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Abstract. Moving one-dimensional Bernoulli beam elements in the frequency domain are 

presented in this paper for applications on induced vibrations due to moving loads or vehicles 

in contact with rails or roads supported by elastic homogeneous media. The model can be 

used for dynamic response estimation of trains on railroad tracks or vehicles on roads. A 

conventional motionless finite-element strategy requires very large meshes to allow the 

estimation of induced vibration of a moving vehicle, because a large portion of the mesh is 

required to model the distance travelled by the vehicle during simulation, in addition to 

domains at both sides of the model to develop adequate boundary conditions. An alternative 

approach is the use of a moving mesh so that the vehicle does not approach the boundaries of 

the model; this determines a significant reduction of the mesh size. The moving mesh moves 

at the speed of the vehicle, maintaining the contact-points at fixed locations in the moving 

reference frame. This approach leads to a time-invariant model for constant velocity vehicle 

or moving load in the case of a homogeneous foundation. In this paper, the moving beam and 

foundation model is developed in the frequency domain, computing the dynamic stiffness 

matrix of moving beam elements on a visco-elastic foundation. In addition, random process 

modelling of roughness of the rails or road allows the assessment of its effect on induced 

vibration of moving vehicles on infinite media. Different vehicle models can be connected the 

moving mesh model, including different number of wheel axes by defining nodes of the mesh 

bellow each wheel, making the formulation very practical. Some application examples of the 

proposed modelling technique are presented and limitations of the technique are mentioned. 
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1 INTRODUCTION 

Accurate models are required to predict ground-borne vibration due to moving vehicles on 

roads.  Vibrations are caused by several excitation mechanisms, such as moving contact, 

moving loads, wheel imperfections and road unevenness, among other reasons. Several 

authors have studied moving loads or masses on infinite elastic domains (Steele, 1967; 

Fryba,1999; Anderson et al., 2001). Analytical solutions for the dynamic response of an 

infinite beam resting on a viscoelastic foundation and subjected to arbitrary dynamic loads 

have been developed by Yu and Yuang, 2014 among other authors. Since domains are usually 

infinite, a typical finite-element (FE) mesh models a portion of the domain and incorporates 

appropriate absorbing boundary conditions to emulate the behavior of an infinite domain with 

the finite model domain. In the case of moving loads, moving mass in contact with the 

domain, or moving vehicle on a road, the estimation of induced vibration may require large 

domains so that the moving contact/load stays within the mesh limits for the simulation time 

at the assumed velocity of the contact. This requires large meshes and substantial 

computational effort that can be overcome by using moving finite elements in the time 

domain (Inaudi, 2024). 
 

In this paper a very efficient approach in the frequency domain is followed to assess both 

vibrations due to moving loads, moving masses or moving vehicles at constant speed on 

elastic foundations, and also, the stochastic component of induced vibrations due to road 

roughness modelled as a random stationary process. The use of dynamic stiffness matrices of 

finite elements with moving mesh in the frequency domain is a more precise and 

computationally more efficient method to handle this type of problems than conventional 

finite-elements in the time domain (Inaudi, 2024). The method requires that the modelled 

foundation domain be homogeneous and allows the consideration of representing multiple 

moving loads, moving masses or moving vehicles in contact with the elastic domain at a finite 

number of points that maintain relative distance (see Figure 1). The main advantage of the 

frequency domain approach with respect to the time domain approach (Inaudi, 2024) is that 

large portions of the domain between contact points and the semi-infinite domains at both 

sides can be modelled with single elements without compromising accuracy and allowing for 

a very efficient treatment of boundary conditions. 

 

 

         
 

Figure 1. Problems of moving load, mass or vehicle on infinite elastic media. 
 

The moving mesh is conceived in a moving reference frame (relative coordinates), 

modelling the displacement fields using relative coordinates. The speed of the moving frame 

is that of the moving load, moving mass or moving vehicle (𝑣௢).  

