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Abstract. The interaction between vehicles moving on a continuous elastic medium and underlying

support layers generates induced vibrations that may affect surrounding structures. In environmental

impact studies for proposed and planned new railway lines, it is frequently necessary to characterize

vibration intensities for different track support structural packages. For train systems, in addition to

the mechanical properties of the foundation package, both rail roughness and wheel roughness (flat-

wheel conditions) become particularly relevant. This work develops a modeling approach for parametric

analysis of such systems, employing a matrix assembly methodology in generalized coordinates along

with global interpolation functions for the rail (modeled as a constant-section Euler-Bernoulli beam)

and discrete coordinates to represent sleeper kinematics and elastic support medium deformation. Rail

deformation is approximated through superposition of a Fourier basis with interpolation functions ac-

counting for rigid body displacements of the rail. The implementation of global interpolation functions

and the orthogonality properties of the rail deformation interpolation functions enable efficient assembly

of the system’s motion equations matrices (some being time-variant) for the coupled vehicle-track model

incorporating rail, sleepers, and elastic foundation support. Through numerical integration of the linear

time-variant model, rail vibrations are analyzed under the assumption of rigid wheel-rail contact. Results

from this primary model are compared with a mass-mass coupling model using a time-domain metric.
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1 INTRODUCCIÓN

The present work aims to develop an alternative formulation in the continuous domain to

study the dynamic interaction between a moving railway vehicle and the supporting track in-

frastructure, based on the use of generalized coordinates with global interpolators, which allows

efficient coupling of the different parts of the system. This approach offers practical advantages

by facilitating the assembly between the discrete models of the vehicle and the foundation with

the continuous model of the rail, represented as an Euler-Bernoulli type beam. Moreover, it en-

ables the calculation of the rail’s transverse deformation at any point in the continuous domain

and at any instant of time, providing a detailed description of its dynamic response.

Among the most important causes of train-induced vibrations are undesired geometric defor-

mations in the wheels, which are originally circular in shape. These deformations, which can

appear as localized flat spots (areas with a loss of circularity), alter the ideal rolling condition

and cause periodic dynamic excitations in the wheel-rail interaction Zhang et al. (2019b). Sev-

eral studies have aimed to characterize and quantify the average level of deformation present

in wheels during operation. In this regard, the experimental study conducted by (Zhang et al.,

2019a) constitutes a significant reference. It is also noteworthy that the irregularities present in

the rails contribute significantly to the recorded oscillations. The magnitude and origin of the

forces recorded in train wheels have been studied in detail in (Uzzal et al., 2008), as well as

the different types of supports that can be modeled between the rail and the foundation ballast

(Ferrara et al., 2012).

The model in this work considers the presence of geometric imperfections, both in the wheel

and in the longitudinal profile of the rail, which act as sources of unwanted dynamic excitation.

As a starting point, an initial approximation is implemented that considers a constant contact

stiffness "k", and subsequently, the results are compared with those of an alternative model that

considers a direct mass-to-mass type contact, representing a description closer to the system’s

physical reality.

2 MODEL WITH CONSTANT CONTACT STIFFNESS

The dynamic model proposed in this section corresponds to an initial approximation of a

locomotive moving over a rail supported by a given structural layer. In this first model the in-

teraction between the locomotive wheels (vehicle) and the rail occurs through a specific contact

stiffness (spring element with a specified stiffness). The dynamic model under study is two-

dimensional (unknown coordinates: vertical displacements and rotations) and represents half of

a freight vehicle. Figure: 1.

