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Resumen. La modelación de la interacción dinámica suelo-estructura presenta el desafío de representar 
de forma adecuada la característica ilimitada del medio físico a través de condiciones de borde 
absorbentes. En años recientes, las capas perfectamente acopladas (Perfectly Matched Layer, PML) han 
representado un gran avance en este campo. Si bien estas condiciones de bordes son altamente efectivas, 
suelen presentar inestabilidades numéricas que dificultan la integración de las ecuaciones de 
movimiento en el dominio del tiempo, y restringen su uso a sistemas lineales. Por otro lado, los bordes 
viscosos representan una alternativa simple y completamente estable, aunque presentan deficiencias en 
la absorción de ondas de baja frecuencia, típicas de los eventos sísmicos. En este trabajo se propone una 
técnica que combina las ventajas de ambos enfoques: la constante del borde viscoso se distribuye en una 
determinada longitud, formando una capa absorbente. El resultado es una condición de borde precisa, 
estable y de fácil implementación. La propuesta se introduce mediante un caso unidimensional. Los 
resultados numéricos se verifican mediante comparaciones con soluciones analíticas de referencia.       

Keywords: Soil-Structure Interaction, Viscous Boundaries, Absorbing Layers. 

Abstract. The modeling of soil–structure dynamic interaction poses the challenge of properly 
representing the unbounded nature of the physical medium through absorbing boundary conditions. In 
recent years, Perfectly Matched Layers (PML) have represented a major breakthrough in this field. 
Although these boundary conditions are highly effective, they often exhibit numerical instabilities that 
hinder the time-domain integration of the equations of motion and restrict their application to linear 
systems. On the other hand, viscous boundaries offer a simple and fully stable alternative, but they show 
deficiencies in absorbing low-frequency waves, which are typical of seismic events. This work proposes 
a technique that combines the advantages of both approaches: the viscous boundary constant is 
distributed over a given length, forming an absorbing layer. The result is an accurate, stable, and easily 
implementable boundary condition. The proposed method is introduced through a one-dimensional case. 
Numerical results are validated by comparisons with reference analytical solutions. 
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1 INTRODUCCIÓN 
En la modelación de efectos de interacción suelo-estructura es importante considerar de 

forma adecuada las condiciones de borde absorbentes, para simular la naturaleza infinita del 
medio que rodea a la estructura. En los últimos años ha habido un gran avance en el desarrollo 
de capas perfectamente acopladas (Perfectly Matched Layer, PML) utilizadas como bordes 
absorbentes (Kucukcoban y Kallivokas (2013), Trono et al. (2022)). Si bien estas condiciones 
de bordes son altamente efectivas, suelen presentar inestabilidades numéricas que dificultan la 
integración de las ecuaciones de movimiento en el dominio del tiempo, y restringen su uso a 
sistemas lineales.  

Por otro lado, los bordes viscosos estándares (Standard Viscous Boundary – SVB) 
propuestos por Lysmer y Kuhlemeyer (1969) son una alternativa simple y completamente 
estable, aunque presentan deficiencias en la absorción de ondas de baja frecuencia, típicas de 
los eventos sísmicos (Trono et al. 2024). Implican una solución analítica exacta en problemas 
de propagación de ondas mecánicas unidimensionales y tan sólo una solución aproximada en 
problemas bidimensionales y tridimensionales. 

La impedancia de una barra semi infinita sometida a carga axial en el extremo libre es 
equivalente a la de un disipador viscoso: 𝑍(߱) =  (1) ܥ߱݅

donde ߱ es la frecuencia de la carga, ݅ es la constante imaginaria y ܥ es la constante del 
disipador viscoso. La constante de dicho disipador se calcula con la expresión ܥ = ܿ la sección transversal de la barra y ܣ siendo ,ܣܿ ܸߩ = =  es la densidad del material, ܸ es ߩ donde ,ܧߩ√
la velocidad de propagación de la onda y ܧ es el módulo de Young. Lysmer y Kuhlemeyer 
(1969) proponen conectar los bordes de un modelo de elementos finitos planos a disipadores 
de constante ܿ௉ y ܿௌ utilizando las velocidades de ondas P y S ( ௉ܸ y ௌܸ), respectivamente, en el 
cálculo de ܿ. 

