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Resumen. Se presenta un modelo matemático para el estudio de la dinámica de una estructura 
espacial tipo domo, construido a partir de barras rectas conectadas en una configuración geodésica. La 
formulación se basa en un enfoque lagrangiano, en el cual se considera la masa concentrada en los 
nodos a la hora de definir la energía cinética, mientras que la energía de deformación elástica de las 
barras representa la fuente de energía potencial. Se analiza la respuesta del sistema ante excitaciones 
armónicas, modeladas como cargas aplicadas sobre los nodos. Se muestra evidencia de 
comportamiento no lineal cuando la estructura se aparta de una configuración simétrica. Si bien el 
estudio se encuentra en una etapa preliminar, los resultados numéricos sugieren la posibilidad de una 
dinámica rica y compleja, que se explora mediante herramientas clásicas del análisis no lineal, como 
planos de fase y puntos de Poincaré. Se discute el potencial de este tipo de modelos reducidos para el 
estudio de identificación de daño estructural localizado. 

Keywords: Geodesic dome, nonlinear dynamics, Lagrangian mechanics. 

Abstract. A mathematical model is presented for studying the dynamics of a spatial dome-type 
structure, composed of straight bars connected in a geodesic configuration. The formulation is based 
on a Lagrangian approach, in which the mass is assumed to be concentrated at the nodes when 
defining the kinetic energy, while the elastic strain energy of the bars represents the source of potential 
energy. The response of the system to harmonic excitations, modeled as loads applied to the nodes, is 
analyzed. Evidence of nonlinear behavior is observed when the structure departs from a symmetric 
configuration. Although the study is still at a preliminary stage, the numerical results suggest the 
possibility of a rich and complex dynamics, explored through classical tools of nonlinear analysis such 
as phase planes and Poincaré sections. The potential of this type of reduced models for the study of 
localized structural damage identification is also discussed. 
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1 INTRODUCCIÓN 

Los domos constituyen un caso interesante dentro de las estructuras reticuladas 
tridimensionales, debido a su capacidad de cubrir grandes luces con un empleo eficiente de 
material. Su geometría geodésica con barras rectas interconectadas les confiere alta rigidez y 
excelente relación peso/resistencia. No obstante, estas mismas características los hacen 
susceptibles a comportamientos no lineales, que pueden manifestarse de manera inesperada. 
Entre ellos, los más estudiados han sido las inestabilidades por pandeo (Budiansky y Roth, 
1962) y fenómenos de snap-through, donde una pequeña variación de carga puede inducir 
saltos abruptos hacia configuraciones invertidas (Plaut, 1991; Gioncu, 1995). En contraste, su 
respuesta dinámica ha recibido menor atención, pese a que el análisis de vibraciones no 
lineales puede ser fundamental para establecer márgenes de estabilidad o para aplicaciones en 
identificación de daño y monitoreo estructural (Gattulli y Paolone, 1997; Guan et al, 2018).  

La formulación lagrangiana resulta particularmente adecuada para el estudio de este tipo de 
estructuras, ya que permite construir de manera compacta las ecuaciones de movimiento a 
partir de funciones de energía (Goldstein, 1994). Comparado con el método de elementos 
finitos, cuyo fundamento se apoya en la resolución aproximada de las ecuaciones de 
elasticidad, el enfoque lagrangiano permite formular directamente las ecuaciones de 
movimiento en términos de coordenadas generalizadas. Esto ofrece una vía más directa y 
transparente para estructuras tipo armadura, ya que se obtiene de manera inmediata un sistema 
de ecuaciones diferenciales ordinarias, conservando generalidad respecto de la geometría y la 
conectividad de la estructura (Virgin, 2007). 

