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Resumen. La modelacion de la interaccion dindmica suelo-estructura presenta el desafio de representar
de forma adecuada la caracteristica ilimitada del medio fisico a través de condiciones de borde
absorbentes. En afios recientes, las capas perfectamente acopladas (Perfectly Matched Layer, PML) han
representado un gran avance en este campo. Si bien estas condiciones de bordes son altamente efectivas,
suelen presentar inestabilidades numéricas que dificultan la integracion de las ecuaciones de
movimiento en el dominio del tiempo, y restringen su uso a sistemas lineales. Por otro lado, los bordes
viscosos representan una alternativa simple y completamente estable, aunque presentan deficiencias en
la absorcion de ondas de baja frecuencia, tipicas de los eventos sismicos. En este trabajo se propone una
técnica que combina las ventajas de ambos enfoques: la constante del borde viscoso se distribuye en una
determinada longitud, formando una capa absorbente. El resultado es una condicion de borde precisa,
estable y de facil implementacioén. La propuesta se introduce mediante un caso unidimensional. Los
resultados numéricos se verifican mediante comparaciones con soluciones analiticas de referencia.

Keywords: Soil-Structure Interaction, Viscous Boundaries, Absorbing Layers.

Abstract. The modeling of soil-structure dynamic interaction poses the challenge of properly
representing the unbounded nature of the physical medium through absorbing boundary conditions. In
recent years, Perfectly Matched Layers (PML) have represented a major breakthrough in this field.
Although these boundary conditions are highly effective, they often exhibit numerical instabilities that
hinder the time-domain integration of the equations of motion and restrict their application to linear
systems. On the other hand, viscous boundaries offer a simple and fully stable alternative, but they show
deficiencies in absorbing low-frequency waves, which are typical of seismic events. This work proposes
a technique that combines the advantages of both approaches: the viscous boundary constant is
distributed over a given length, forming an absorbing layer. The result is an accurate, stable, and easily
implementable boundary condition. The proposed method is introduced through a one-dimensional case.
Numerical results are validated by comparisons with reference analytical solutions.
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1 INTRODUCCION

En la modelacion de efectos de interaccion suelo-estructura es importante considerar de
forma adecuada las condiciones de borde absorbentes, para simular la naturaleza infinita del
medio que rodea a la estructura. En los tltimos afios ha habido un gran avance en el desarrollo
de capas perfectamente acopladas (Perfectly Matched Layer, PML) utilizadas como bordes
absorbentes (Kucukcoban y Kallivokas (2013), Trono et al. (2022)). Si bien estas condiciones
de bordes son altamente efectivas, suelen presentar inestabilidades numéricas que dificultan la
integracion de las ecuaciones de movimiento en el dominio del tiempo, y restringen su uso a
sistemas lineales.

Por otro lado, los bordes viscosos estandares (Standard Viscous Boundary — SVB)
propuestos por Lysmer y Kuhlemeyer (1969) son una alternativa simple y completamente
estable, aunque presentan deficiencias en la absorcion de ondas de baja frecuencia, tipicas de
los eventos sismicos (Trono et al. 2024). Implican una solucidn analitica exacta en problemas
de propagacion de ondas mecanicas unidimensionales y tan s6lo una solucion aproximada en
problemas bidimensionales y tridimensionales.

La impedancia de una barra semi infinita sometida a carga axial en el extremo libre es
equivalente a la de un disipador viscoso:

Z(w) = iwC (1)

donde w es la frecuencia de la carga, i es la constante imaginaria y C es la constante del
disipador viscoso. La constante de dicho disipador se calcula con la expresion C = cA, siendo
A la seccion transversal de la barray ¢ = pV = +/pE, donde p es la densidad del material, V es
la velocidad de propagacion de la onda y E es el mdédulo de Young. Lysmer y Kuhlemeyer
(1969) proponen conectar los bordes de un modelo de elementos finitos planos a disipadores
de constante cp y cg utilizando las velocidades de ondas Py S (Vp y Vs), respectivamente, en el
calculo de c.

Debido a que los bordes viscosos utilizados en modelos bidimensionales producen errores
significativos en frecuencias bajas (Trono et al. 2024), en este trabajo se propone distribuir los
disipadores viscosos en una determinada longitud para minimizar el error. Se realizan pruebas
con modelos unidimensionales con un error impuesto adrede en el valor de ¢, y se demuestra
que el error en la impedancia obtenida disminuye si los disipadores se distribuyen en una
longitud dada, en lugar de ubicar un solo disipador en un extremo. Esto tiene el objetivo de
demostrar que, dado que los disipadores cp y cs no representan una condicion de borde exacta
en problemas de dos y tres dimensiones, el hecho de distribuirlos de forma adecuada en una
direccion perpendicular al borde, podria disminuir el error y mejorar el rendimiento del
disipador viscoso como borde absorbente.