Debido a que los bordes viscosos utilizados en modelos bidimensionales producen errores 
significativos en frecuencias bajas (Trono et al. 2024), en este trabajo se propone distribuir los 
disipadores viscosos en una determinada longitud para minimizar el error. Se realizan pruebas 
con modelos unidimensionales con un error impuesto adrede en el valor de ܿ, y se demuestra 
que el error en la impedancia obtenida disminuye si los disipadores se distribuyen en una 
longitud dada, en lugar de ubicar un solo disipador en un extremo. Esto tiene el objetivo de 
demostrar que, dado que los disipadores ܿ௉ y ܿௌ no representan una condición de borde exacta 
en problemas de dos y tres dimensiones, el hecho de distribuirlos de forma adecuada en una 
dirección perpendicular al borde, podría disminuir el error y mejorar el rendimiento del 
disipador viscoso como borde absorbente. 

2 MÉTODOS DE CAPA DE DISIPADORES 

1.1 Disipadores puntuales distribuidos 

En la Figura 1 a se muestra un modelo analítico de barra semi infinita que se logra 
conectando un disipador viscoso en el extremo de una barra de longitud finita. Este mismo 
modelo se puede plantear como el mostrado en la Figura 1 b, donde se conectan dos barras en 
serie, una de área ܣ y otra de área ஺ଶ, y en paralelo a la segunda barra se coloca un disipador ஼ଶ. 
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Estos dos modelos son equivalentes a los efectos de calcular la rigidez dinámica de cualquier 
punto del primer tramo de barra. 

Razonando de esta manera se podrían plantear infinitos sistemas equivalentes con diferentes 
barras conectadas en serie, siempre que se cumpla que el disipador conectado en paralelo a cada 
barra compense la disminución del área de dicha barra respecto de la anterior. Por ejemplo, en 
la Figura 1 c se muestra un modelo equivalente de cinco barras puestas en serie con cinco 
disipadores de constante ஼ହ, ya que la variación del área es constante entre las barras. Cabe 
recalcar que no es necesario que los cambios de área sean constantes. Podría ser diferente, 
siempre que el disipador puesto en paralelo compense la disminución del área en cada caso. La 
disminución de la rigidez dinámica a través del área también puede lograrse a través de la 
disminución del módulo de Young y de la densidad del material, manteniendo el área constante. 
Esto último permite extender de forma sencilla este tipo de borde absorbente a modelos 
tridimensionales (este procedimiento no se desarrolla en este trabajo). 

 
Figura 1: Modelos unidimensionales equivalentes con bordes viscosos SVB.  

El razonamiento expuesto permite convertir un borde puntual en un borde viscoso 
distribuido: se trata de una “capa” de disipadores. En problemas unidimensionales todos estos 
casos son equivalentes y exactos a los efectos de calcular la impedancia 𝑍(߱) del extremo libre. 
En caso de desconocerse la constante exacta ܿ (como lo que ocurre en problemas de dos y tres 
dimensiones), cabe preguntarse si distribuir un disipador aproximado ܿ∗ (con cierto error) 
formando una capa de disipadores permitiría disminuir el error respecto de ubicar al disipador ܿ∗ de forma puntual en un extremo. Para responder esta pregunta, en este trabajo se comparan 
los resultados de diferentes modelos de elementos finitos unidimensionales de capa de 
disipadores con error inducido en la constante ܿ∗. 
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1.2 Disipadores continuamente distribuidos 

 
Figura 2: Capa de disipadores distribuidos continuamente. 

Los disipadores viscosos también pueden distribuirse en forma continua en una determinada 
longitud. En la Figura 2 se muestra una barra de longitud ܮ cuya sección transversal varía según 
una función (ݔ)ܣ. Dado que డ஺(௫)డ௫ ≤ 0, la constante del disipador se plantea negativa ((ݔ)ܥ ܸߩ−= డ஺(௫)డ௫ ). Planteando el equilibrio de un elemento diferencial de barra, puede obtenerse la 
ecuación diferencial asociada al tramo de barra de sección variable conectado a disipadores 
viscosos continuos: (ݔ)ܣܧ ߲ଶݔ߲ݑଶ + ܧ ݔ݀(ݔ)ܣ݀ ݔ߲ݑ߲ + ඥܧߩ ݔ݀(ݔ)ܣ݀ ݑ̇ =  (2) ݑ̈(ݔ)ܣߩ

donde ݑ = ,ݔ)ݑ  representa el desplazamiento en la dirección longitudinal de la barra. Para (ݐ
plantear la formulación débil del problema se pre multiplica a la Ec. (2) por una función de peso ܹ(ݔ) y se integra en la longitud ܮ del dominio:  න (ݔ)ܣܧ(ݔ)ܹ ߲ଶݔ߲ݑଶ ௅ݔ݀