En el presente trabajo se emplea el formalismo lagrangiano para modelar la dinámica de 
una estructura tipo domo geodésico sometida a cargas armónicas externas. Se analizan 
aspectos vinculados a la respuesta no lineal y a la sensibilidad del sistema frente a la 
frecuencia de forzamiento, explorando así la riqueza dinámica que caracteriza a estas 
configuraciones estructurales (Guan et al, 2018; Guan y Virgin, 2018). Los conceptos teóricos 
del modelo matemático que se describe se plantean de manera general. No obstante, se 
pretende que la estructura de la Figura 1 sirva como referencia al lector a modo de ejemplo y 
para facilitar la comprensión de dichos conceptos. Esta estructura en particular ha sido 
analizada por Coan y Plaut (1983) y Guan et al (2018), entre otros autores. 

2 MODELO MATEMÁTICO 

2.1 Ecuaciones de Lagrange 

Se considera una estructura reticulada espacial tipo domo con n nodos o puntos de unión 
de las barras, los cuales se consideran articulados. De estos n nodos, nmov < n pueden 
desplazarse en las tres direcciones espaciales x, y y z. Así, se necesitan 3ÿnmov variables para 
describir el movimiento, las cuales resultan ser simplemente los desplazamientos en cada 
dirección para cada nodo. Estas son las coordenadas generalizadas y vienen dadas por 

  1 2 3 2 3 1 3 3( ) ( ), ( ),..., ( ), ( ), ( ),..., ( ) ,
mov

T
i i i nt q t q t q t q t q t q t q  (1) 

donde q3i-2(t), q3i-1(t) y q3i(t) son los desplazamientos del nodo i en las direcciones x, y y z, 
respectivamente. Las variables qj representan en definitiva los grados de libertad (gdl) del 
sistema. En el caso del ejemplo de la Figura 1, se cuenta con n = 13, nmov = 7 y 3ÿnmov = 21 
coordenadas generalizadas o gdl. 
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Figura 1. Ejemplo de estructura tipo domo geodésico. 

Dado el lagrangiano L = T - V, donde T y V respectivamente las energías cinética y 
potencial totales de la estructura, se definen las ecuaciones de la mecánica lagrangiana como 

 ext dis ,j j
j j

d d d
Q Q

dt dq dq
 

   
 

L L  (2) 

Como fuerzas externas aplicadas, ( )ext
jQ t , puede incluirse el peso propio y, en general, 

cualquier otra carga externa estática y dinámica. ( )dis
jQ t  corresponde a fuerzas disipativas por 

amortiguamiento viscoso. Desarrollando (2) se obtienen 3ÿnmov ecuaciones diferenciales 
ordinarias no lineales, cada una asociada a cada gdl del sistema. Estas se expresan como 

  ( ) ( ) ( ) ,ext
qt t V t    Mq Cq q Q  (3) 

donde M es la matriz de masa del sistema, C la matriz de amortiguamiento, Qext el vector de 
fuerzas externas y  ( )qV t q , el gradiente de V respecto a las coordenadas generalizadas. 

2.2 Energía potencial 

Se asume que la energía potencial que contribuye en el sistema es aquélla asociada a las 
elongaciones de las barras, esto es, la energía potencial elástica. Así 

 
01

( )1
,

2
m j j j

j
j

E A L t
V

L


   (4) 

siendo E el módulo de elasticidad del material, A el área de la sección transversal y m, el 
número total de barras. Se define 0

jL  como la longitud no deformada de la barra j y ( )jL t  

como su elongación. 0
jL  en general es diferente para cada barra, por lo que debe obtenerse a 

partir de la posición inicial de sus dos nodos. Para un nodo cualquiera i, su vector de posición 
inicial se denota como 0

ir . Así, si una barra j conecta el nodo aj con el nodo bj, con j = 1, 2,…, 
m, entonces el vector que une los extremos de dicha barra estará dado por 

 0 0 0 ,
j jj b a v r r  (5) 

y en consecuencia puede definirse la longitud inicial o no deformada de esa barra j como 
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 0 0 0 0 .
j jj j b aL   v r r  (6) 

