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Resumen. Se presenta un modelo matematico para el estudio de la dinamica de una estructura
espacial tipo domo, construido a partir de barras rectas conectadas en una configuracion geodésica. La
formulacién se basa en un enfoque lagrangiano, en el cual se considera la masa concentrada en los
nodos a la hora de definir la energia cinética, mientras que la energia de deformacion elastica de las
barras representa la fuente de energia potencial. Se analiza la respuesta del sistema ante excitaciones
armonicas, modeladas como cargas aplicadas sobre los nodos. Se muestra evidencia de
comportamiento no lineal cuando la estructura se aparta de una configuraciéon simétrica. Si bien el
estudio se encuentra en una etapa preliminar, los resultados numéricos sugieren la posibilidad de una
dinamica rica y compleja, que se explora mediante herramientas clasicas del analisis no lineal, como
planos de fase y puntos de Poincaré. Se discute el potencial de este tipo de modelos reducidos para el
estudio de identificacion de dafio estructural localizado.

Keywords: Geodesic dome, nonlinear dynamics, Lagrangian mechanics.

Abstract. A mathematical model is presented for studying the dynamics of a spatial dome-type
structure, composed of straight bars connected in a geodesic configuration. The formulation is based
on a Lagrangian approach, in which the mass is assumed to be concentrated at the nodes when
defining the kinetic energy, while the elastic strain energy of the bars represents the source of potential
energy. The response of the system to harmonic excitations, modeled as loads applied to the nodes, is
analyzed. Evidence of nonlinear behavior is observed when the structure departs from a symmetric
configuration. Although the study is still at a preliminary stage, the numerical results suggest the
possibility of a rich and complex dynamics, explored through classical tools of nonlinear analysis such
as phase planes and Poincaré sections. The potential of this type of reduced models for the study of
localized structural damage identification is also discussed.
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1 INTRODUCCION

Los domos constituyen un caso interesante dentro de las estructuras reticuladas
tridimensionales, debido a su capacidad de cubrir grandes luces con un empleo eficiente de
material. Su geometria geodésica con barras rectas interconectadas les confiere alta rigidez y
excelente relacion peso/resistencia. No obstante, estas mismas caracteristicas los hacen
susceptibles a comportamientos no lineales, que pueden manifestarse de manera inesperada.
Entre ellos, los mas estudiados han sido las inestabilidades por pandeo (Budiansky y Roth,
1962) y fendmenos de snap-through, donde una pequefia variaciéon de carga puede inducir
saltos abruptos hacia configuraciones invertidas (Plaut, 1991; Gioncu, 1995). En contraste, su
respuesta dindmica ha recibido menor atencion, pese a que el andlisis de vibraciones no
lineales puede ser fundamental para establecer margenes de estabilidad o para aplicaciones en
identificacion de dafio y monitoreo estructural (Gattulli y Paolone, 1997; Guan et al, 2018).

La formulacién lagrangiana resulta particularmente adecuada para el estudio de este tipo de
estructuras, ya que permite construir de manera compacta las ecuaciones de movimiento a
partir de funciones de energia (Goldstein, 1994). Comparado con el método de elementos
finitos, cuyo fundamento se apoya en la resolucion aproximada de las ecuaciones de
elasticidad, el enfoque lagrangiano permite formular directamente las ecuaciones de
movimiento en términos de coordenadas generalizadas. Esto ofrece una via mas directa y
transparente para estructuras tipo armadura, ya que se obtiene de manera inmediata un sistema
de ecuaciones diferenciales ordinarias, conservando generalidad respecto de la geometria y la
conectividad de la estructura (Virgin, 2007).

En el presente trabajo se emplea el formalismo lagrangiano para modelar la dindmica de
una estructura tipo domo geodésico sometida a cargas armoénicas externas. Se analizan
aspectos vinculados a la respuesta no lineal y a la sensibilidad del sistema frente a la
frecuencia de forzamiento, explorando asi la riqueza dinamica que caracteriza a estas
configuraciones estructurales (Guan et a/, 2018; Guan y Virgin, 2018). Los conceptos tedricos
del modelo matematico que se describe se plantean de manera general. No obstante, se
pretende que la estructura de la Figura 1 sirva como referencia al lector a modo de ejemplo y
para facilitar la comprension de dichos conceptos. Esta estructura en particular ha sido
analizada por Coan y Plaut (1983) y Guan ef al (2018), entre otros autores.