଴  + න ܧ(ݔ)ܹ ݔ݀(ݔ)ܣ݀ ݔ߲ݑ߲ ௅ݔ݀
଴ + න ݑ̇ܿ(ݔ)ܹ ݔ݀(ݔ)ܣ݀ ௅ݔ݀

଴= න ௅ݔ݀ݑ̈(ݔ)ܣߩ(ݔ)ܹ
଴  

(3) 

Como es habitual en el campo de los elementos finitos unidimensionales, se plantea una 
integral por partes del primer término de la Ec. (3): න (ݔ)ܣܧ(ݔ)ܹ ߲ଶݔ߲ݑଶ ௅ݔ݀

଴ = ൤ܹ(ݔ)(ݔ)ܣܧ ൨଴ݔ݀ݑ݀
௅ −  න (ݔ)ܹ ݔ߲ݑ߲ ܧ ݔ݀(ݔ)ܣ݀ ௅ݔ݀

଴− න ݔ݀(ݔ)ܹ݀ (ݔ)ܣܧ ௅ݔ߲ݑ߲
଴  ݔ݀ 

(4) 

Reemplazando la Ec. (4) en la Ec. (3) se obtiene: ൤ܹ(ݔ)(ݔ)ܣܧ ൨଴ݔ߲ݑ߲
௅ − න ݔ݀(ݔ)ܹ݀ (ݔ)ܣܧ ௅ݔ߲ݑ߲

଴ ݔ݀  + ∫ ܿ(ݔ)ܹ ݔ݀(ݔ)ܣ݀ ݔ݀ݑ̇
= න ௅ݔ݀ݑ̈(ݔ)ܣߩ(ݔ)ܹ

଴  
(5) 
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En este caso, se utilizan polinomios de Lagrange de segundo orden ( ଵܰ(ݔ), ଶܰ(ݔ) y ଷܰ(ݔ),  detallados en Zienkiewicz et al. 2005) para interpolar las funciones de desplazamiento, 
de peso y de área: ݔ)ݑ, (ݐ =  ,(ݐ)ࢋ࢛ࡺ

con ࡺ = [ ଵܰ(ݔ) ଶܰ(ݔ) ଷܰ(ݔ)] y ࢛(ݐ)ࢀࢋ = (ݐ)ଵݑ] (ݐ)ଶݑ (ݔ)ܹ [(ݐ)ଷݑ = (ݐ)ࢀࢋ࢝ con ࢀࡺࢀࢋ࢝ = ଵݓ] ଶݓ (ݔ)ܣ [ଷݓ = ଵܰ(ݔ)ܣଵ + ଶܰ(ݔ)ܣଶ + ଷܰ(ݔ)ܣଷ 

(6) 

donde ܣଵ, ܣଶ, ܣଷ, ݑଵ(ݐ), ݑଶ(ݐ), ݑଷ(ݐ) y ݓଵ, ݓଶ, ݓଷ son los valores del área de la sección 
transversal, de desplazamiento y de función de peso, respectivamente, en los nudos del 
elemento finito. Como es habitual, las derivadas se obtienen de derivar las funciones de 
interpolación: ߲ݔ)ݑ, ݔ߲(ݐ = ݔ݀(ݔ)ܹ݀ (ݐ)ࢋ࢛(ݔ)࡮ = ݔ݀(ݔ)ܣ݀ (ݔ)ࢀ࡮ࢀࢋ࢝ = ଵܣ(ݔ)ଵܤ + ଶܣ(ݔ)ଶܤ +  ଷܣ(ݔ)ଷܤ

(7) 

donde ࡮ = ௗࡺௗ௫ ଵܤ , = ௗேభ(௫)ௗ௫ ଶܤ , = ௗேమ(௫)ௗ௫  y ܤଷ = ௗேయ(௫)ௗ௫ . Si se subdivide al dominio en ݊ 
elementos finitos, las integrales de la Ec. (5) pueden subdividirse en el dominio de cada 
elemento finito: 

න ݔ݀(ݔ)ܹ݀ (ݔ)ܣܧ ௅ݔ߲ݑ߲
଴ ݔ݀  = ෍ ௜ࢋࡷ௜ࢀࢋ࢝  ௡

௜ୀଵ ௜ࢋ࢛  

න ௅ݔ݀ݑ̈(ݔ)ܣߩ(ݔ)ܹ
଴ = ෍ ௜ࢋࡹ௜ࢀࢋ࢝  ௡

௜ୀଵ ௜ࢋ࢛̈  

−∫ ܿ(ݔ)ܹ ݔ݀(ݔ)ܣ݀ ݔ݀ݑ̇ = ෍ ௜ࢋ࡯௜ࢀࢋ࢝  ௡
௜ୀଵ ௜ࢋ࢛̇  

(8) 

donde las matrices elementales (del elemento ݅) de rigidez, masa y amortiguamiento se calculan 
de la siguiente manera: ࢋࡷ௜ = ܧ ෍ ௝௜ܣ න (ݔ)ࢀ࡮ ௝ܰ(ݔ)ݔ݀(ݔ)࡮௟೐೔଴