Por su parte, la elongación de una barra j se expresa como 

 0( ) ( ) ,j j jL t L t L    (7) 

donde ( )jL t  a la longitud deformada de la barra. Esta puede depender de t, debido a la 

posibilidad de considerar cargas dinámicas y su expresión se obtiene de forma similar a la de 
0
jL . Así, para un nodo i, su vector posición luego de la aplicación de acciones externas es 

 
0

0

( ) es nodo móvil
( ) ,

es nodo fijo

i i
i

i

t i
t

i

 
 


r u
r

r
 (8) 

donde ui(t) es el vector desplazamiento del nodo i, dado por ui = [ui(t), vi(t), wi(t)]T = [q3i-2(t), 
q3i-1(t), q3i(t)]T. Entonces, si una barra j conecta el nodo aj con el nodo bj, entonces el vector 
que une los extremos de dicha barra en el estado deformado estará dado por 

 ( ) ( ) ( ),
j jj b at t t v r r  (9) 

y en consecuencia la longitud de esa barra j en la configuración deformada se define como 

 ( ) ( ) ( ) ( ) .
j jj j b aL t t t t  v r r  (10) 

Es importante notar que las elongaciones (7) son funciones no lineales de las coordenadas 
generalizadas, lo cual introduce no linealidad en la formulación. Tal característica puede 
deducirse de (10), dado que al calcular el módulo del vector vj(t), se eleva al cuadrado y se 
toma raíz cuadrada de funciones que dependen de los desplazamientos. 

2.3 Energía cinética 

Se asume que la energía cinética total del sistema es la suma de las energías cinéticas de 
los nodos móviles, donde se consideran masas concentradas. Para una barra j, su masa será 

 0 ,j j j jm A L  (11) 

siendo r la densidad del material. La masa total asignada a cada nodo se obtiene repartiendo 
la masa de las barras adyacentes a dicho nodo. Así, la masa considerada en el nodo i será 

 1
2

barras 
unidas a 

,i j
j
i

M m   (12) 

pudiendo la energía cinética total de la estructura definirse como 

 
2 2

1 1
2 21 1

,
n n

i i i ii i
T M M

 
  r u   (13) 

donde las dos posibilidades para definir T se deben a que i ir u  , en virtud de (8). 

2.4 Fuerzas externas 

En general, cada componente de q(t) puede estar afectado por fuerzas externas, la cuales se 
agrupan en el vector Qext(t), definido como 

  1 2 3 2 3 1 3 3( ) ( ), ( ),..., ( ), ( ), ( ),..., ( ) .
mov

Text
i i i nt f t f t f t f t f t f t Q  (14) 
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Este vector puede incluir en general cualquier fuerza constante o dependiente del tiempo. 

2.5 Fuerzas disipativas y coeficiente de fricción 

Se considera el efecto del amortiguamiento propio de la estructura de manera simplificada. 
Se asume que la fricción es igual para todos los nodos y en todas las direcciones cartesianas. 
Se consideran fuerzas disipativas de tipo viscoso y lineal con la velocidad. Estas fuerzas se 
agrupan en un vector Qdis(t), cuyos elementos están dados por  

 0( ) ( ),dis
jQ t c t  q  (15) 

donde c0 es el coeficiente de amortiguamiento. La estimación de c0 se realiza comparando las 
magnitudes de las fuerzas elásticas y las fuerzas disipativas, asumiendo que las segundas son 
un porcentaje menor de las primeras. Esto se hace de forma práctica, alcanzando el estado 
estacionario en simulaciones preliminares, empleando un c0 estimado. Luego, en la fase 
estacionaria se estima el c0 realista evaluando 

 max
0

max
,

eF
c

v


  (16) 

donde 0.05 < a < 1 permite definir que las fuerzas disipativas sean 5-10% menor de las 
fuerzas elásticas (por sugerencia de normativas como Eurocódigo 8 y ASCE). vmax es el 
máximo valor absoluto de las velocidades de un nodo testigo. Por último, max

eF  es la máxima 
fuerza elástica observada en las barras, en valor absoluto y se obtiene a partir de evaluar 

 max
0

max ( ) .j je
jj

E A
F L t

L

 
  

