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Abstract. The interaction between vehicles moving on a continuous elastic medium and underlying
support layers generates induced vibrations that may affect surrounding structures. In environmental
impact studies for proposed and planned new railway lines, it is frequently necessary to characterize
vibration intensities for different track support structural packages. For train systems, in addition to
the mechanical properties of the foundation package, both rail roughness and wheel roughness (flat-
wheel conditions) become particularly relevant. This work develops a modeling approach for parametric
analysis of such systems, employing a matrix assembly methodology in generalized coordinates along
with global interpolation functions for the rail (modeled as a constant-section Euler-Bernoulli beam)
and discrete coordinates to represent sleeper kinematics and elastic support medium deformation. Rail
deformation is approximated through superposition of a Fourier basis with interpolation functions ac-
counting for rigid body displacements of the rail. The implementation of global interpolation functions
and the orthogonality properties of the rail deformation interpolation functions enable efficient assembly
of the system’s motion equations matrices (some being time-variant) for the coupled vehicle-track model
incorporating rail, sleepers, and elastic foundation support. Through numerical integration of the linear
time-variant model, rail vibrations are analyzed under the assumption of rigid wheel-rail contact. Results
from this primary model are compared with a mass-mass coupling model using a time-domain metric.
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1 INTRODUCCION

The present work aims to develop an alternative formulation in the continuous domain to
study the dynamic interaction between a moving railway vehicle and the supporting track in-
frastructure, based on the use of generalized coordinates with global interpolators, which allows
efficient coupling of the different parts of the system. This approach offers practical advantages
by facilitating the assembly between the discrete models of the vehicle and the foundation with
the continuous model of the rail, represented as an Euler-Bernoulli type beam. Moreover, it en-
ables the calculation of the rail’s transverse deformation at any point in the continuous domain
and at any instant of time, providing a detailed description of its dynamic response.

Among the most important causes of train-induced vibrations are undesired geometric defor-
mations in the wheels, which are originally circular in shape. These deformations, which can
appear as localized flat spots (areas with a loss of circularity), alter the ideal rolling condition
and cause periodic dynamic excitations in the wheel-rail interaction Zhang et al. (2019b). Sev-
eral studies have aimed to characterize and quantify the average level of deformation present
in wheels during operation. In this regard, the experimental study conducted by (Zhang et al.,
2019a) constitutes a significant reference. It is also noteworthy that the irregularities present in
the rails contribute significantly to the recorded oscillations. The magnitude and origin of the
forces recorded in train wheels have been studied in detail in (Uzzal et al., 2008), as well as
the different types of supports that can be modeled between the rail and the foundation ballast
(Ferrara et al., 2012).

The model in this work considers the presence of geometric imperfections, both in the wheel
and in the longitudinal profile of the rail, which act as sources of unwanted dynamic excitation.
As a starting point, an initial approximation is implemented that considers a constant contact
stiffness "k", and subsequently, the results are compared with those of an alternative model that
considers a direct mass-to-mass type contact, representing a description closer to the system’s
physical reality.

2 MODEL WITH CONSTANT CONTACT STIFFNESS

The dynamic model proposed in this section corresponds to an initial approximation of a
locomotive moving over a rail supported by a given structural layer. In this first model the in-
teraction between the locomotive wheels (vehicle) and the rail occurs through a specific contact
stiffness (spring element with a specified stiffness). The dynamic model under study is two-
dimensional (unknown coordinates: vertical displacements and rotations) and represents half of
a freight vehicle. Figure: 1.

2.1 Dynamic Equilibrium Equations of the Vehicle

Dynamic Equilibrium in the Vehicle’s Vertical Displacement

Mc yc(t) + 2 052 yc(t) + [_CSQ llc + 052 lrc] ec(t) - 052 ybl (t) - 052 be (t)

(1)
+ 2K32 yc(t) + [_K82 llc + Ks2 lrc] ec(t) - Ks2 Y1 (t) - Ks2 yb2(t) = —1I.g

Rotational Dynamic Equilibrium of the Vehicle

J, éc<t) + [~Cu lie + Cao lne] 9e(t) + [CSQ 2+ Ca lzc} éc(t) — Cso lye Y1 (1)
+ Coo lic G2 (t) + [~ Koo lie + Ko e ye(t) + [Koa i, + Koo I7.] 0c(2) @
— KSQ lrc Yb1 (t) + K52 llc be(t) =0
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Figure 1: Dynamic model 1