2 MODELO MATEMATICO

2.1 Ecuaciones de Lagrange

Se considera una estructura reticulada espacial tipo domo con n nodos o puntos de union
de las barras, los cuales se consideran articulados. De estos n nodos, nmev < n pueden
desplazarse en las tres direcciones espaciales x, y y z. Asi, se necesitan 3yumov variables para
describir el movimiento, las cuales resultan ser simplemente los desplazamientos en cada
direccion para cada nodo. Estas son las coordenadas generalizadas y vienen dadas por
" (1)
donde g3i02(2), g3i01(¢) y g3i(f) son los desplazamientos del nodo i en las direcciones x, y y z,
respectivamente. Las variables ¢g; representan en definitiva los grados de libertad (gd/) del
sistema. En el caso del ejemplo de la Figura 1, se cuenta con n = 13, nmov = 7'y 3fimor = 21
coordenadas generalizadas o gd!.

q(t) = [ 91 (t)’ 92 (t)a {32 (t)’ q3i-1 (t)’ q3i (t)’ ey q3n,,wv (t) ]
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Figura 1. Ejemplo de estructura tipo domo geodésico.

Dado el lagrangiano £ = T 0 V, donde T y V respectivamente las energias cinética y
potencial totales de la estructura, se definen las ecuaciones de la mecénica lagrangiana como

dfdL)_dL _ hea _ s 2)
dt dqj dqj / S’

Como fuerzas externas aplicadas, Q¢”(¢), puede incluirse el peso propio y, en general,
cualquier otra carga externa estatica y dindmica. Qjﬁs (t) corresponde a fuerzas disipativas por

amortiguamiento viscoso. Desarrollando (2) se obtienen 3¥mmov ecuaciones diferenciales
ordinarias no lineales, cada una asociada a cada gd! del sistema. Estas se expresan como

M4(0) +Cq(n) +V,V (q(1)) =Q*, 3)

donde M es la matriz de masa del sistema, C la matriz de amortiguamiento, Q% el vector de
fuerzas externas y V V' (q(t)), el gradiente de V' respecto a las coordenadas generalizadas.

2.2 Energia potencial

Se asume que la energia potencial que contribuye en el sistema es aquélla asociada a las
elongaciones de las barras, esto es, la energia potencial elastica. Asi

lm EAAL (1)
g8 @

siendo £ el médulo de elasticidad del material, 4 el area de la seccion transversal y m, el
numero total de barras. Se define Lg. como la longitud no deformada de la barra j y AL, (1)

como su elongacion. L) en general es diferente para cada barra, por lo que debe obtenerse a

partir de la posicion inicial de sus dos nodos. Para un nodo cualquiera i, su vector de posicion
inicial se denota como r? . Asi, si una barra j conecta el nodo @; con el nodo b;, conj=1,2,...,
m, entonces el vector que une los extremos de dicha barra estara dado por

vl =1, —rOi, (5)

y en consecuencia puede definirse la longitud inicial o no deformada de esa barra j como
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0 _[lvOll = [l+0 _,0
Ly =|v§| = Hrbj —r | (6)
Por su parte, la elongacion de una barra j se expresa como
ALj(t):Lj(t)_L(}a (7

donde L;(t) a la longitud deformada de la barra. Esta puede depender de 7, debido a la

posibilidad de considerar cargas dindmicas y su expresion se obtiene de forma similar a la de
L5 . Asi, para un nodo i, su vector posicion luego de la aplicacion de acciones externas es

0 (8)

r’ +u;(t) iesnodo movil
r; (1) = _ .
r; ies nodo fijo

donde ui(t) es el vector desplazamiento del nodo i, dado por w; = [ui(£), vi(¢), wi(t)]” = [g3i02(?),
g3io1(?), q3i(£)]7. Entonces, si una barra j conecta el nodo a; con el nodo bj, entonces el vector
que une los extremos de dicha barra en el estado deformado estara dado por

V(1) =1, ()~ 1, (1), )
y en consecuencia la longitud de esa barra j en la configuracién deformada se define como
L) =||v;®)] = |rs, ) —x,, )| (10)

Es importante notar que las elongaciones (7) son funciones no lineales de las coordenadas
generalizadas, lo cual introduce no linealidad en la formulacion. Tal caracteristica puede
deducirse de (10), dado que al calcular el modulo del vector vj(¢), se eleva al cuadrado y se
toma raiz cuadrada de funciones que dependen de los desplazamientos.