 

 

 

 

 

 
 

Figure 2. Moving load on a beam on elastic foundation. 
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The vertical displacement ݔ)ݑ,  from a fixed ݔ of the beam section located at a distance (ݐ

frame of reference (as that depicted in light blue in Figure 2) can be defined in a moving 

frame of reference at constant velocity 𝑣௢(as that depicted in red in Figure 2) using a relative 

coordinate ݏ, such that ݏ = ݔ − 𝑣௢ ݐ, defining a function ݏ)ݎ,  :(ݐ
,ݔ)ݑ  (ݐ = ,ݏ)ݎ (ݐ = ݔ)ݎ − 𝑣௢ ݐ,  (1)                                    (ݐ

 

The vertical velocity of the section can be expressed in terms of the field ݏ)ݎ,  as (ݐ
 డ௨(௫,௧)డ௧ = డ௥(௦,௧)డ௦ ௗ௦ௗ௧ + డ௥(௦,௧)డ௧ = − డ௥(௦,௧)డ௦ 𝑣௢ + డ௥(௦,௧)డ௧                                 (2) 
 

since 
ௗ௦ௗ௧ = −𝑣௢. On the other hand, because 

ௗ௦ௗ௫ = 1, the curvature of the Bernoulli beam 

for small deformations can be computed as 
 డ2௨(௫,௧)డ௫2 = డడ௫ (డ௥(௦,௧)డ௦ ௗ௦ௗ௫) = డడ௫ (డ௥(௦,௧)డ௦ 1) = డ2௥(௦,௧)డ௦2 ௗ௦ௗ௫ = డ2௥(௦,௧)డ௦2                      (3)  
 

 

Equations (2) and (3) allow the definition of the kinetic energy and elastic potential energy 

of a moving mesh (moving reference frame) to derive de differential equations of motion in 

the field ݏ)ݎ,  applying the Hamilton variational principle. The kinetic energy of a portion of (ݐ

the beam of length ܮ (neglecting rotational inertia of the beam sections) can be expressed as: 
 ܶ = 12 ∫ −) ܣߩ డ௥(௦,௧)డ௦ 𝑣௢ + డ௥(௦,௧)డ௧ )2௅0  (4)                                        ݏ݀

 

where ߩ and ܣ are the density and the cross section of the beam. Eq. (4) indicates that the 

kinetic energy of a continuum model discretized by interpolation functions in relative 

coordinates in a constant velocity reference frame, leads to an expression of kinetic energy 

with three terms: a quadratic form of time-derivatives of the nodal displacements, a linear 

form of the time-derivatives of the nodal displacements, and a quadratic for of the nodal 

displacements.  
 

On the other hand, because curvature (as Eq. (3) indicates) or strains in a general finite-

element model with linear kinematics do not involve a change in the differential operator on ݔ)ݎ,  because (ݐ
ௗ௦ௗ௫ = 1, the elastic potential energy cab be expressed as: 

௘ܷ = 12 ∫ డ2௥(௦,௧)డ௦2) ܫܧ )2௅0 ݏ݀ + 12 ∫ ,ݏ)ݎ ݇ ௅0ݏ2݀(ݐ                                (5) 
 

The partial differential equation of a moving Bernoulli beam on elastic foundation with no 

external load applied on the domain can be obtained using Hamilton principle: 
ܣߩ   డ2௥(௦,௧)డ௧2 − 2𝑣௢ܣߩ డ2௥(௦,௧)డ௦ డ௧ + 𝑣௢2ܣߩ డ2௥(௦,௧)డ௦2 + ܫܧ డ4௥(௦,௧)డ௦4 + ,ݏ)ݎ݇ (ݐ = 0                      (6) 
 