 
 (17) 

3 RESULTADOS NUMÉRICOS Y DISCUSIÓN 

3.1 Introducción 

Se realizan simulaciones con el fin de analizar el comportamiento estático y dinámico de 
una estructura tipo domo geodésico. Primeramente, se propone una validación del modelo 
frente a un esquema equivalente basado en elementos finitos. Si bien la comparación se 
realiza mediante un cálculo estático, se considera suficiente tratándose de un estudio 
preliminar. Luego, se explora la respuesta mediante escenarios de forzamiento dinámico, 
apuntando a identificar eventuales inestabilidades y explorar potenciales aplicaciones. 

En todas las simulaciones se considera la estructura de la Figura 1, con los siguientes 
parámetros: L = 25.0799 m, ri = 0.9968, re = 1.7265, h = 0.3254, k = 0.0797,  r = 7850 Kg/m3, 
A = 3.14159ÿ10-4 m2, E = 2.11ÿ1011 N/m2 y g = 9.81 m/s2. El coeficiente de fricción se 
determina según la sección 2.5, obteniéndose c0 = 874 Kg/s. Se trata entonces del análisis de 
una estructura de porte importante, con una luz máxima entre apoyos de 86.6 m, una altura de 
10.16 m y un peso total de 58601.6 N. Con las dimensiones consideradas se asegura mediante 
un chequeo previo que los esfuerzos axiales en juego en las simulaciones se encuentran muy 
por debajo de las cargas críticas de pandeo en todas las barras. En todos los casos, se emplea 
en la resolución numérica el método convencional de Runge-Kutta de orden 4. 

3.2 Validación del modelo 

El modelo se testea frente a uno equivalente de elementos finitos formulado en un 
programa comercial. La comparación se realiza mediante un cálculo estático lineal, 
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empleando elementos tipo truss (T3D2), considerando cargas de peso propio de la estructura y 
cuatro cargas puntuales laterales.  

 

 
Figura 2. Magnitudes de desplazamientos obtenidas mediante el cálculo de elementos finitos. Factor de 

magnificación: 100x. 

 
Figura 3. Configuración deformada (nodos rojos) vs. configuración original (nodos azules) obtenidas mediante el 

presente modelo. Factor de magnificación: 100x. 

 
Tabla 1: Comparación de desplazamientos obtenidos a partir del presente modelo y del modelo de elementos 

finitos. 

En el vector de cargas externas (14), el peso propio se considera como cargas verticales en los 
nodos móviles, esto es, estableciendo f3 = f6 = f9 = f12 = f15 = f18 = f21 = -2092.91 N. Las 
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cargas laterales se aplican en los nodos 1, 4, 5 y 6, en dirección x, por lo que se define f1 = f10 
= f13 = f16 = 5000 N. Las fuerzas correspondientes los gdl restantes se setean a cero. 

La Figura 2 ilustra los resultados del modelo de elementos finitos en lo que respecta a 
magnitud de desplazamientos. Por su parte, en la Figura 3 se muestra una comparación entre 
estructura original y deformada, empleando los resultados del presente modelo. La Tabla 1 
presenta resultados comparativos, donde se observa que la máxima diferencia entre ambos 
modelos es de 1.12 %, y corresponde al desplazamiento vertical del nodo 2 (gdl 6). 

3.3 Simulaciones con carga dinámica 

Se realizan simulaciones para explorar el comportamiento dinámico de la estructura. Con 
el objetivo de ganar en realismo, para todos los estudios, se resuelve primeramente un cálculo 
estático que considera las cargas gravitatorias. Luego, los desplazamientos obtenidos en ese 
cálculo se emplean como estado inicial del cálculo dinámico correspondiente, junto a la 
condición de velocidades iniciales nulas.  
 