2.3 Energia cinética

Se asume que la energia cinética total del sistema es la suma de las energias cinéticas de
los nodos mdviles, donde se consideran masas concentradas. Para una barra j, su masa sera
m; =p;A;L (11)

J J7I?

siendo u la densidad del material. La masa total asignada a cada nodo se obtiene repartiendo
la masa de las barras adyacentes a dicho nodo. Asi, la masa considerada en el nodo 7 serd

M=% > my, (12)

barras j
unidas a i

pudiendo la energia cinética total de la estructura definirse como
n . 2 n . 2
T=4> " M5 =35> M|, (13)
donde las dos posibilidades para definir 7 se deben a que r, = u,, en virtud de (8).

2.4 Fuerzas externas

En general, cada componente de q(¢) puede estar afectado por fuerzas externas, la cuales se
agrupan en el vector Q¢(¢), definido como

Qext(t) = [fl(t)a f2(t):"'9 f3i72(t)a f3i71(t)a f3i(t):"'> f3nmm, (t) ]T . (14)
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Este vector puede incluir en general cualquier fuerza constante o dependiente del tiempo.

2.5 Fuerzas disipativas y coeficiente de friccion

Se considera el efecto del amortiguamiento propio de la estructura de manera simplificada.
Se asume que la friccion es igual para todos los nodos y en todas las direcciones cartesianas.
Se consideran fuerzas disipativas de tipo viscoso y lineal con la velocidad. Estas fuerzas se
agrupan en un vector Q?5(¢), cuyos elementos estan dados por

7 (1) = —coq (1), (15)

donde co es el coeficiente de amortiguamiento. La estimacion de co se realiza comparando las
magnitudes de las fuerzas elésticas y las fuerzas disipativas, asumiendo que las segundas son
un porcentaje menor de las primeras. Esto se hace de forma practica, alcanzando el estado
estacionario en simulaciones preliminares, empleando un co estimado. Luego, en la fase
estacionaria se estima el co realista evaluando

¢y = ZHmax (16)

vlTl ax

donde 0.05 < d < 1 permite definir que las fuerzas disipativas sean 5-10% menor de las
fuerzas elésticas (por sugerencia de normativas como Eurocddigo 8 y ASCE). vmax es el

maximo valor absoluto de las velocidades de un nodo testigo. Por ultimo, F¢

.« €s la maxima

fuerza eléstica observada en las barras, en valor absoluto y se obtiene a partir de evaluar

E.A;
J 7
= AL; (1)

e —
Fi. = max{
0

}. (17)

3 RESULTADOS NUMERICOS Y DISCUSION

3.1 Introduccion

Se realizan simulaciones con el fin de analizar el comportamiento estatico y dindmico de
una estructura tipo domo geodésico. Primeramente, se propone una validacion del modelo
frente a un esquema equivalente basado en elementos finitos. Si bien la comparacion se
realiza mediante un calculo estatico, se considera suficiente tratandose de un estudio
preliminar. Luego, se explora la respuesta mediante escenarios de forzamiento dindmico,
apuntando a identificar eventuales inestabilidades y explorar potenciales aplicaciones.

En todas las simulaciones se considera la estructura de la Figura 1, con los siguientes
parametros: L = 25.0799 m, r; = 0.9968, r. = 1.7265, h = 0.3254, k= 0.0797, u= 7850 Kg/m?,
A = 3.141595t0°* m?, E = 2.113#0!! N/m? y g = 9.81 m/s?. El coeficiente de friccion se
determina segun la seccion 2.5, obteniéndose co = 874 Kg/s. Se trata entonces del analisis de
una estructura de porte importante, con una luz maxima entre apoyos de 86.6 m, una altura de
10.16 m y un peso total de 58601.6 N. Con las dimensiones consideradas se asegura mediante
un chequeo previo que los esfuerzos axiales en juego en las simulaciones se encuentran muy
por debajo de las cargas criticas de pandeo en todas las barras. En todos los casos, se emplea
en la resolucion numérica el método convencional de Runge-Kutta de orden 4.