If distributed viscous dissipation forces are assumed acting on the foundation, the 

differential equation results 
ܣߩ  డ2௥(௦,௧)డ௧2 − 2𝑣௢ܣߩ డ2௥(௦,௧)డ௦ డ௧ + 𝑣௢2ܣߩ డ2௥(௦,௧)డ௦2 + ܫܧ డ4௥(௦,௧)డ௦4 + ܿ (డ௥(௦,௧)డ௧ − 𝑣௢ డ௥(௦,௧)డ௦ ) ,ݏ)ݎ݇+  + (ݐ = 0     (7)  
 

2 MOVING BEAM FINITE ELEMENT IN THE FREQUENCY DOMAIN 

In this section we derive the dynamic stiffness of a finite-length (݈) moving-beam finite 

element assuming complex exponential nodal displacements and rotations in the boundaries 
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,0)ݎ  (ݐ = ௝ధ௧, డ௥(0,௧)డ௦݁ 1ݑ = ,݈)ݎ ,௝ధ௧݁ 2ݑ (ݐ = ௝ధ௧, డ௥(௟,௧)డ௦݁ 3ݑ =  ௝ధ௧         (8)݁ 4ݑ
 

where ݆ = √−1.  

 

We look for the stationary solution of Eq. 7 for these boundary conditions, assuming 
,ݏ)ݎ  (ݐ =  ௝ధ௧                                                   (9)݁ (ݏ)߰
 

and finally compute the harmonic shear forces, ܸ(ݏ, ,ݏ)ܯ ,and moments ,(ݐ  to be ,(ݐ

applied at the boundaries for the assumed harmonic displacement fields 

1݁௝ధ௧ܨ  = −ܸ(0, 1݁௝ధ௧ܯ ,(ݐ = ,0)ܯ− 3݁௝ధ௧ܨ  ,(ݐ = ܸ(݈, 4݁௝ధ௧ܨ   ,(ݐ = ,݈)ܯ  (10)           (ݐ
 

 

Where ݆ = √−1. Replacing Eq. (9) in Eq. (7) we can obtain the forth-order homogeneous 

differential equation for ߰(ݏ)at a given forcing frequency ߸:   

(ݏ)′′′′߰  + (ݏ)3߰′′′ܽ + (ݏ)2߰′′ܽ + (ݏ)1߰′ܽ + ܽ௢߰(ݏ) = 0                 (11) 
 

where the coefficients ܽ௜ have the following expressions: 

 ܽ௢ = −ఘ஺ధ2+௞+௝ధ௖ாூ ,   ܽ1 = −2௩೚ఘ஺௝ధ−௖௩೚ாூ ,    ܽ2 = ௩೚2ఘ஺ாூ ,    ܽ3 = 0             (12) 
 

To compute the solution we write Eq. (11) in state-space as a first-order differential 

equation: 
 ௗࢠௗ௦ =  (13)                                                       (ݏ)ࢠ ࡭
 

Where the matrix ࡭ and the space vector ࢠ are defined as: 
 

(ݏ)ࢠ = [  
  [(ݏ)′′′߰(ݏ)′′߰(ݏ)′߰(ݏ)߰ 

࡭              = [ 0 10 0 0 01 00 0ܽ௢ ܽ1 0 1ܽ2 ܽ3]                            (14) 

 

Because matrix ࡭  is constant (independent of ݏ) the solution of this space-invariant linear 

homogeneous differential equation can be expressed as: 
(ݏ)߰  = 1݁ఉ1௦ܥ + 2݁ఉ2௦ܥ + 3݁ఉ3௦ܥ +  4݁ఉ4௦                          (15)ܥ
 

 where ߚ௜  (݅ = 1,2,3,4) are the four non-repeated eigenvalues of ࡭.  
 

Applying the four kinematic boundary conditions defined in Eq. (8) and considering Eq. 