 
Figura 4. Planos de fase y puntos de Poincaré correspondientes al movimiento del nodo 6 en direcciones (a) x, 

(b) y, (c) z. Cálculo considerando peso propio y cargas dinámicas de viento en dirección x. Tiempo de 
simulación: 130 s. Tiempo descartado: 50 s. 

 
Figura 5. Planos de fase y puntos de Poincaré correspondientes al movimiento del nodo 6 en direcciones (a) 

x, (b) y, (c) z. Cálculo considerando peso propio, cargas dinámicas de viento en dirección x y una carga dinámica 
puntual vertical en el nodo 5. Tiempo de simulación: 130 s. Tiempo descartado: 50 s. 

Se consideran cargas aplicadas en los nodos 1, 4, 5 y 6 en dirección x, pudiendo ser 
representativas de una solicitación dinámica de viento: f1 = f10 = f13 = f16 = Pv + A1 cos w1t, 
siendo Pv = 937.44 N, A1 = 100 N y w1 = 2p s-1. El valor de Pv se obtiene a partir de 
considerar un 25% de la acción de viento sugerida por el código CIRSOC 102 para la 
provincia de Neuquén; mientras que los valores de A1 y w  1 resultan coherentes con el 
espectro de Van der Hoven (1957) para variabilidad del viento. Los resultados de tal 
solicitación se muestran para un nodo testigo (nodo 6) en la Figura 4. Las gráficas presentan 
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planos de fase del movimiento junto a los puntos de Poincaré correspondientes, mapeados en 
2p/w1. Las órbitas casi perfectamente circulares y el único punto de Poincaré indican un 
comportamiento lineal. Los valores de los desplazamientos en dirección z son mayores en 
magnitud que sus análogos en x e y debido a la influencia de las cargas de peso propio. 

Para el segundo escenario de forzamiento, se agrega al caso anterior una carga vertical en 
el nodo 5, representada por f15 = A0 cos w0 t, con A0 = 50 N y w0 = 2pÿ25 s-1. Este forzamiento 
pretende representar la presencia de un motor con desbalanceo. La Figura 5 muestra los 
resultados en el plano de fase y para el mismo nodo testigo (nodo 6). En este caso, dada la 
combinación de dos frecuencias, los puntos de Poincaré se mapean con 2p/w1, el cual 
constituye el mínimo común múltiplo de ambos períodos de forzamiento. Se observa que las 
magnitudes de desplazamientos se mantienen en valores similares a los de la Figura 4, pero 
las velocidades aumentan en hasta un orden de magnitud y las órbitas se complejizan debido 
al accionar conjunto de ambas frecuencias. El único punto de Poincaré presente indica que el 
movimiento periódico mantiene relación 1:1 con respecto al período de mapeo. 

 

 
Figura 6. (a) Plano de fase y puntos de Poincaré correspondientes al movimiento del nodo 1 en dirección x. (b) 

Respuesta en frecuencia del nodo 1 en dirección x. Tiempo de simulación: 115 s. Tiempo descartado: 96 s. 

Las expresiones (11) y (14) permiten definir las propiedades del material individualmente 
para cada barra. Así, pueden introducirse de una manera muy sencilla alteraciones locales de 
estas propiedades. Se explora un escenario donde la barra que une los nodos 2 y 8 cuenta con 
su módulo de elasticidad reducido en un 20%. Esto pretende modelar la presencia de daño 
estructural localizado. Como forzamiento, se aplica una carga vertical en el nodo 1: f3 = A1 
cos w1t con A1 = 500 N y w1 = 2p 2.6 s-1. La Figura 6 describe el movimiento en dirección x 
del nodo 1. Cabe notar que tal movimiento resulta inexistente para la estructura intacta, 
debido a las condiciones de simetría. Así, la ruptura de la simetría estructural debida a la 
flexibilización de una de las barras modifica la respuesta dinámica, generando 
desplazamientos y velocidades que no existen en la estructura original. La Figura 6a muestra 
el plano de fase del movimiento. Se observa una órbita con doble lazo, que se aparta de la 
clásica lineal. El único punto de Poincaré confirma que la respuesta aún es periódica 1:1. La 
Figura 6b revela un rasgo clave: en el espectro de Fourier, además del pico principal en 2.6 
Hz, aparece un armónico en 5.2 Hz con potencia comparable. La presencia de este armónico 
no se explica en un contexto de linealidad, y constituye evidencia de comportamiento no 
lineal inducido por el daño. En este sentido, el escenario propuesto muestra cómo defectos 
locales pueden introducir nuevas componentes dinámicas en la respuesta, lo cual resulta de 
interés para enfoques de identificación de daño en estructuras reticuladas. 

