  en cada piso. La cinemática de cada uno de estos resonadores se describe mediante los 
desplazamientos ( )j ix  de la masa Mj  ubicada en el piso i, del correspondiente 
desplazamiento Dj del punto de anclaje del resorte, ambos medidos en la dirección del resorte. 
La mecánica flexo-torsional  de tal estructura puede escribirse mediante las ecuaciones 
(Dominguez et al., 2022b):  

 
24 2 2

4 2 2 2
j

g g ext jx x t t t
   
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 (3a-c) 
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 , ,
T

ext y z xq q m   q  (4) 
En las ecuaciones anteriores se han considerado los resonadores distribuidos de manera 

continua a lo largo de la altura. Aquí,  , , Tv w u , gEI y gGA  corresponden a las matrices 
de rigidez flexo-torsional global y a la rigidez lateral de pórticos y torsional de Saint Venant 
(Dominguez et al., 2022b), m corresponde a una matriz diagonal cuyos elementos no nulos 
son 11 22m m m   y 2

33m mR , siendo m la masa por unidad de longitud del edificio y R2 el 
radio de giro de cada piso con respecto a su centro de gravedad, c (=(cA/m)m) corresponde a 
la matriz de amortiguamiento (c es el coeficiente viscoso equivalente del amortiguamiento del 
edificio y A el área de la sección transversal del edificio), yq  y zq  son las componentes de la 
carga según los ejes y y z pasantes por el centro de masa de cada piso y xm el correspondiente 
momento torsor por unidad de longitud con respecto al eje x pasante por el centroide. 
Asimismo, /( )j j pM mh   corresponde al cociente entre la masa total de los resonadores j y 

la del edificio, siendo hp la altura de cada piso,  /j j jK M   es la frecuencia del resonador 
local j y j  el coeficiente de amortiguamiento del mismo. 

  La ecuación gobernante (1) debe complementarse con las correspondientes 
condiciones de borde (usualmente, empotramiento en la base: / 0x   u u  y borde libre 
en el extremo superior: 3 3 2 2/ / / 0g g gx x x        EI u GA u EI u ) y eventualmente con 
las condiciones iniciales apropiadas. 

2.2 Modelo reducido: función de respuesta compleja 
Se considera a continuación una excitación sísmica dada por una aceleración basal 

armónica unitaria i ta e  .  Consecuentemente, las cargas inerciales por unidad de longitud 
sobre el edificio vienen dadas por: 

  0 0, cos , sen ,0 Ti t
ext e m m     q q q  (5) 

donde   es el ángulo de la acción sísmica respecto al eje y. Consecuentemente, la 
respuesta estacionaria armónica se puede expresar como: 

 ( ) , ( ) , ( ) , ( )i t i t i t i t
j jv V x e w W x e x e x e           (6) 

Sustituyendo (6) en (3c) y luego en (2) puede obtenerse la amplitud del desplazamiento 
de los resonadores j-ésimos como: 

 ( ),j j j j Rj IjH D x H i      (7a, b) 

donde: 
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2 22 2 2 2

1 / 2 / 2 /
,

1 / 2 / 1 / 2 /

j j j j j
Rj Ij

j j j j j j
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 

         

  
 

   
 (8a, b) 

Para obtener un modelo reducido de la dinámica del edificio, se expande el 
desplazamiento lateral del mismo en términos de las formas de vibración de la estructura 
sin resonadores. Es decir: 
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 , ,n n n n n n
n n n

V A V W A W A       (9) 

donde nA  son constantes complejas y  , , T
n n n nV W U son las formas modales del 

edificio sin resonadores. Es decir, verifican: 

 
4 2

2
4 2 0n n

g g n n
d d
dx dx

  
U UEI GA m U  (10) 

Sustituyendo ahora (7) y (8) en (1), aplicando el método global de Galerkin, 
considerando (10) y las condiciones de ortogonalidad de nU que de esta última se derivan, 
se llega al siguiente sistema algebraico lineal: 

 

  2 2
0
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L

n mn m mn n n
n

cAA i M m V m W dx
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               

   (11) 

donde: 
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  
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 (12) 

Resolviendo (11) se obtienen las constantes nA  y entonces, a partir de (6), se 
determinan las funciones de respuesta complejas , ,V W  . 