(9) we can express: 
 ߰(0) = (0)′߰  , 1ݑ = (݈)߰  , 2ݑ = (݈)′߰ , 3ݑ =  (16)                            4ݑ
 

From Eqs. (15) and (16): 
 

௖࡮ [2ܥ2ܥ2ܥ1ܥ] = ௖࡮  where  [4ݑ3ݑ2ݑ1ݑ] = [ 1 1ߚ1 2ߚ 1 3ߚ1 4݁ఉ1௟ߚ ݁ఉ2௟1݁ߚఉ1௟ 2݁ఉ2௟ߚ ݁ఉ3௟ ݁ఉ4௟3݁ߚఉ3௟  4݁ఉ4௟]                  (17)ߚ
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Finally, considering that ܸ(ݏ, (ݐ = ܫܧ−  డ3௥(௦,௧)డ௦3  and ݏ)ܯ, (ݐ = ܫܧ  డ2௥(௦,௧)డ௦2 , from Eq. (10) 

and Eq. (17): 
 

[ [2ܯ2ܨ2ܯ1ܨ = ࡴ ࡴ  where  [2ܥ2ܥ2ܥ1ܥ] = ܫܧ [  
13ߚ   12ߚ−23ߚ 22ߚ− 33ߚ 32ߚ−43ߚ 13݁ఉ1௟ߚ−42ߚ− 12݁ఉ1௟ߚ23݁ఉ2௟ߚ− 22݁ఉ2௟ߚ 33݁ఉ3௟ߚ− 32݁ఉ3௟ߚ43݁ఉ4௟ߚ− 42݁ఉ4௟ߚ ]  

  
          (18) 

 

Finally,  

[ [2ܯ2ܨ2ܯ1ܨ = ௖−1࡮ࡴ  (19)                                                   [4ݑ3ݑ2ݑ1ݑ] 

 

that can be written in terms of the stiffness matrix, ࡿ௕(߸), of the beam on elastic 

foundation: 

[ [2ܯ2ܨ2ܯ1ܨ = (߸)௕ࡿ where  [4ݑ3ݑ2ݑ1ݑ] (߸)௕ࡿ =  ௖−1                       (20)࡮ࡴ

 

Consider a moving constant vertical load −ܲ at constant speed on an infinite beam on 

elastic foundation. To estimate the stationary response of the domain, a simple 3-node model 

with two elements (Fig. 3) can be used to assemble the structural model dynamic stiffness 

matrix. To approximate infinite domain we can define sufficiently large elements at both sides 

of the central node on which the external moving load is applied. Because the load is constant 

in magnitude, the stiffness matrices are evaluated for ߸ → 0. Therefore 
 

limధ→0 ௕ࡿ (߸) [   
  [6ݍ5ݍ4ݍ3ݍ2ݍ1ݍ  

   = [   
  00−0ܲ00 ]   

  
                                                    (21) 

 

Consider now that the moving load ܲ(ݐ) is modelled as a stationary random process with 

one-sided power spectral density (psd) ܩ௉௉(߸). The frequency response function from the 

moving load to displacements (ݐ)ࢗ can be expressed as 
 

(߸)௉ࢗܪ = ௚(߸)−1ࡿ   [   
  001000]   

  
                                                    (22) 

 

The psd of the stationary response of the structural model can be computed as 
 

(߸)ࢗࢗܩ  =  ௉(߸)்                                   (23)ࢗܪ(߸)௉௉ܩ∗(߸)௉ࢗܪ
 

If a vehicle model is moving at constant velocity 𝑣௢ on the beam, the mass, damping, and 

stiffness matrices of the vehicle can be assembled at the structural level by extending the 

Mecánica Computacional Vol XLII, págs. 495-504 (2025) 499

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


 

generalized coordinate vector of the beam with the generalized coordinates of the vehicle 

model and assembling to the extended model the contribution to the dynamic stiffness matrix. 