2 METODOS DE CAPA DE DISIPADORES

1.1 Disipadores puntuales distribuidos

En la Figura 1 a se muestra un modelo analitico de barra semi infinita que se logra
conectando un disipador viscoso en el extremo de una barra de longitud finita. Este mismo
modelo se puede plantear como el mostrado en la Figura 1 b, donde se conectan dos barras en

. , , A .. c
serie, una de area A y otra de area s> yen paralelo a la segunda barra se coloca un disipador >
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Estos dos modelos son equivalentes a los efectos de calcular la rigidez dindmica de cualquier
punto del primer tramo de barra.

Razonando de esta manera se podrian plantear infinitos sistemas equivalentes con diferentes
barras conectadas en serie, siempre que se cumpla que el disipador conectado en paralelo a cada
barra compense la disminucion del area de dicha barra respecto de la anterior. Por ejemplo, en
la Figura 1 ¢ se muestra un modelo equivalente de cinco barras puestas en serie con cinco

. c o ,
disipadores de constante o> ya que la variacion del area es constante entre las barras. Cabe

recalcar que no es necesario que los cambios de area sean constantes. Podria ser diferente,
siempre que el disipador puesto en paralelo compense la disminucion del area en cada caso. La
disminucion de la rigidez dindmica a través del area también puede lograrse a través de la
disminucion del modulo de Young y de la densidad del material, manteniendo el area constante.
Esto ultimo permite extender de forma sencilla este tipo de borde absorbente a modelos
tridimensionales (este procedimiento no se desarrolla en este trabajo).

F(t
il p,V, A —
/A
a) C=pVA
C
1
F(t) B o
7 P, V7 A A 2
9 —
¢ 7
By C
5
—H ¢
F(t) 5
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Figura 1: Modelos unidimensionales equivalentes con bordes viscosos SVB.

El razonamiento expuesto permite convertir un borde puntual en un borde viscoso
distribuido: se trata de una “capa” de disipadores. En problemas unidimensionales todos estos
casos son equivalentes y exactos a los efectos de calcular la impedancia Z (w) del extremo libre.
En caso de desconocerse la constante exacta ¢ (como lo que ocurre en problemas de dos y tres
dimensiones), cabe preguntarse si distribuir un disipador aproximado c* (con cierto error)
formando una capa de disipadores permitiria disminuir el error respecto de ubicar al disipador
¢ de forma puntual en un extremo. Para responder esta pregunta, en este trabajo se comparan
los resultados de diferentes modelos de elementos finitos unidimensionales de capa de
disipadores con error inducido en la constante c*.
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1.2 Disipadores continuamente distribuidos

Figura 2: Capa de disipadores distribuidos continuamente.

Los disipadores viscosos también pueden distribuirse en forma continua en una determinada

longitud. En la Figura 2 se muestra una barra de longitud L cuya seccion transversal varia segin

una funcion A(x). Dado que ——= A( )

6A(x)

< 0, la constante del disipador se plantea negativa (C(x) =

—pV
ecuacion dlferenmal asociada al tramo de barra de seccion variable conectado a disipadores
viscosos continuos:

) Planteando el equ111br10 de un elemento diferencial de barra, puede obtenerse la

0%u dA(x) ou dA(x)
EA(x) 922 +E Ix 9 + /pE P pA(x)il

donde u = u(x, t) representa el desplazamiento en la direccion longitudinal de la barra. Para
plantear la formulacioén débil del problema se pre multiplica a la Ec. (2) por una funcién de peso
W (x) y se integra en la longitud L del dominio:

f W(x)EA(x)—dx +f W(x )EdA—()—d +J W (x)cu

A(x) dx

3)
= f W (x)pA(x)iidx
0

Como es habitual en el campo de los elementos finitos unidimensionales, se plantea una
integral por partes del primer término de la Ec. (3):