3 DISEÑO DE RESONADORES 

3.1 Indicador de diseño: desplazamiento medio cuadrático 

Para representar el sismo que solicita a la estructura, siguiendo la teoría de vibraciones 
aleatorias, se utiliza su densidad espectral de potencia (PSD), S(ω). Luego, es posible 
obtener los valores medios cuadráticos de los desplazamientos (o también los cuadrados 
de los mismo) a partir de: 

 

2 22 2

0 0

22

0

( ) ( , ) ( ) ; ( ) ( , ) ( ) ;

( ) ( , ) ( )

f f

f

V x V x S d W x W x S d

x x S d

 



     
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 



 


 (13) 

Usando estas expresiones pueden determinarse los valores medios cuadráticos de 
desplazamientos y esfuerzos en puntos de interés. Por ejemplo, si se adopta como 
indicador principal de diseño, el desplazamiento total del centro de gravedad en el 
extremo superior, se utiliza la expresión:  
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  2 2
1

0
( , ) ( , ) ( )

f

I V L W L S d


      (14) 

El modelo reducido propuesto permite efectuar el cálculo de estas integrales muy 
rápidamente, comparado con el análisis de elementos finitos de la respuesta forzada del 
edificio. Los valores óptimos de los parámetros de los resonadores yj j   se adoptan 
como aquellos que minimizan I1: 

  1, min ( , )ópt ópt
j j j jI     (15) 

Por otra parte, los valores de las masas de los resonadores son predefinidos de manera 
tal de evitar sobrecargas importantes en el edificio. 

3.2 Densidad espectral de potencia de diseño: función de Kanai-Tajimi corregida 
Para modelar la forma del espectro de potencia de aceleraciones sísmicas considerando 

la interacción suelo–estructura, se utiliza la fórmula de Kanai–Tajimi con la posterior 
corrección de Clough-Penzien, a partir de la idea de que el terreno se comporta como un 
oscilador de un grado de libertad sometido a una excitación de ruido blanco de amplitud 
constante (Chen et al., 2022). De acuerdo a este modelo, la densidad espectral de potencia 
(PSD) se expresa como 

    
4 2 2 2 4

0 2 22 2 2 2 2 2 2 2 2 2

2

0

4
( )

4 4

, 4

g g g

g g g f f f

g g
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 





   

 

 (16a-c) 

donde el primer factor corresponde a la fórmula original de Kanai-Tajimi que produce 
una amplificación en torno a la frecuencia natural del suelo y el segundo al aporte de 
Clough y Penzien que incorpora un filtrado adicional. En la expresión anterior,   y g  
(rad/s) son la frecuencia circular de excitación y la natural del suelo, respectivamente, g  
es el coeficiente de amortiguamiento del suelo y S0 la densidad espectral constante del 
ruido blanco que excita el sistema (m2/s3). Asimismo, f y f  corresponden a la 
frecuencia y el amortiguamiento del filtro adicional. El valor de S0 se elige para que el 
espectro represente la energía observada del movimiento del suelo. En (16b), se expresa 
en función de PGA, que corresponde a la aceleración máxima del suelo (m/s2) y del ancho 
de banda efectivo (rad/s) B (16c). 

4 EJEMPLO NUMÉRICO 
A manera de ejemplo se considera la estructura de edificio asimétrico analizado por 

Meftah et al. (2007) cuya planta se muestra en la Figura 2. Se trata de un edificio de 75 m de 
altura (25 pisos) con espesores de paredes de corte de 0.3 m, espesor de la losa 0.15 m, masa 
por unidad de longitud m=114365 kg/m y módulos de elasticidad longitudinal E=25 GPa y 
transversal G=10.42 GPa. Los valores de las características de rigidez pueden consultarse en 
la referencia citada. Las frecuencias naturales de la estructura son: 

[1.647, 1.787, 4.616, 10.147, 11.109, 28.155, 28.609, 30.946, 54.593, 60.245]n  . Se asume 
amortiguamiento estructural, 20.01 / /cA m kg m s . 
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Figura 2: Planta del edificio estudiado. 

Esta estructura fue estudiada con anterioridad por los autores (Dominguez et al., 2022b) 
utilizando una solución en elementos finitos de las ecuaciones (1-4). A los efectos de diseño, 
en este trabajo se utiliza un modelo reducido considerando 10 autofunciones, por lo cual se 
realiza la comparación de resultados obtenidos con ambos modelos. Para ello se utilizan los 
mismos datos del trabajo anterior (Dominguez et al., 2022b), esto es: 

 1 6 / , 1 6 / , 1 6 / cos( )T
ext e N m e N m e Nm m tq  y 4 resonadores distribuidos de manera 

uniforme en la altura con 0.125j  ,   10.55 /j rad s   y 0.01j   para cada uno. Como 
se puede ver en la Figura 3, la correspondencia entre ambos modelos es muy buena. 

 
Figura 3: Comparación de respuesta forzada calculada mediante el modelo de elementos finitos y el modelo 

reducido. 

Para estudiar el efecto de la carga sísmica considerada, se asume que el ángulo de 
incidencia del sismo es / 3  . Para obtener la función de transferencia del suelo se 
adoptan los siguientes parámetros: 2PGA = 0.2 x 9.81 m/s , 13.8 / , 0.6,g grad s    

1.38 / , 0.6f frad s   . En la Figura 4a) se puede ver la curva de densidad de potencia 
espectral para tales valores. Como se puede apreciar, el pico máximo afectaría el segundo 
modo (frecuencias naturales cuarta y quinta).  