This can be easily computed using the mass, damping and stiffness matrices of the vehicle 

model and computing its dynamic stiffness matrix as 
 ܵ௩(߸) = ௩ܯ2߸− + ௩ܥ߸݆ +  ௩                                       (24)ܭ
 

To simplify the assembly process, the beam mesh in relative coordinates must have nodes 

defined at the contact points of the vehicle wheels on the beam. In the following subsection 

some applications of moving load and moving vehicle are presented. 
 

If a moving mass in direct contact with the beam on elastic foundation (BoEF) is to be 

modelled, we can simply assemble the corresponding dynamic stiffness of the moving mass to 

the vertical displacement coordinate of the beam mesh on elastic foundation. The following 

2x2 dynamic stiffness of the moving mass can be computed associated to the transverse 

displacement and rotation of the node in which the mass is assembled (Inaudi, 2024) 

 ܵ௠(߸) = [−݉߸2 2݆݉𝑣௢߸ + ݉𝑣௢20 0 ]                                     (25) 

 

 

Analysis of multiple-axes moving vehicle with roughness contact on a BoEF 
 

Consider a multiple-axis vehicle as that show in Figure 3. 

 

 

 

 

 

 

 
 

 

 

 

Figure 3. Vehicle model on elastic media with roughness in contact. 
 
 

Generalized forces acting on moving nodes (contacts of moving vehicles and moving beam) 

can be easily computed for the generalized vehicle coordinates ࢜ࢗ, and the generalized beam-

node coordinates, ࢈ࢗ, considering the elastic potential energy of the elastic element that 

models the wheel contact: 
 ܷ = 12 ∑ ݇௜ே೎௜=1 ௩௜ݍ) − ௕௜ݍ −  (26)                                2((ݐ)௜ݓ

 

Where ௖ܰ is the number of elastic contacts. Therefore the generalized non-conservative force 

resulting from road roughness can be expressed as 
 డ௎డ௤ೡೕ = ௝݇(ݍ௩௝ − ௕௝ݍ −         ((ݐ)௝ݓ

డ௎డ௤್ೕ = − ௝݇(ݍ௩௝ − ௕௝ݍ −  (27)              ((ݐ)௝ݓ

 

The linear terms on ݍ௩௝ and ݍ௕௝can be assembled directly in the dynamic stiffness matrix at a 

structural level. The terms proportional to the ݓ௝(ݐ) can be included as non-conservative 

terms in the right hand side of the equations of motion of the model as: 
 

݇1 

𝑟௖(ݐ) = 𝑟(ݏ௪௖ , (ݐ +  (௪௖ݏ)ݓ

௪௖ݏ ݏ ݐ௢ݒ  

݇3 ݈3 

݇2 ݈2 
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ܳ௩௝(ݐ) = ௝݇ݓ௝(ݐ)              ܳ௕௝(ݐ) = − ௝݇ݓ௝(ݐ)                        (28) 
 

Assuming the contact nodes are numbered backwards from 1 to ௔ܰ, in the direction opposite 

to 𝑣௢ as shown in Figure 3, the delay between the signals can be expressed in terms of the 

distance ௝݈ between the ݆-th contact and the first contact as: 
(ݐ)௝ݓ  = ݐ)1ݓ + ௝݈/𝑣௢)                                                 (29) 
 

In the frequency domain we can express the Fourier transform of these signals as: 
 ௝ܹ(߸) = ݁−௝ధ௟ೕ/௩೚ 1ܹ(߸)                                             (30) 
 

This means that we can formulate the problem with a single-input model ((ݐ)1ݓ) in the 

frequency domain. The cross power-spectral density for signals ݓ௜(ݐ) and ݓ௡(ݐ) can be 

expressed as: ܩ௪೔௪೙(߸) = ݁௝ధ௟೔/௩೚ܩ௪1௪1(߸)݁−௝ధ௟ೕ/௩೚                               (31) 
 

where the formula can be generalized for any indices ݅ and ݊, considering that ݈1 = 0. 