L 0%u
fo W(x)EA(x) F™) dx
dut” L ou dA(x)
= —| - — 4
[W(x)EA(x) dx]o f W (x ) I dx “4)
j‘LdW(x) A ou p
o dx ) ox
Reemplazando la Ec. (4) en la Ec. (3) se obtiene:
Law (x) dA(x)

udx

W (x)EA o)’ EA aud fw

Weorae g - | SpEEaw g drr fwee 5

L

= f W (x)pA(x)iidx
0
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En este caso, se utilizan polinomios de Lagrange de segundo orden (N;(x),N,(x) y
N3 (x), detallados en Zienkiewicz et al. 2005) para interpolar las funciones de desplazamiento,
de peso y de area:
u(x,t) = Nu,(t),

conN = [N;(x) Np(x) N3()]yul(t) =[u(t) u(t) wuz(t)]
W(x) =wINT conwl(t) = [wi w, ws]

A(x) = Ny (x)A; + Np(x)A; + N3(x)A;

(6)

donde A;, A,, Az, uq (t), uy(t), us(t) y wy, wy, ws son los valores del area de la seccion
transversal, de desplazamiento y de funcion de peso, respectivamente, en los nudos del
elemento finito. Como es habitual, las derivadas se obtienen de derivar las funciones de
interpolacion:

Ju(x,t)
== = BOu(6)

dW (x)

dx w¢B' (x) )
dA(x)
I B1(x)A1 + B (x)A; + B3(x)As
donde B = ﬂ, B, = le(x), B, = aN(x) y B; = INs() i se subdivide al dominio en n
dx dx dx dx

elementos finitos, las integrales de la Ec. (5) pueden subdividirse en el dominio de cada
elemento finito:

Law (x) ou $ i
f 7 EA(x)a— dx=2we K. ul
o dx x L
L n .
f W (x)pA(x)iidx = Z wl'ML it} (8)
0 i=1
n
dA P
—[W()c dgcx) udx = Zw?cg i
i=1

donde las matrices elementales (del elemento i) de rigidez, masa y amortiguamiento se calculan

de la siguiente manera:
3

It
Ki = EZA;Z f BT (x)N; (x)B(x)dx ©)
j=1 "°
3 lé
Mi=p) 4 J NTCON, ()N (x)dx (10)
j=1 "0
3 lé
C. = —cZA}f NT(x)B;(x)N(x)dx (11)
j=1 "°

donde I} es la longitud del elemento finito y A]i- es el area en el nudo j del elemento finito i.
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3 MODELOS NUMERICOS

Como ya se ha mencionado previamente, resulta de interés construir modelos numéricos
imponiendo un error A°”"°" en la constante ¢ de amortiguamiento. Se define la constante de
amortiguamiento con error de la siguiente manera:

ABTTOT 12
¢ _(1+100%>C (12)

Se proponen tres modelos diferentes con error inducido en la constante ¢ compuestos por:

- a) elementos finitos lineales con un solo disipador ubicado en el extremo,

- b) elementos finitos lineales con disipadores puntualmente distribuidos y

- ¢) elementos finitos cuadraticos con disipadores continuamente distribuidos (ver Figura

3).

La cantidad de elementos lineales utilizados en los casos a) y b) es el doble de la cantidad
de elementos finitos cuadraticos usados en el caso ¢), con el proposito de que todos los modelos
numéricos presenten la misma cantidad de grados de libertad (y poder comparar casos con costo
computacional similar).

Xz T
ctA 0ol
a) 1 v
X \ elementos finitos 0.7
A<l> lineales 06l
. d) A(z)
" car) DA
- 041
elementos finitos 0l
A (x) cuadraticos 02
C) 0.1
0
L 0

Figura 3: Esquema de los modelos numéricos utilizados para calcular Z(w): a) barra con un disipador en
un extremo, b) barra con disipadores puntualmente distribuidos y c) barra con disipadores continuamente
distribuidos. En d) se muestra la funcion A(x) segun el pardmetro a utilizado.

Se utiliza una funcién de area de la siguiente forma:
1 — e—aleax

1—eak

Alx) = (13)

En la Figura 3 d se muestran las distintas funciones A(x) segun el parametro a utilizado.
Para los casos b) y ¢) se utiliza la misma funcidon de area, con la diferencia de que en b) se
producen saltos discretos de area entre un elemento y otro. En el caso b) se conectan disipadores
puntuales en cada nudo. A partir de un analisis de sensibilidad de error (no presentado en detalle
en este trabajo) se utiliza un valor de a = 0.5 en la Ec. (13).

Se modela un caso particular con E = 20500000 kPa, p = 2.4 t/m3. En los modelos a)
y b) se utilizan elementos lineales de longitud lg’b
elementos cuadraticos de longitud /5 = 0.25 m.