2.1 Dynamic Equilibrium Equations of the Vehicle

Dynamic Equilibrium in the Vehicle’s Vertical Displacement

Mc ÿc(t) + 2Cs2 ẏc(t) + [−Cs2 llc + Cs2 lrc] θ̇c(t)− Cs2 ẏb1(t)− Cs2 ẏb2(t)

+ 2Ks2 yc(t) + [−Ks2 llc +Ks2 lrc] θc(t)−Ks2 yb1(t)−Ks2 yb2(t) = −Mcg
(1)

Rotational Dynamic Equilibrium of the Vehicle

Jc θ̈c(t) + [−Cs2 llc + Cs2 lrc] ẏc(t) +
[
Cs2 l

2
lc + Cs2 l

2
rc

]
θ̇c(t)− Cs2 lrc ẏb1(t)

+ Cs2 llc ẏb2(t) + [−Ks2 llc +Ks2 lrc] yc(t) +
[
Ks2 l

2
lc +Ks2 l

2
rc

]
θc(t)

−Ks2 lrc yb1(t) +Ks2 llc yb2(t) = 0

(2)
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Figure 1: Dynamic model 1

Dynamic Equilibrium in the Front Bogie’s Vertical Displacement

Mb ÿb1(t)− Cs2 ẏc(t)− Cs2 lrc θ̇c(t) + [Cs2 + 2Cs1] ẏb1(t) + [−Cs1 llb1 + Cs1 lrb1] θ̇1(t)

−Cs1 ẏw1(t)− Cs1 ẏw2(t)−Ks2 yc(t)−Ks2 lrc θc(t) + [Ks2 + 2Ks1] yb1(t)

+ [−Ks1 llb1 +Ks1 lrb1] θ1(t)−Ks1 yw1(t)−Ks1 yw2(t) = −Mb1 g

(3)

Rotational Dynamic Equilibrium of the Front Bogie

Jb θ̈1(t) + [−Cs1 llb1 + Cs1 lrb1] ẏb1(t) +
[
Cs1 l

2
lb1 + Cs1 l

2
rb1

]
θ̇1(t)− Cs1 lrb1 ẏw1(t)

+Cs1 llb1 ẏw2(t) + [−Ks1 llb1 +Ks1 lrb1] yb1(t) +
[
Ks1 l

2
lb1 +Ks1 l

2
rb1

]
θ1(t)

−Ks1 lrb1 yw1(t) +Ks1 llb1 yw2(t) = 0

(4)

The same for the Rear Bogie (Vertical displacement and Rotation).

Dynamic Equilibrium in the Vertical Displacement of Wheel 1

Mw1 ÿw1 − Cs1 ẏb1(t)− Cs1 lrb1 θ̇1(t) + Cs1 ẏw1(t)

−Ks1 yb1(t) + [Ks1 +Kw] yw1(t)−Kw yn1aux(x, t)−Ks1 lrb1 θ1(t) = −Mw1 g
(5)

The same for wheels 2, 3 and 4.

Dynamic Equilibrium Equation for the Vertical Displacement of Node "n aux 1"

−Kwyw1(t) +Kwyn1aux(x, t) = 0 (6)

Similarly, the equations for the auxiliary nodes "n" 2 to 4 are obtained correspondingly.

2.2 Dynamic Equilibrium Equation for the Vertical Displacement of the Rail Track

The rail for the freight train can be modeled as a continuous Euler-Bernoulli type beam:

ρA
∂2w(x, t)

∂t2
+ E I

∂4w(x, t)

∂x4
= p(x, t) (7)

An approximation is proposed for the rail deformation in the following form:

yr(x, t) = 1 · o(t) + f(x) p(t) + BFourier(x)

[
qn(t)
rn(t)

]

(8)

Mecánica Computacional Vol XLII, págs. 505-514 (2025) 507

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


Where:

f(x) =

[

x

l
−

1

2
+

k∑

p=1

1

pπ
sin

(
2πp

l
x

)]

(9)

BFourier(x)

[
qn(t)
rn(t)

]

=
∞∑

n=1

{

sin

(
2πn

l
x

)

qn(t) + cos

(
2πn

l
x

)

rn(t)

}

(10)

• The first approximation function is clearly a rigid mode.