Dynamic Equilibrium in the Front Bogie’s Vertical Displacement

My (t) — Cua 9e(t) — Csa le 0(t) + [Cio + 2C51) 9 () + [—Cist lip + Cit L] 61 (2)
—Usl ywl(t) - Csl wa (t) - K52 yc<t> - K52 lrc 6)c(t) + [KSQ + QKSI] Yn (t) (3)

+ [ Ko lipy + Koy L) 01(t) — K1 Y1 () — Ko yu2(t) = =My, g
Rotational Dynamic Equilibrium of the Front Bogie
Ty 01(t) + [—Csi lin + Cst L) 91 (8) + [Cr By + C1 121] 01(8) — Ot Lt Y (2)
+Cs1 lipt G (t) + [~ Kt bt + Kot vt ] yor (8) + [Ko1 Gy + K1 12,] 6:(t) (D)
— K1 Loyt Y1 () + K1 lipy Y2 (t) = 0

The same for the Rear Bogie (Vertical displacement and Rotation).
Dynamic Equilibrium in the Vertical Displacement of Wheel 1

Mwl ywl - Csl ybl (t) - Csl lrbl 91 (t) + Osl ywl (t)
a1 Yo () + [Kat + Kol Y1 (1) = Ko Yntn (2,1) — Ko Ly 01(1) = =M1 g

The same for wheels 2, 3 and 4.
Dynamic Equilibrium Equation for the Vertical Displacement of Node ''n aux 1"

—Kuwyur (t) + KulYn1,,. (2,1) =0 (6)

Similarly, the equations for the auxiliary nodes "n" 2 to 4 are obtained correspondingly.

)

2.2 Dynamic Equilibrium Equation for the Vertical Displacement of the Rail Track

The rail for the freight train can be modeled as a continuous Euler-Bernoulli type beam:

O*w(x,t) O'w(z,t)
A——+FE[———= = t 7
p oz T 9 p(x,1) (7)
An approximation is proposed for the rail deformation in the following form:
_ , qn(t)
yr(z,t) =1-0(t) + f(x) p(t) + Brousier() o (t) (8)
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e e &1L f2mp
flw) = [TT;ESIB (T"”)] )
Brourier () [328} = g {sin (2”7”:5) (1) + cos (%T”x) rn(t)} (10)

* The first approximation function is clearly a rigid mode.

« * The second approximation function: f(z) = % — 3 + E';Zl o sin (22

a first part, % — % which represents a rigid rotation around z = % but also includes a set

of additional functions, Zk: L gin (@x), that contribute deformation (curvature). It
has been constructed mathematically to be orthogonal to the remaining modes; therefore,
it does not capture deformation energy when projected and behaves as a “pseudo-rigid”

mode, since it is not a pure rigid mode.

x) consists of

By substituting and expanding, it results in:
b 2mn 2mn
pA <1 o(t) + f(a:)p(t)) + pAnZ_; [sin (Ta:) Gn(t) + cos (Tx) 'rn(t)}
k
+ETY % (%Tnx)4 sin (%T”x) p(t) (11)
Yo\ ! 2mn 2mn
+ETY (T) [sin (T:c) Gn(t) + cos <Tx> m(t)} = p(,1)

n=1

By applying the Weighted Residuals method (Galerkin Method), the previous system is pro-
jected onto the different weighting functions used to interpolate the beam. Thus, both sides are
multiplied by the following weighting functions:

w;(x) = {1, f(z), sin (?m) , COS (@x) ‘p = 1,2,3,...,k} (12)
Which yields:
I
p Alo(t) :/ p(x,t) wy (x) do (13)
0

l
p AlLp(t) :/0 p(z,t) we(x) dz (14)

I 11 [2mp\* I (2mp\’ l
0

2pm 2
l I (2mp\* :
pagit) + BT (52 nit) = [ oot un(o)ds (16)
0
For values of p = 1,2,3,...,k, where k is the number of interpolation degrees (for the

trigonometric functions) chosen to be used.
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2.3 Dynamic Equilibrium Equation for the Vertical Displacement of Node ''nn aux, I-th"

Cp ynn i-thauz (t) - Cp y‘s i-thauz (x7 t) + KP ynn i-thguz <t> - Kp ys i-thaua <x7 t) = 0 (17)
Dynamic Equilibrium Equation for the Vertical Displacement of the Sleepers