3.2 Validacion del modelo

El modelo se testea frente a uno equivalente de elementos finitos formulado en un
programa comercial. La comparacion se realiza mediante un calculo estatico lineal,
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empleando elementos tipo truss (T3D2), considerando cargas de peso propio de la estructura y
cuatro cargas puntuales laterales.

U, Magnitude

+2.05%-02 r——
+1.887e-02
+1.715e-02
+1.544e-02
+1.372e-02

+1.201e-02

—

z
Y
Step: Estatico0
X

Increment 1: Step Time = 2.2200E-16
Primary var: U, Magnitude
Deformed Var: U Deformation Scale Factor: +1.000e+02

Figura 2. Magnitudes de desplazamientos obtenidas mediante el calculo de elementos finitos. Factor de
magnificacion: 100x.

40

Figura 3. Configuracion deformada (nodos rojos) vs. configuracion original (nodos azules) obtenidas mediante el
presente modelo. Factor de magnificacion: 100x.

Desplazamiento direccion x (mm)  Desplazamiento direccidén y (mm) Desplazamiento direccion z (mm)

gdl FEM  Presente Error% gdl FEM  Presente Error% gdl FEM  Presente Error %
1 3.8023 3.7934 -0.2328 2 0.0000  0.0000 - 3 -20.2312 -20.3692 0.6821

2.1985 22030 02061 5 0.0000  0.0000 - 6 -4.6970 -4.6446 -1.1167

7 1.6982  1.6977 -0.0294 8 0.5805 0.5863 09917 9 -5.6116 -5.5660 -0.8130

10 2.8168 28050 -0.4164 11 -1.1244 -1.1146 -0.8654 12 -12.7317 -12.6946 -0.2914
13 52694 52538 -0.2960 14  0.0000 0.0000 - 15 -18.9374 -18.9397 0.0121
16 2.8168 28050 -0.4164 17 1.1244 1.1146 -0.8654 18 -12.7317 -12.6946 -0.2914
19  1.6982 1.6977 -0.0294 20 -0.5805 -0.5863 0.9917 21 -5.6116 -5.5660 -0.8130

Tabla 1: Comparacion de desplazamientos obtenidos a partir del presente modelo y del modelo de elementos
finitos.

En el vector de cargas externas (14), el peso propio se considera como cargas verticales en los
nodos moviles, esto es, estableciendo f3 = fo = fo = fi2 = fis = fis = f21 = 02092.91 N. Las
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cargas laterales se aplican en los nodos 1, 4, 5y 6, en direccion x, por lo que se define fi = fio
= fi3 = fie = 5000 N. Las fuerzas correspondientes los gd! restantes se setean a cero.

La Figura 2 ilustra los resultados del modelo de elementos finitos en lo que respecta a
magnitud de desplazamientos. Por su parte, en la Figura 3 se muestra una comparacion entre
estructura original y deformada, empleando los resultados del presente modelo. La Tabla 1
presenta resultados comparativos, donde se observa que la maxima diferencia entre ambos
modelos es de 1.12 %, y corresponde al desplazamiento vertical del nodo 2 (gd! 6).

3.3 Simulaciones con carga dinamica

Se realizan simulaciones para explorar el comportamiento dindmico de la estructura. Con
el objetivo de ganar en realismo, para todos los estudios, se resuelve primeramente un calculo
estatico que considera las cargas gravitatorias. Luego, los desplazamientos obtenidos en ese
calculo se emplean como estado inicial del célculo dindmico correspondiente, junto a la
condicion de velocidades iniciales nulas.

@ 0.03-(b) _ ©)
008 0.02 0.10
2 2 001 z 005
E 0.00 E 0.00 E 0.00
=1 = -0.01 = 005
00 ~0.02 ~0.10
-0.03
022 023 024 0.22 0.225 0.23 -8.93 -891 -8.89
Ug (mm) Ve (Mm) We (mm)

Figura 4. Planos de fase y puntos de Poincaré correspondientes al movimiento del nodo 6 en direcciones (a) x,
(b) y, (c) z. Célculo considerando peso propio y cargas dinamicas de viento en direccion x. Tiempo de
simulacion: 130 s. Tiempo descartado: 50 s.