ଷ
௝ୀଵ  (9) 

௜ࢋࡹ = ߩ ෍ ௝௜ܣ න (ݔ)ࢀࡺ ௝ܰ(ݔ)ݔ݀(ݔ)ࡺ௟೐೔଴
ଷ

௝ୀଵ  (10) 

௜ࢋ࡯ = −ܿ ෍ ௝௜ܣ න ௟೐೔଴ݔ݀(ݔ)ࡺ(ݔ)௝ܤ(ݔ)ࢀࡺ
ଷ

௝ୀଵ  (11) 

donde ݈௘௜  es la longitud del elemento finito y ܣ௝௜ es el área en el nudo ݆ del elemento finito ݅.  
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3 MODELOS NUMÉRICOS 
Como ya se ha mencionado previamente, resulta de interés construir modelos numéricos 

imponiendo un error Δ௘௥௥௢௥ en la constante ܿ de amortiguamiento. Se define la constante de 
amortiguamiento con error de la siguiente manera: ܿ∗ = ൬1 + Δ௘௥௥௢௥100 %൰ ܿ (12) 

Se proponen tres modelos diferentes con error inducido en la constante ܿ compuestos por: 
- a) elementos finitos lineales con un solo disipador ubicado en el extremo,  
- b) elementos finitos lineales con disipadores puntualmente distribuidos y  
- c) elementos finitos cuadráticos con disipadores continuamente distribuidos (ver Figura 

3).  
La cantidad de elementos lineales utilizados en los casos ܽ) y ܾ) es el doble de la cantidad 

de elementos finitos cuadráticos usados en el caso ܿ), con el propósito de que todos los modelos 
numéricos presenten la misma cantidad de grados de libertad (y poder comparar casos con costo 
computacional similar).    

 
Figura 3: Esquema de los modelos numéricos utilizados para calcular 𝑍(߱): a) barra con un disipador en 

un extremo, b) barra con disipadores puntualmente distribuidos y c) barra con disipadores continuamente 
distribuidos. En d) se muestra la función (ݔ)ܣ según el parámetro ܽ utilizado. 

Se utiliza una función de área de la siguiente forma: (ݔ)ܣ = 1 − ݁ି௔௅݁௔௫1 − ݁ି௔௅  (13) 

En la Figura 3 d se muestran las distintas funciones (ݔ)ܣ según el parámetro ܽ utilizado. 
Para los casos b) y c) se utiliza la misma función de área, con la diferencia de que en ܾ) se 
producen saltos discretos de área entre un elemento y otro. En el caso ܾ ) se conectan disipadores 
puntuales en cada nudo. A partir de un análisis de sensibilidad de error (no presentado en detalle 
en este trabajo) se utiliza un valor de ܽ = 0.5 en la Ec. (13). 

Se modela un caso particular con ܧ = ߩ ,ܽܲ݇ 20500000 =  (ܽ ଷ. En los modelos݉/ݐ 2.4
y ܾ) se utilizan elementos lineales de longitud ݈௘௔,௕ = 0.125 ݉ y en el caso ܿ) se utilizan 
elementos cuadráticos de longitud ݈௘௖ = 0.25 m.  

En cada caso se obtiene el sistema de ecuaciones en términos de los grados de libertad de 
desplazamientos: 
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ܝ̈ۻ + ܝ۱̇ + ܝ۹ =  (14) ۾
donde ۱ ,ۻ y ۹ son las matrices del sistema y ۾ es el vector de cargas. Aplicando la 
transformada de Fourier de la Ec.(14)  se obtiene: (−߱ଶۻ + ݅߱۱ + ෝܝ(۹ =  ෡ (15)۾

donde ܝෝ y ۾෡ son las transformadas de Fourier del vector de incógnitas y del vector de cargas. 
La matriz de receptancia del sistema puede calcularse a partir de cada frecuencia de muestreo ௠݂: ࢻ௠ = ߨ2)−) ௠݂)ଶۻ + ߨ2݅ ௠݂۱ + ۹)ିଵ (16) 

La impedancia condensada del extremo de cada modelo numérico se calcula haciendo 𝑍௠ =ଵఈ೘భభ , donde ߙ௠ଵଵ es el elemento de la matriz ࢻ௠ ubicado en la diagonal principal y asociado al 

grado de libertad del extremo libre de la barra (ubicado en ݔ = 0).  