• • The second approximation function: f(x) = x
l
− 1

2
+

∑k

p=1
1
pπ

sin
(
2πp
l
x
)

consists of

a first part, x
l
− 1

2
, which represents a rigid rotation around x = l

2
, but also includes a set

of additional functions,
∑k

p=1
1
pπ

sin
(
2πp
l
x
)
, that contribute deformation (curvature). It

has been constructed mathematically to be orthogonal to the remaining modes; therefore,

it does not capture deformation energy when projected and behaves as a “pseudo-rigid”

mode, since it is not a pure rigid mode.

By substituting and expanding, it results in:

ρA
(

1 ö(t) + f(x) p̈(t)
)

+ ρA

k∑

n=1

[

sin

(
2πn

l
x

)

q̈n(t) + cos

(
2πn

l
x

)

r̈n(t)
]

+E I

k∑

n=1

1

nπ

(
2πn

l
x

)4

sin

(
2πn

l
x

)

p(t)

+E I

k∑

n=1

(
2πn

l

)4 [

sin

(
2πn

l
x

)

qn(t) + cos

(
2πn

l
x

)

rn(t)
]

= p(x, t)

(11)

By applying the Weighted Residuals method (Galerkin Method), the previous system is pro-

jected onto the different weighting functions used to interpolate the beam. Thus, both sides are

multiplied by the following weighting functions:

wi(x) =

{

1, f(x), sin

(
2πp

l
x

)

, cos

(
2πp

l
x

)
∣
∣ p = 1, 2, 3, . . . , k

}

(12)

Which yields:

ρA l ö(t) =

∫ l

0

p (x, t) w1 (x) dx (13)

ρA l p̈(t) =

∫ l

0

p(x, t) w2(x) dx (14)

ρA
l

2
q̈p(t) + E I

l

2

1

p π

(
2πp

l

)4

p(t) + E I
l

2

(
2πp

l

)4

qp(t) =

∫ l

0

p(x, t)w3(x) dx (15)

ρA
l

2
r̈p(t) + E I

l

2

(
2πp

l

)4

rp(t) =

∫ l

0

p(x, t)w4(x) dx (16)

For values of p = 1, 2, 3, . . . , k, where k is the number of interpolation degrees (for the

trigonometric functions) chosen to be used.
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2.3 Dynamic Equilibrium Equation for the Vertical Displacement of Node "nn aux, I-th"

Cp ẏnn i-thaux(t)− Cp ẏs i-thaux(x, t) +Kp ynn i-thaux(t)−Kp ys i-thaux(x, t) = 0 (17)

Dynamic Equilibrium Equation for the Vertical Displacement of the Sleepers

Msi ÿsi + [Cp + Cb] ẏsi(t)− Cb ẏbi(t)− Cp ẏnniaux
(t)

+ [Kp +Kb] ysi(t)−Kb ybi(t)−Kp ynniaux
(t) = −Msig

(18)

Dynamic Equilibrium Equation for the Vertical Displacement of the Ballast

Mbi ÿbi − Cb ẏsi(t)− Csh ẏbi−1
(t) + [Cb + Csg + 2Csh] ẏbi(t)− Csh ẏbi+1

(t)−Kb ysi(t)

−Ksh ybi−1
(t) + [Kb +Ksg + 2Ksh] ybi(t)−Ksh ybi+1

(t) = −Mbig
(19)

With i = 1, 2, 3, . . . , N , where N is the total number of sleepers/ballasts considered in the

model.

2.4 Matrix Assembly of the Dynamic Equilibrium Equation System for Dynamic Inter-
action Model No. 1

[M ] =





[Mvehicle] [0] [0]
[0] [Mrail] [0]
[0] [0] [Mfoundation]



 (20)

[C] =





[Cvehicle] [0] [0]
[0] [0] [0]
[0] [0] [Cfoundation]



 (21)

[K] =





[Kvehicle] [0] [0]
[0] [Krail] [0]
[0] [0] [Kfoundation]



 (22)

2.5 Reduction of Degrees of Freedom

By working with auxiliary nodes, it is possible to establish a relationship that links them

to the primary coordinates of the model, thus reducing the number of unknowns and simul-

taneously coupling the system across its different components. For the nodes connecting the

vehicle to the rail, assuming that their displacements must be identical, a generic expression

can be formulated as:

ynaux
(x, t) = yr(x, t) (23)