MSz‘ ysL + [Cp + Cb] ysL (t) - Cb ybL (t) - Cp ynniauz (t)

(18)
+ [KP + Kb] Ys; (t) - Kb Y, (t) - Kp Ynn e (t) - —Msig
Dynamic Equilibrium Equation for the Vertical Displacement of the Ballast
Mbi ybl - C’b gs;’ (t> - Csh ybifl (t) + [Cb + CS!] + 208/1] ybz‘ (t) - Csh yb¢+1 (t) - Kb Ys, (t) (19)

— L sh Yb (t) + [Kb + ng + 2Ksh] Yp, (t) - Ksh ybi_,_l (t) = _Mb,g

With 7 = 1,2,3,..., N, where N is the total number of sleepers/ballasts considered in the
model.

2.4 Matrix Assembly of the Dynamic Equilibrium Equation System for Dynamic Inter-
action Model No. 1

[Mvehicle] [0] [0]
(M]=1{ [0 [Mri] [0] (20)
[0] [0] [Mfoundation]

-[Cvehicle] [0] [0]
[Cl=1 [ [0 0] 21)
[0] [0] [Cfoundation}

-[Kvehicle] [0] [O]
[K] = [0] [Krail] [O] (22)
[O] [O] [K foundation]

2.5 Reduction of Degrees of Freedom

By working with auxiliary nodes, it is possible to establish a relationship that links them
to the primary coordinates of the model, thus reducing the number of unknowns and simul-
taneously coupling the system across its different components. For the nodes connecting the
vehicle to the rail, assuming that their displacements must be identical, a generic expression
can be formulated as:

Ynaus (2, 1) = yr(,1) (23)

Similarly, for the nodes connecting the rail to the sleepers, with £; = Zeepers:
The reduction of the system of equations, by eliminating the "auxiliary nodes", can be
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schematically represented through the following coordinate transformation:

[ﬁ]
-y - evehiculo(t)- -[10>< 10 0 0 0 i
Yniux (t) 0 Yn (xw> 0 0 Yy — evehiculo (t)
z(t) 0 Tioxk 0 0 (1)
= 24
Yanins (1 0 Yuw) 0 0 e (1) 9
Ys, (1) 0 0 Inyn 0 Up, (t)
L <t) B 0 0 0 IN>< N |
With:
{y} = [L]{yreduced}
{9} = [LH{Yreducea } (25)
{y} = [L]{yreduced}
Yielding:

(Mg} + [CHo} + [K{y} = [/]
L] [M][L]{Greaucea} + (L1 [CNLH Gredueea} + (LI K LI{Yreducea} = [L]"[f]

This defines the system of dynamic equilibrium equations to be solved. The following ma-
trices are defined:

(26)

T

[ reduced] [L] [M] [L]
[ reduced] [L] 4 [C] [L] (27)
[ reduced] [L]T [K] [L]
[freduced] [L]T[f]
Expressing the system in state-space form:
|:yred:| Ured
i "L ™ { = LITOE s} = [T I L otneea} + [LIT{F }
yred I Yred 0
|;yred:| |: red - red Cr :| |:yred:| " |: red f red:|
t=Ax+ B
(28)

2.6 Model parameters and simulation cases

Model parameters are defined in Table 1. First, a case at very low speed is run to verify the
formulation. Secondly, some simulation results of dynamic deflections due to rail roughness
and wheel deformation are presented.

2.7 Results: Comparison between Static and Dynamic Deflections (low speed)

The dynamic deﬂections of the beam (rail) are determined for the vehicle moving at a re-
duced speed (V' = 1 %2 — quasi-static behavior). The results obtained are compared with the
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Table 1: Parameters used in the dynamic train model