Para estudiar el efecto de los resonadores se proponen, en principio 3 casos. En todos ellos, 
la masa total de los resonadores (en todo el edificio) corresponde a la mitad de la masa de la 
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estructura variando, en cada caso, la distribución de la misma a lo largo de la estructura. Los 
resonadores de dividen en 2 grupos y se colocan en cada piso, uno de cada grupo en cada una 
de las ubicaciones I a IV (Figura 2).  En el Caso 1 se consideran 8 resonadores por piso, 
distribuidos de manera uniforme a lo largo de la altura, 4 con razón de masa 1 0.1   y 4 con 

2 0.025   En el Caso 2, se colocan 4 resonadores, uno en cada ubicación I a IV, asignando al 
grupo 1 el 80% de la masa total de los resonadores distribuidos en los 10 m superiores de la 
altura ( 1 0.75  ) y el resto con 2 0.029   distribuidos en los primeros 65m desde el suelo. 
En el Caso 3, esta proporción se invierte y entonces, 1 0.1875   y 2 0.1154  . La búsqueda 
de la mejor configuración, para todos los casos, se realiza variando las frecuencias locales de 
los resonadores 2 1 20.8 1.2j     y 5 2 50.8 1.2j     para los grupos 1 y 2 
respectivamente y el amortiguamiento 0.01 0.09j   para ambos grupos.  

Con el modelo simplificado desarrollado se obtienen tanto la respuesta dinámica de la 
estructura original como la de la estructura localmente resonante y a fin de evaluar la 
efectividad de los resonadores se utilizan el indicador I1 (expresiones 14 y 15) y, considerando 
que el sismo afecta al segundo modo de vibración, otro indicador I2 que responde a las 
mismas expresiones pero evaluadas a 46 m de altura. En la Tabla 2 se detallan los valores 
óptimos encontrados de frecuencias y amortiguamientos para los 3 casos propuestos. El cuarto 
caso  no corresponde a una optimización, simplemente se modificó el Caso 3 disminuyendo el 
amortiguamiento de cada resonador para comparar el efecto del mismo.  

 1j  2j  1j  2j  

Caso 1 0.9 2  0.95 5  0.09 0.09 

Caso 2 0.9 2  1.0 5  0.09 0.09 

Caso 3 0.9 2  0.8 5  0.09 0.09 

Caso 4 0.9 2  0.8 5  0.05 0.05 
Tabla 2: Valores óptimos de frecuencias y amortiguamientos locales para los grupos 1 y 2 de resonadores 

A modo de ejemplo, en la Figura 4b) se muestran los valores de los indicadores I1 para el 
Caso 1 e I2 para el Caso 2 en función del valor que multiplica a las frecuencias locales, 

2 para el caso 1 y  5 para el caso 2, donde se puede observar los valores óptimos. Cabe 
aclarar que con ambos indicadores los valores óptimos son los mismos.  

 

Figura 4: a) Densidad espectral de potencia según la fórmula de Kanai-Tajimi y con la corrección de Clough y 
Penzien, b) curvas de los indicadores utilizados en la optimización 
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En las Figuras 5a) y 5b) se grafican los valores del integrando de 1( )I  , 

 2 2( , ) ( , ) ( )V L W L S   (14) para las configuraciones óptimas obtenidas en los casos 

estudiados.  Debido a la diferencia de escala, para una mejor visualización, se muestran las 
primeras frecuencias en la Figura 5a) y las más altas en la Figura 5b). El Caso 1 se presenta 
como la mejor configuración ya que atenúa correctamente las frecuencias 1, 2, 4 y 5 con la 
ventaja de que la masa está distribuida de manera uniforme en la altura.  

 

Figura 5:  2 2( ) ( , ) ( , )S V L W L   para a)  0.5 3  y b) 8 15   

Finalmente, en la Figura 6 se muestra una medida de desplazamientos  2( ) ( , )S W L   (en 

escala logarítmica) en el extremo superior del edificio (y en el centro de gravedad) en la 
dirección del eje z para todos los casos en el rango completo de las frecuencias consideradas. 
Como se puede apreciar todas las configuraciones logran eliminar la respuesta resonante. 

 

Figura 6:  2( ) ( , )S W L  , a) 0 25  y b) 25 50   

5 CONCLUSIONES 
Se ha desarrollado una metodología para diseñar las características de una distribución 

continua de resonadores a fin de atenuar las vibraciones laterales en edificios altos asimétricos 
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sometidos a acciones sísmicas. Tal enfoque se basa en un modelo reducido de la estructura 
para determinar la función de respuesta compleja y, a partir de la misma, obtener indicadores 
de diseño aleatorios tales como el valor medio cuadrático en los puntos de mayor amplitud de 
vibración esperada. Los valores adecuados para los parámetros del sistema de resonadores son 
aquellos que minimizan tal indicador. La metodología de diseño es muy eficiente desde el 
punto de vista computacional.  
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