Similarly, for the nodes connecting the rail to the sleepers, with xj = xsleepers:

The reduction of the system of equations, by eliminating the "auxiliary nodes", can be
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schematically represented through the following coordinate transformation:











y − θvehiculo(t)
yniaux

(t)
zi(t)

ynniaux
(t)

ysi(t)
ybi(t)











=

[L]
︷ ︸︸ ︷









I10×10 0 0 0
0 Yn(xw) 0 0
0 Ik×k 0 0
0 Yn(xi) 0 0
0 0 IN×N 0
0 0 0 IN×N

















y − θvehiculo(t)
zi(t)
ysi(t)
ybi(t)







(24)

With:

{y} = [L]{yreduced}

{ẏ} = [L]{ẏreduced}

{ÿ} = [L]{ÿreduced}

(25)

Yielding:

[M ]{ÿ}+ [C]{ẏ}+ [K]{y} = [f ]

[L]T [M ][L]{ÿreduced}+ [L]T [C][L]{ẏreduced}+ [L]T [K][L]{yreduced} = [L]T [f ]
(26)

This defines the system of dynamic equilibrium equations to be solved. The following ma-

trices are defined:

[Mreduced] = [L]T [M ][L]

[Creduced] = [L]T [C][L]

[Kreduced] = [L]T [K][L]

[freduced] = [L]T [f ]

(27)

Expressing the system in state-space form:

[
ẏred

ÿred

]

=

[
ẏred

(
[L]T [M ][L]

)
−1

{

− [L]T [C][L]{ẏreduced} − [L]T [K][L]{yreduced}+ [L]T{f}
}

]

[
ẏred

ÿred

]

=

[
0 I

−M−1
red Kred −M−1

red Cred

] [
yred

ẏred

]

+

[
0

M−1
red fred

]

ẋ = Ax+B
(28)

2.6 Model parameters and simulation cases

Model parameters are defined in Table 1. First, a case at very low speed is run to verify the

formulation. Secondly, some simulation results of dynamic deflections due to rail roughness

and wheel deformation are presented.

2.7 Results: Comparison between Static and Dynamic Deflections (low speed)

The dynamic deflections of the beam (rail) are determined for the vehicle moving at a re-

duced speed (V = 1 km
h

— quasi-static behavior). The results obtained are compared with the
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Table 1: Parameters used in the dynamic train model

Parameter Symbol Value Unit
Vehicle displacement speed V 36 km/h

Half of locomotive mass Mc 38,800 kg

Locomotive moment of inertia Jc 1,564.933 kgm2

Distance CM locomotive to front bogie CM lrc 11.875 m

Distance CM locomotive to rear bogie CM llc 11.875 m

Secondary suspension stiffness Ks2 6.11 MN/m
Secondary suspension damping Cs2 90 kN s/m

Half of bogie mass Mb 1500 kg

Distance CM front bogie to right wheel lb1r 0.625 m

Distance CM front bogie to left wheel lb1l 0.625 m

Bogie moment of inertia Jb 176 kgm2

Primary suspension stiffness Ks1 7.88 MN/m
Primary suspension damping Cs1 52.5 kN s/m

Wheel mass Mw 500 kg

Wheel radius R 0.42 m

Wheel-rail contact stiffness Kw 5Ks1 MN/m
Rail linear mass mr 60.64 kg/m

Rail flexural stiffness EI 6.62 MNm2

Rail cross-section area Ar 0.00767 m2

Rail material density ρ 7900 kg/m3

Rail length l 90 m

Rail pad stiffness Kp 120 MN/m
Rail pad damping Cp 75 kN s/m
Half sleeper mass Ms 118.5 kg

Sleeper spacing ls 0.6 m

Ballast stiffness Kb 182 MN/m
Ballast damping Cb 58.8 kN s/m
Half ballast mass Mb 739 kg

Sub-base stiffness Ksg 78.4 MN/m
Sub-base damping Csg 31.15 kN s/m

Ballast shear stiffness Ksh 147 MN/m
Ballast shear damping Csh 80 kN s/m

Initial position x0 25 m

Number of interpolation functions for rail n 10 –

static deformations of the rail for the same vehicle at rest (V = 0 km
h
), positioned at different

locations (xw1) along the length of the domain. In the figure below, it can be observed one of

the results obtained. The correspondence between both deflections is absolute in each of the

cases that were analyzed. Figure: 2.