En cada caso se obtiene el sistema de ecuaciones en términos de los grados de libertad de
desplazamientos:

= 0.125m y en el caso c) se utilizan
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Mi+Ca+Ku=P (14)

donde M, C y K son las matrices del sistema y P es el vector de cargas. Aplicando la
transformada de Fourier de la Ec.(14) se obtiene:

(—w?*M +iwC+K)i =P (15)

donde 1 y P son las transformadas de Fourier del vector de incognitas y del vector de cargas.
La matriz de receptancia del sistema puede calcularse a partir de cada frecuencia de muestreo
i

a,, = (—(anm)ZM +i2nf,C+ K)™?! (16)

La impedancia condensada del extremo de cada modelo numérico se calcula haciendo Z,, =

1 11 . . . . . .
s donde a;; es el elemento de la matriz a,,, ubicado en la diagonal principal y asociado al

grado de libertad del extremo libre de la barra (ubicado en x = 0).

4 RESULTADOS

A continuacion, se presentan los resultados de los modelos detallados en la seccion anterior
con diferentes magnitudes de error inducido A®""°" (ver Ec. (12)) en la constante c¢*. En las
Figuras 4, 5, 6 y 7 se grafica la impedancia Z(w) del extremo de barra en funciéon de una
2nf 140

—

En la Figura 4, se muestra el resultado de utilizar la constante c sin error inducido. Se trabaja

con una longitud L = 2.5 m. Se observa que todos los modelos propuestos funcionan de forma
adecuada para representar la impedancia de la barra semi infinita. Puede observarse una
pequefia discrepancia por encima de ay; = 0.35 que se debe a la limitacion del método de
elementos finitos para representar adecuadamente la impedancia en frecuencias altas. Si se
desear minimizar este error numérico puede disminuirse la longitud [, del elemento finito (no
es el objetivo de este trabajo).

En las Figuras 5, 6 y 7 se muestran los resultados de los modelos con error inducido en ¢ de
—20%, 20 % y 50 %, respectivamente. La funcioén de area en estos casos es la definida en la
Ec. (13) con un valor particular de a = 0.5. Se observa que los casos de capas distribuidas (b
y ¢) disminuyen considerablemente el error respecto del caso de borde puntual en el extremo.
No se distinguen diferencias significativas entre los modelos de capas de disipadores. Para
poder observar la diferencia entre estos modelos, se define una medida de error:

1 0.5
€=5% \/((Zm —2)(Z — Z¥)) dag (17)
. 0

donde Z,, es la impedancia calculada numéricamente y Z es la impedancia analitica, y el
supraindice  * significa conjugado. Esta medida de error se calcula numéricamente en cada
caso.

frecuencia adimensional a, =
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Figura 4: Impedancia del extremo de la barra semi infinita calculada con la constante de amortiguamiento

adecuada (A°™™°" = 0,L = 2.5 m).
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Figura 5: Impedancia del extremo de la barra semi infinita calculada con A°™™°" = =20 % y L=2.5m.
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Figura 6: Impedancia del extremo de la barra semi infinita calculada con un A" = 20 % y L=2.5m.
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Figura 7: Impedancia del extremo de la barra semi infinita calculada con un A°™™°" =50 % y L=2.5m.
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Figura 8: Error en Z (w) obtenido segun diferentes longitudes de capa de disipadores (A°™™°" = 20 %).

En la Figura 8 se compara la medida de error obtenida segun la longitud de capa de
disipadores para el caso particular con error impuesto A®"°" = 20 %. La longitud de los
elementos finitos se mantiene constante en cada caso, es decir, la cantidad de elementos se
incrementa linealmente con la longitud L. Se observa que incrementar la longitud de la capa
disminuye el error y que el modelo de disipadores continuamente distribuidos no representa
una mejora significativa respecto del modelo de disipadores puntualmente distribuidos.

S CONCLUSIONES

El método propuesto es altamente satisfactorio: distribuir los disipadores con error impuesto
en una determinada longitud de barra, ya sea puntualmente entre elementos finitos o
continuamente a través de matrices consistentes, disminuye de forma considerable el error en
el calculo de la impedancia de una barra semi infinita. Si la constante del disipador es
desconocida o presenta un error, formar una capa de disipadores representa una ventaja
considerable respecto de ubicar un disipador de forma local en el extremo de la barra. Este
método podria extenderse a modelos de dos y tres dimensiones donde la utilizacion local de
disipadores cs y cp produce errores significativos en el calculo de la impedancia de fundaciones.
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