 

On the other hand, if spatial roughness is defined as a stationary random process, ܴ(ݔ), in 

spatial coordinate (longitudinal distance), at constant speed, the time process (ݐ)1ݓ is defined 

as: (ݐ)1ݓ = ܴ(𝑣௢ݐ)                                                      (32) 
 

Therefore, if the one-sided psd of ܴ(ݔ) is ܩோோ(Ω), where Ω is the spatial frequency,  the psd 

of (ݐ)1ݓ can be expressed as: 
(߸)௪1௪1ܩ  = ீೃೃ(ధ/௩೚)௩೚                                                (33) 
 

Using this formulation a random process model of road roughness can be incorporated to 

assess the stochastic response of the foundation and multiple-axis vehicle moving at constant 

velocity. 

3 SIMPLE EXAMPLE CASES 

Two brief application examples of beam-FE in the frequency domain and moving coordinate 

system are presented in this section. 
 

3.1 Stationary deformation for constant moving load  
 

A comparison of the frequency-domain formulation and a time-domain formulation is done in 

this section. A 250 m beam on undamped elastic foundation with a moving constant load is 

analyzed. For the frequency domain analysis, a 3-node 2-element model is analyzed (with two 

elements of 125 m and the constant load in the central node). For the time-domain analysis 

(Inaudi, 2024) a finite-element mesh of 250 elements and 251 nodes separated by FE of 1 m 

in length is created to analyze the stationary response of the beam on elastic foundation 

subjected to constant moving load (shown in Figure 3). The parameters considered for this 

example are ܣ = 1; ߩ  = 1; ܮ  = 1; ܧ  = 100000; 𝑣௢ = 60; ܫ  = 1;  ܲ = −98.1; ݇௙ = 100, ௙ܿ = 0. The 

stationary response to an external constant applied in the central node of the mesh (shown in 

light blue in Figure 4) is computed. The figure in the right shows in blue line the vertical 

displacement field, ݎ௦௧(ݏ), computed with the model matrices assembled at a structural model 

level (251 ×  2 dofs) solving for the particular time-independent solution ݍ௣ of the ODE 

system (Inaudi, 2024):  
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௕ࡷ) + ௙ࡷ + ௖௙ࡷ + ௣ࢗ (ࡴ =  (34)                                         ࡼ

 

where ࡷ௕, ࡷ௙  ௖௙ and H are the elastic beam, elastic foundation, viscous foundation andࡷ ,

moving mesh mass contributions to the structural-model pseudo-stiffness matrix for the 

moving mesh model (see Inaudi 2024 for details).  In dotted red line the estimated 

displacement field using the frequency domain model is depicted. As expected, minor 

differences are observed. It is worth mentioning that the system of algebraic equations to 

solve in the case of the frequency-domain 3-node model is of 6x6, while in the case of the 

conventional time-domain 151-node FE model is of 302x302.  
 

 
 

 
 
 
 

 
 
 
 
 
 
 

 

 

Figure 4. Stationary deformation field ݎ௦௧(ݏ) for single vertical load (blue lines) and for the same vertical 

load applied in two nodes (magenta lines) 
 

 

3.2 Analysis of 1-axis moving vehicle with roughness in contact 
 

To illustrate the application of moving mesh to the analysis of a moving vehicle on a beam on 

elastic foundation, including roughness in contact, a simple model is developed with a spring ݇௡ and no viscous damper in the contact between vehicle and beam. Figure 5 shows the 

mechanical parameters of the model and the definition of the generalized displacements. 
 

 

 

 

 

 

 
 

 

Figure 5. Quarter vehicle model on elastic media with roughness in contact. 
 