03} (c)
0.2
0.1f
0.0

Ve (mm/s)

it (Mm/s)
We (mm/s)

-0.1
-0.2

=031 ‘ ‘
-8.93 -8.91 —-8.89

We (mm)

Figura 5. Planos de fase y puntos de Poincaré correspondientes al movimiento del nodo 6 en direcciones (a)
x, (b) y, (c) z. Célculo considerando peso propio, cargas dinamicas de viento en direccion x y una carga dinamica
puntual vertical en el nodo 5. Tiempo de simulacion: 130 s. Tiempo descartado: 50 s.

Se consideran cargas aplicadas en los nodos 1, 4, 5 y 6 en direccion x, pudiendo ser
representativas de una solicitacion dinamica de viento: fi = fio = fi3 = fi¢ = Pv + A1 cos z1t,
siendo Py, = 937.44 N, A1 = 100 N y z1 = 2s s°!. El valor de P se obtiene a partir de
considerar un 25% de la accion de viento sugerida por el cddigo CIRSOC 102 para la
provincia de Neuquén; mientras que los valores de 41 y z 1 resultan coherentes con el
espectro de Van der Hoven (1957) para variabilidad del viento. Los resultados de tal
solicitacion se muestran para un nodo testigo (nodo 6) en la Figura 4. Las graficas presentan
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planos de fase del movimiento junto a los puntos de Poincaré correspondientes, mapeados en
2s/z1. Las orbitas casi perfectamente circulares y el unico punto de Poincaré indican un
comportamiento lineal. Los valores de los desplazamientos en direccion z son mayores en
magnitud que sus analogos en x e y debido a la influencia de las cargas de peso propio.

Para el segundo escenario de forzamiento, se agrega al caso anterior una carga vertical en
el nodo 5, representada por fis = Ao cos zot, con Ao =50 Ny zo = 2525 s°!. Este forzamiento
pretende representar la presencia de un motor con desbalanceo. La Figura 5 muestra los
resultados en el plano de fase y para el mismo nodo testigo (nodo 6). En este caso, dada la
combinacion de dos frecuencias, los puntos de Poincaré se mapean con 2s/z1, el cual
constituye el minimo comun multiplo de ambos periodos de forzamiento. Se observa que las
magnitudes de desplazamientos se mantienen en valores similares a los de la Figura 4, pero
las velocidades aumentan en hasta un orden de magnitud y las érbitas se complejizan debido
al accionar conjunto de ambas frecuencias. El unico punto de Poincaré presente indica que el
movimiento periddico mantiene relacion 1:1 con respecto al periodo de mapeo.

0.006*(‘a) ' - s (b) ]
0.004 3r ]
0.002} ]
0.000f
.5 —0.002}

-0.004f

-0.006

(mm/s)

P (10* mm?)

—
T
1

1 L I I 4

0.026  0.0262 0.0264 1 2.6 52 7.5 10

uy (mm) 27w (Hz)

Figura 6. (a) Plano de fase y puntos de Poincaré correspondientes al movimiento del nodo 1 en direccion x. (b)
Respuesta en frecuencia del nodo 1 en direccion x. Tiempo de simulacion: 115 s. Tiempo descartado: 96 s.

Las expresiones (11) y (14) permiten definir las propiedades del material individualmente
para cada barra. Asi, pueden introducirse de una manera muy sencilla alteraciones locales de
estas propiedades. Se explora un escenario donde la barra que une los nodos 2 y 8 cuenta con
su modulo de elasticidad reducido en un 20%. Esto pretende modelar la presencia de dafio
estructural localizado. Como forzamiento, se aplica una carga vertical en el nodo 1: f3 = A1
cos zitcon A1 =500 Ny z1 =2s2.6 s°!'. La Figura 6 describe el movimiento en direccion x
del nodo 1. Cabe notar que tal movimiento resulta inexistente para la estructura intacta,
debido a las condiciones de simetria. Asi, la ruptura de la simetria estructural debida a la
flexibilizacion de una de las barras modifica la respuesta dindmica, generando
desplazamientos y velocidades que no existen en la estructura original. La Figura 6a muestra
el plano de fase del movimiento. Se observa una 6rbita con doble lazo, que se aparta de la
clasica lineal. El tnico punto de Poincaré confirma que la respuesta atn es periodica 1:1. La
Figura 6b revela un rasgo clave: en el espectro de Fourier, ademas del pico principal en 2.6
Hz, aparece un armoénico en 5.2 Hz con potencia comparable. La presencia de este armonico
no se explica en un contexto de linealidad, y constituye evidencia de comportamiento no
lineal inducido por el dafio. En este sentido, el escenario propuesto muestra como defectos
locales pueden introducir nuevas componentes dindmicas en la respuesta, lo cual resulta de
interés para enfoques de identificacion de dafio en estructuras reticuladas.