Para complementar los resultados de la Figura 6, se construyen los diagramas asociados de 
tipo amplitud-frecuencia que se muestran en la Figura 7. Para la Figura 7a, se emplean 
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idénticos seteos a los de la Figura 6, pero variando la frecuencia en el intervalo w1 œ [2p 0.5 
s-1, 2p 10 s-1]. Para la Figura 7b, se considera una reducción de E del 50% en vez de 20%. Se 
observa que las amplitudes varían considerablemente con w1, alcanzando picos máximos 
cerca de 5.8 Hz, valor que corresponde a una resonancia del sistema. Como era de esperarse, 
las amplitudes son mayores cuanto más se reduce E y las resonancias se manifiestan en 
general a frecuencias levemente menores. 

 

 
 

 
Figura 7. Amplitud de desplazamiento vs. frecuencia de excitación correspondientes al movimiento del nodo 1 

en dirección x. (a) Reducción de E en un 20%. (b) Reducción de E en un 50%. 

       
 

 
Figura 8. Amplitud de desplazamiento vs. frecuencia de excitación correspondientes al movimiento del nodo 2 

en dirección y. (a) Reducción de E en un 20%. (b) Reducción de E en un 50%. 

Por último, se presenta la Figura 8, similar a la anterior pero correspondiente al 
desplazamiento en dirección y del nodo 2. Se observan patrones de amplitudes notablemente 
diferentes a los del nodo 1, lo cual es debido a la complejidad de los movimientos asociados a 
las diferentes resonancias. En este caso, el movimiento se ve muy amplificado en la primera 
resonancia del sistema, que corresponde aproximadamente a 2.7 Hz. 
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4 CONCLUSIONES 

Se desarrolló un modelo de un domo geodésico basado en el formalismo lagrangiano, 
considerando masas nodales concentradas, energía elástica en las barras y fuerzas disipativas 
viscosas. Los análisis bajo diferentes escenarios de excitación permitieron identificar tanto 
respuestas lineales, dominadas por la superposición de modos y forzamientos, como 
comportamientos no lineales asociados a la ruptura de simetrías. En particular, la introducción 
de daño localizado produjo la aparición de armónicos adicionales y modificaciones en las 
órbitas en el plano de fases. Los diagramas de amplitud-frecuencia confirmaron la presencia 
de resonancias y su sensibilidad a variaciones en la rigidez local, lo que refuerza el potencial 
del enfoque para estudiar fenómenos de identificación de daño. 

La formulación presentada es viable para sistemas relativamente pequeños, como puede ser 
el domo de pocos nodos de la Figura 1. No obstante, es importante remarcar que si: 1) el 
sistema tiene muchos nodos, 2) la geometría es extremadamente complicada, 3) las barras 
tienen propiedades muy distintas, o 4) se desea incluir flexión, torsión y corte de forma 
precisa, entonces podría resultar más práctico emplear un modelo de elementos finitos. De 
todas formas, al tratarse en esencia un modelo reducido, tiene la ventaja de una resolución 
computacional muy rápida. Esto es especialmente apto para cálculos extensivos, por ejemplo, 
si desea analizarse cómo varía el comportamiento de la estructura al variar uno o más 
parámetros y evidenciar la existencia de fenómenos no lineales de diferente naturaleza. 
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