3 DYNAMIC INTERACTION MODEL WITH DIRECT MASS-TO-MASS CONTACT

Considering, in a general form, that:

y(t) = L(t) yred(t) (29)

with y(t) ∈ R
n and L(t) ∈ R

n×m with m < n, and therefore yred(t) ∈ R
m, the system pos-

sesses kinetic energy, potential energy, and dissipative forces (i.e., it is a non-conservative
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Figure 2: Comparison: Static vs. Dynamic Rail Deformation

system).

Kinetic Energy

T =
1

2
ẏTMẏ (30)

Taking into account that:

ẏ =
d

dt

(
y(t)

)

= L̇ yred + L ẏred

(31)

Results:

T =
1

2
yTred L̇

TM L̇yred + ẏTredL
TM L̇yred +

1

2
ẏTredL

TML ẏred

Potential Energy

V =
1

2
yTred L

T K Lyred (32)

Lagrangian

L = T − V (33)

Non-conservative force term For the reduced generalized coordinates yred, the generalized

forces are:

Qred = LT
(

f − C (L̇ yred + L ẏred)
)

(34)

Equations of Motion

d

dt

(
∂L

∂ẏred

)

−
∂L

∂yred

= Qred (35)
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Defining:

Mred(t) = LTML (36)

B(t) = LTML̇ (37)

Kred(t) = LTKL (38)

The Lagrangian becomes:

L =
1

2
yTredL̇

TML̇yred + ẏTredL
TML̇yred +

1

2
ẏTredMredẏred −

1

2
yTredKredyred (39)

L = T − V (40)

By differentiating with respect to time and manipulating (35), one obtains:

Mred(t) ÿred + Cresultante(t) ẏred +Kresultante(t) yred = fred (41)

where:

Mred(t) = LT M L

Cresultante(t) = Ṁred(t) + B(t)− BT (t) + F (t)

Ṁred(t) = L̇T M L+ LT M L̇

= L̇T M L+B(t)

B(t) = LT M L̇

F (t) = LT C L

Kresultante(t) = Ḃ(t)−D(t) +Kred(t) + E(t)

D(t) = L̇T M L̇

Ḃ(t) = L̇T M L̇+ LT M L̈

= D(t) + LT M L̈

Kred(t) = LT K L

E(t) = LT C L̇

fred = LT f

(42)
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Figure 3: Rotation Bogie 2. Rigid and Contact mass-to-mass model comparison

4 CONCLUSIONS

The computed response is consistent with the physical phenomenon intended to be repre-

sented, which validates the approach used for analyzing the system without and with track

irregularities.

The simplified model that incorporates contact stiffness using a sufficiently high value of k

(to simulate a rigid interface, e.g., k = 5Ks1), shows significant advantages compared to the

full model (contact mas-to-mass). The structural simplicity of the reduced model facilitates its

implementation and assembly, making it particularly suitable for exploratory simulations (the

contact-stiffness model can reduce simulation time by up to 90% compared to the mass-to-mass

contact model).

The dynamic results obtained from both models are similar. It is observed that the mass-

to-mass contact model exhibits a slightly higher frequency content in the vehicle degrees of

freedom (DOFs) compared to the flexible-contact model (model with k). The latter, being

structurally more flexible, allows slightly larger displacements, although without compromis-

ing simulation fidelity. The full model reflects a more accurate representation of the oscillations

occurring at the vehicle level (these show slightly higher values when the train speed exceeds

200 km
h

). Both models accurately simulate rail deflections, showing negligible numerical differ-

ences in this regard. Figure: 3.
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