Parameter Symbol Value Unit
Vehicle displacement speed \% 36 km /h
Half of locomotive mass M, 38,800 kg
Locomotive moment of inertia Je 1,564.933 | kgm?
Distance CM locomotive to front bogie CM lre 11.875 m
Distance CM locomotive to rear bogie CM lie 11.875 m
Secondary suspension stiffness Ko 6.11 MN/m
Secondary suspension damping Cs2 90 kN's/m
Half of bogie mass My, 1500 kg
Distance CM front bogie to right wheel lp1r 0.625 m
Distance CM front bogie to left wheel lp11 0.625 m
Bogie moment of inertia Jp 176 kg m?
Primary suspension stiffness Ka 7.88 MN/m
Primary suspension damping Cs1 52.5 kN's/m
‘Wheel mass M, 500 kg
Wheel radius R 0.42 m
Wheel-rail contact stiffness K, 5K MN/m
Rail linear mass my 60.64 kg/m
Rail flexural stiffness EI 6.62 MN m?
Rail cross-section area A, 0.00767 m?
Rail material density P 7900 kg/m3
Rail length l 90 m
Rail pad stiffness K, 120 MN/m
Rail pad damping Cp 75 kN's/m
Half sleeper mass M 118.5 kg
Sleeper spacing ls 0.6 m
Ballast stiffness K 182 MN/m
Ballast damping Ch 58.8 kN's/m
Half ballast mass M, 739 kg
Sub-base stiffness Ky 78.4 MN/m
Sub-base damping Csg 31.15 kN's/m
Ballast shear stiffness K, 147 MN/m
Ballast shear damping Csn 80 kN's/m
Initial position o 25 m
Number of interpolation functions for rail n 10 -

static deformations of the rail for the same vehicle at rest (V' = 0 %), positioned at different
locations (x,,1) along the length of the domain. In the figure below, it can be observed one of
the results obtained. The correspondence between both deflections is absolute in each of the
cases that were analyzed. Figure: 2.

3 DYNAMIC INTERACTION MODEL WITH DIRECT MASS-TO-MASS CONTACT

Considering, in a general form, that:

y(t) = L(t) Yrea(t) (29)

with y(t) € R™ and L(t) € R™"™ with m < n, and therefore y..q(t) € R™, the system pos-
sesses kinetic energy, potential energy, and dissipative forces (i.e., it is a non-conservative
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=
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Figure 2: Comparison: Static vs. Dynamic Rail Deformation

system).
Kinetic Energy
Loy,
T = 5y My (30)
Taking into account that:
Yy = E(y(t)) G1)
= L Yred + L Ured
Results:
1 . . . 1
T= 5 Yuoa LT M L peq + §oa L M L yreq + B Unoa LT ML fjceq
Potential Energy
1
V = 5 yg;d LT KL Yred (32)
Lagrangian
L=T-V (33)

Non-conservative force term For the reduced generalized coordinates .4, the generalized
forces are:

Qred = LT (f -C (L Yred + L yred)> (34)
Equations of Motion
d (0L oL
% (ayred) a ayred B Qred (35)
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Defining:

Moea(t) = L"ML
B(t)=L"ML

Kea(t) = LKL
The Lagrangian becomes:

‘C = éer;dLTMLyred + ygdLTMLyred + §yr7;eredyred - éygdKredyred

L=T-V

By differentiating with respect to time and manipulating (35), one obtains:

Mred (t) gred + Cresultante (t) yred + Kresultante (t) Yred = f red

where:

Mea(t) = L" M L

Cresultante(t) == Mred<t> + B(t> - BT(t) + F(t)
Mea(t)=L" ML+ L' ML

= LML+ B(t)
B(t)=L"ML
Fty=L"CL

Kresultante(t) = B<t) - D(t) + Kred(t) + E(t)

D(t)=L"ML
B(t)=L"ML+L"ML
=D{t)+L"ML
Keat) = L' K L
E(t)=L"CL
frea=L" f
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Figure 3: Rotation Bogie 2. Rigid and Contact mass-to-mass model comparison

4 CONCLUSIONS

The computed response is consistent with the physical phenomenon intended to be repre-
sented, which validates the approach used for analyzing the system without and with track
irregularities.

The simplified model that incorporates contact stiffness using a sufficiently high value of £
(to simulate a rigid interface, e.g., k = 5 K1), shows significant advantages compared to the
full model (contact mas-to-mass). The structural simplicity of the reduced model facilitates its
implementation and assembly, making it particularly suitable for exploratory simulations (the
contact-stiffness model can reduce simulation time by up to 90% compared to the mass-to-mass
contact model).

The dynamic results obtained from both models are similar. It is observed that the mass-
to-mass contact model exhibits a slightly higher frequency content in the vehicle degrees of
freedom (DOFs) compared to the flexible-contact model (model with k). The latter, being
structurally more flexible, allows slightly larger displacements, although without compromis-
ing simulation fidelity. The full model reflects a more accurate representation of the oscillations
occurring at the vehicle level (these show slightly higher values when the train speed exceeds
200 ]%). Both models accurately simulate rail deflections, showing negligible numerical differ-
ences in this regard. Figure: 3.
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