If roughness of the wheel or road surface is to be included in to assess its influence in 

vibration of the road-vehicle system, the vertical displacement of the wheel contact can be 

expressed as: 
(ݐ)௖ݎ  = ௪௖ݏ)ݎ , (ݐ + ݐ𝑣௢)ݓ + (௪௖ݏ = ௪௖ܮ (ݐ)ࢗ  + ݐ𝑣௢)ݓ +  ௪௖)                                (35)ݏ

 

where ݏௐ஼ is the relative coordinate of the node of wheel contact under consideration, ܮ௪௖ 

is the kinematic transformation from FE nodal displacements to ݏ)ݎ௪௖, ݐ𝑣௢)ݓ and ,(ݐ +  (௪௖ݏ

is the roughness vertical displacement model (deterministic or random). 
 

To construct the model of the vehicle with the vertical displacements ݎ௖(ݐ),   (ݐ)1ݕ, and 

 ݐ𝑣௢ ݏ

𝑣௢  

 (ݐ)2ݕ

(ݐ)௖ݎ (ݐ)1ݕ = ௪௖ݏ)ݎ , (ݐ +  ݐ𝑣௢ (௪௖ݏ)ݓ

௪௖ݏ ݏ  

݉2 

݉1 

ܿ௦ ݇௦ ݇௡ 

 (ݐ)2ݕ

 (ݐ)1ݕ

 ݏ

 (ݐ)௖ݎ

250 ݉ 
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 the mass, damping and stiffness matrices of the vehicle model (see Figure 4) are (ݐ)2ݕ

assembled: ܯ௩ = [0 0 00 ݉1 00 0 ௩ܭ                [2݉ = [−݇௡ −݇௡ 0݇௡ ݇௡ + ݇௦ −݇௦0 −݇௦ ݇௦ ] ௩ܥ        = [0 0 00 ܿ௦ −ܿ௦0 −ܿ௦ ܿ௦ ]           (36) 

 

The dynamic stiffness of the vehicle (Eq. 24) can be assembled to the full dynamic 

stiffness of the structural model of the beam and vehicle.  
 

Figure 6 shows the power spectral density of the contribution of (ݐ)ݓ to the vertical 

displacement ((ݐ)3ݍ) of the contact beam node of the vehicle model. The assumed vehicle 

parameters are ݉1 = 0.1, ݉2 = 1, ݇௦ = 600, ݇௡ = 2400, ܿ௦ = 15. The roughness psd is 

assumed as: 
 ܵோோ(Ω) =  ܵோோ(Ω௢) ( ΩΩ೚)−2                                               (37) 

 

where Ω௢ =0.1 1/m y ܵோோ(Ω௢) = 1/݉3.  

 

 
Figure 6. PSD of roughness contribution to vertical displacement of vehicle-beam contact node.  

 

4 CONCLUSIONS AND FURTHER RESEARCH 

The development of frequency-domain elements for the estimation of response of moving 

vehicles or moving loads on elastic homogeneous infinite domains has been presented. The 

use of moving meshes (formulation of displacement fields in relative coordinates) allows the 

construction of versatile computational models for the estimation of vehicle-induced 

vibrations with different applications, requiring a significantly smaller mesh than that of 

conventional stationary finite elements. These tools can be applied for vibration-intensity 

estimation for environmental impact analysis of train or vehicle induced vibrations, including 

road or rail roughness using random vibration analysis. Automation in model generation for 

vehicles consisting in multiple cars (for train applications) moving at constant velocity on 

elastic rails will be approached in the near future as an extension of this work. Other lines for 

future research are i) the feasibility of an homogenization strategy of periodic substructures 

such as sleepers under rails so that the proposed formulation can approximate the mechanical 

behavior moving vehicles on rails supported by sleepers and other periodic substructures 
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using a moving mesh formulation, ii) a strategy for approximating the response of moving 

vehicles on non-homogeneous soil domains with stochastic elastic properties, iii) the 

relevance of incorporating appropriate boundary layers in the moving mesh to allow 

absorbing boundaries, and iv) the use of other linear viscoelastic damping models in the 

frequency domain could be considered and would not significantly change the formulation of 

dynamic stiffness developed in this paper. 
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