4 RESULTADOS 
A continuación, se presentan los resultados de los modelos detallados en la sección anterior 

con diferentes magnitudes de error inducido Δ௘௥௥௢௥ (ver Ec. (12)) en la constante ܿ∗. En las 
Figuras 4, 5, 6 y 7 se grafica la impedancia 𝑍(߱) del extremo de barra en función de una 

frecuencia adimensional ܽ଴ = ଶగ௙ ௟೐ೌ ,್௏ . 
En la Figura 4, se muestra el resultado de utilizar la constante ܿ sin error inducido. Se trabaja 

con una longitud ܮ = 2.5 ݉. Se observa que todos los modelos propuestos funcionan de forma 
adecuada para representar la impedancia de la barra semi infinita. Puede observarse una 
pequeña discrepancia por encima de ܽ଴ =  0.35 que se debe a la limitación del método de 
elementos finitos para representar adecuadamente la impedancia en frecuencias altas. Si se 
desear minimizar este error numérico puede disminuirse la longitud ݈௘ del elemento finito (no 
es el objetivo de este trabajo). 

En las Figuras 5, 6 y 7 se muestran los resultados de los modelos con error inducido en ܿ de −20%, 20 % y 50 %, respectivamente. La función de área en estos casos es la definida en la 
Ec. (13) con un valor particular de ܽ = 0.5. Se observa que los casos de capas distribuidas (ܾ 
y ܿ) disminuyen considerablemente el error respecto del caso de borde puntual en el extremo. 
No se distinguen diferencias significativas entre los modelos de capas de disipadores. Para 
poder observar la diferencia entre estos modelos, se define una medida de error:  ߳ = 10.5 න ට൫(𝑍௠ − 𝑍)(𝑍௠∗ − 𝑍∗)൯ ݀ܽ଴଴.ହ

଴   (17) 

donde 𝑍௠ es la impedancia calculada numéricamente y 𝑍 es la impedancia analítica, y el 
supraíndice ∗ significa conjugado. Esta medida de error se calcula numéricamente en cada 
caso. 
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Figura 4: Impedancia del extremo de la barra semi infinita calculada con la constante de amortiguamiento 

adecuada (࢘࢕࢘࢘ࢋࢤ = 0, ܮ = 2.5 ݉). 

 
Figura 5: Impedancia del extremo de la barra semi infinita calculada con ࢘࢕࢘࢘ࢋࢤ = −૛૙ % y 2.5=ܮ ݉. 
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Figura 6: Impedancia del extremo de la barra semi infinita calculada con un ࢘࢕࢘࢘ࢋࢤ = ૛૙ % y 2.5=ܮ ݉. 

 
Figura 7: Impedancia del extremo de la barra semi infinita calculada con un ࢘࢕࢘࢘ࢋࢤ = ૞૙ % y 2.5=ܮ ݉. 
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Figura 8: Error en 𝑍(߱) obtenido según diferentes longitudes de capa de disipadores (࢘࢕࢘࢘ࢋࢤ = ૛૙ %). 

En la Figura 8 se compara la medida de error obtenida según la longitud de capa de 
disipadores para el caso particular con error impuesto Δ௘௥௥௢௥ = 20 %. La longitud de los 
elementos finitos se mantiene constante en cada caso, es decir, la cantidad de elementos se 
incrementa linealmente con la longitud ܮ. Se observa que incrementar la longitud de la capa 
disminuye el error y que el modelo de disipadores continuamente distribuidos no representa 
una mejora significativa respecto del modelo de disipadores puntualmente distribuidos.  

5 CONCLUSIONES 
El método propuesto es altamente satisfactorio: distribuir los disipadores con error impuesto 

en una determinada longitud de barra, ya sea puntualmente entre elementos finitos o 
continuamente a través de matrices consistentes, disminuye de forma considerable el error en 
el cálculo de la impedancia de una barra semi infinita. Si la constante del disipador es 
desconocida o presenta un error, formar una capa de disipadores representa una ventaja 
considerable respecto de ubicar un disipador de forma local en el extremo de la barra. Este 
método podría extenderse a modelos de dos y tres dimensiones donde la utilización local de 
disipadores ܿ ௌ y ܿ ௉ produce errores significativos en el cálculo de la impedancia de fundaciones.   
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