Para complementar los resultados de la Figura 6, se construyen los diagramas asociados de
tipo amplitud-frecuencia que se muestran en la Figura 7. Para la Figura 7a, se emplean
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idénticos seteos a los de la Figura 6, pero variando la frecuencia en el intervalo z1 u [2s 0.5
s°! 25 10 s°!]. Para la Figura 7b, se considera una reduccién de E del 50% en vez de 20%. Se
observa que las amplitudes varian considerablemente con zi, alcanzando picos maximos
cerca de 5.8 Hz, valor que corresponde a una resonancia del sistema. Como era de esperarse,
las amplitudes son mayores cuanto mas se reduce £ y las resonancias se manifiestan en
general a frecuencias levemente menores.

- 0038 (a) | ‘ -
£ 0.034}
5
% 0.03F
<
£
0 026_ 1 ! 1 1 L _"
1 2 47 5.8 8 9 10
. 0.125‘(b\ ) ’ ’ ' " /\ i " " " T i T _
= \~7/ E
£ 0.115F E
5
7 0105 L
g . a— ]
3.095 ) ) ] . i
1 2 . 35 427479 57 8 9 10
2nw (Hz)

Figura 7. Amplitud de desplazamiento vs. frecuencia de excitacion correspondientes al movimiento del nodo 1
en direccion x. (a) Reduccion de E en un 20%. (b) Reduccion de E en un 50%.

T T T T T T T T T

0.215¢ ]
021} ]

max(v;) (mm)

02051 ]

08—
0.78}
0.76}
0.74f

max(v;) (mm)

0.72 L L 1 L 1 L 1 L L L L ]
1 2 2.7 3.5 427479 5.75 7 8 9 10

2nw (Hz)

Figura 8. Amplitud de desplazamiento vs. frecuencia de excitacion correspondientes al movimiento del nodo 2
en direccién y. (a) Reduccion de E en un 20%. (b) Reduccion de E en un 50%.

Por ultimo, se presenta la Figura 8, similar a la anterior pero correspondiente al
desplazamiento en direccion y del nodo 2. Se observan patrones de amplitudes notablemente
diferentes a los del nodo 1, lo cual es debido a la complejidad de los movimientos asociados a
las diferentes resonancias. En este caso, el movimiento se ve muy amplificado en la primera
resonancia del sistema, que corresponde aproximadamente a 2.7 Hz.
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4 CONCLUSIONES

Se desarrolld un modelo de un domo geodésico basado en el formalismo lagrangiano,
considerando masas nodales concentradas, energia elastica en las barras y fuerzas disipativas
viscosas. Los andlisis bajo diferentes escenarios de excitacion permitieron identificar tanto
respuestas lineales, dominadas por la superposicion de modos y forzamientos, como
comportamientos no lineales asociados a la ruptura de simetrias. En particular, la introduccion
de dafio localizado produjo la aparicién de armoénicos adicionales y modificaciones en las
orbitas en el plano de fases. Los diagramas de amplitud-frecuencia confirmaron la presencia
de resonancias y su sensibilidad a variaciones en la rigidez local, lo que refuerza el potencial
del enfoque para estudiar fendmenos de identificacion de dafo.

La formulacion presentada es viable para sistemas relativamente pequeios, como puede ser
el domo de pocos nodos de la Figura 1. No obstante, es importante remarcar que si: 1) el
sistema tiene muchos nodos, 2) la geometria es extremadamente complicada, 3) las barras
tienen propiedades muy distintas, o 4) se desea incluir flexion, torsiéon y corte de forma
precisa, entonces podria resultar mas practico emplear un modelo de elementos finitos. De
todas formas, al tratarse en esencia un modelo reducido, tiene la ventaja de una resolucion
computacional muy rapida. Esto es especialmente apto para célculos extensivos, por ejemplo,
si desea analizarse como varia el comportamiento de la estructura al variar uno o mas
parametros y evidenciar la existencia de fenomenos no lineales de diferente naturaleza.
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