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Resumen. La simulación de medios granulares en fase densa mediante partículas resulta costoso compu-

tacionalmente a escala industrial. Por ello, se recurre a modelos continuos que describen el comporta-

miento macroscópico del material a partir de leyes reológicas. Para ajustar estos modelos, es necesario

contar con datos confiables que capturen las interacciones a nivel de grano. Las simulaciones con el

Método de Elementos Discretos (DEM) permiten obtener esta información a escala de laboratorio, pe-

ro sus resultados se expresan en propiedades y variables asociadas a las partículas, las cuales deben ser

transformadas en campos del continuo. En este trabajo se presenta un código que implementa técnicas de

promediado espacial para convertir resultados lagrangianos de simulaciones DEM en campos continuos

definidos sobre una malla euleriana. Asimismo, se presentan casos simples que demuestran la capacidad

para extraer información útil que permite calibrar y validar dichos modelos continuos.

Keywords: Granular media, DEM, Spatial averaging

Abstract. Simulating dense-phase granular media using particles is computationally expensive on an

industrial scale. For this reason, continuous models based on rheological laws are used to describe the

macroscopic behaviour of the material. To adjust these models, reliable data capturing interactions at the

grain level is required. Simulations using the Discrete Element Method (DEM) can provide this infor-

mation on a laboratory scale, but the results are expressed in terms of particle properties and variables,

which must be transformed into continuous fields. This paper presents a code that implements spatial

averaging techniques to convert the results of DEM simulations from a Lagrangian perspective into con-

tinuous fields defined on an Eulerian mesh. Simple cases are also presented to demonstrate the ability to

extract useful information for calibrating and validating these continuous models.
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1. INTRODUCCIÓN

Los medios granulares se pueden encontrar en diversas aplicaciones industriales y en siste-

mas naturales. Algunos ejemplos de este tipo son el transporte de semillas, la descarga de silos

y el desmoronamiento de rocas en la montaña. En todos estos casos, el abordaje con modelos

matemáticos simplificados no es suficiente y las simulaciones computacionales son prioritarias

para estudiar con profundidad todos estos casos. No obstante la descripción matemática de estos

medios presenta dificultades, algunas de ellas son la gran cantidad de partículas involucradas

con sus complejidades en la interacción, son medios en los que se disipa rápidamente la ener-

gía debido a las colisiones y en un mismo problema se puede notar que el medio granular se

asemeja a un solido, liquido o gas en función de su concentración (Andreotti et al., 2013).

Las simulaciones por medio del método de elementos discretos (DEM, por sus siglas en

inglés), presentado por Cundall y Strack (1979), modela las interacciones entre partículas por

medio de una interpenetración entre ellas. Actualmente, este método permite realizar simulacio-

nes confiables de medios granulares con la limitación de que el costo computacional incrementa

rápidamente a medida que se contempla una mayor cantidad de partículas. Estos altos costos

computacionales dificultan la posibilidad de abordar problemas a escala real, desde este punto

es que surgen teorías que ya no modelan cada interacción entre partículas, sino que describen al

medio granular en términos eulerianos, es decir, mediante campos continuos. La Teoría Cinéti-

ca de Flujos Granulares (KTGF, por sus siglas en inglés), fue presentada por Jenkins y Savage

(1983) y Lun et al. (1984). Esta teoría surge de un desarrollo similar a la teoría cinética mo-

lecular clásica, siendo valida para medios granulares muy diluidos. Un enfoque diferente fue

presentado por Jop et al. (2006) para flujos granulares en fase densa, el modelo propone una

ley reológica para el medio granular basada en un numero inercial, I . Estos modelos son útiles

cuando el comportamiento del medio granular se asemeja a un liquido (Venier et al., 2021a,b).

Tanto en la KTGF como en los modelos friccionales, es necesario ajustar parámetros del

medio granular para obtener resultados confiables. Estos parámetros de ajustes pueden obte-

nerse con simulaciones DEM, pero los resultados lagrangianos deben ser trabajados para que

sean comparables con los modelos eulerianos. En este aspecto es que toman relevancias las

técnicas de promediado espacial desarrolladas en primera instancia por Glasser y Goldhirsch

(2001); Goldenberg y Goldhirsch (2002); Goldhirsch (2010) y continuadas en la ultima década

por Weinhart et al. (2012, 2013). Bhateja y Khakhar (2020); Gu et al. (2019) presentan apli-

caciones concretas de estas estrategias para la construcción de leyes reológicas y validación de

KTGF y propuesta para contemplar efecto cohesivos.

En este trabajo realizamos una implementación en python3 de las estrategias de promediado

espacial. Esta herramienta fue diseñada para incorporar como datos de entrada los resultados de

simulaciones DEM de OPENFOAM® (OpenCFD Ltd./ESI Group, 2023)..

2. METODOLOGÍA Y MARCO TEÓRICO

2.1. Método de Elementos Discretos

En el presente trabajo se emplea el solver icoUncoupledKinematicParcelFoam, en el cual

se encuentra implementado el método DEM de Cundall y Strack (1979) con las modificacio-

nes propuestas por Tsuji et al. (1992). Una partícula perteneciente a un medio granular puede

presentar dos tipos de movimiento: traslacional y rotacional. Durante el desarrollo de estos mo-

vimientos, las partículas interactúan con sus vecinas o con las paredes a través de colisiones y

fuerzas de fricción. En las simulaciones DEM, dichas trayectorias se determinan mediante la

integración de la segunda ley de Newton, ver Ec. (1). Siendo Uα y ωα la velocidad lineal y
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angular de la partícula α, respectivamente.

mα
dUα

dt
=

nc
α∑

β=1

Fc
αβ + Fg

α ; Iα
dωα

dt
=

nc
α∑

β=1

Mc
αβ (1)

Los términos Fc
αβ y Mc

αβ corresponden a la fuerza y al momento de contacto ejercidos por

la partícula β sobre la partícula α. A su vez, mα e Iα denotan la masa y el momento de inercia

de la partícula α. Finalmente, nc
α indica el número de contactos asociados a la partícula α.

Cabe destacar que los problemas analizados en este trabajo no cuentan con un fluido inter-

partícula. Las partículas se asumen perfectamente rígidas, esféricas y de densidad uniforme. La

gravedad es la única fuerza externa actuante (Fg
α = Vαραg = 1

6
d3α πραg). Donde Vα, dα y ρα

representan el volumen, el diámetro y la densidad de la partícula α.

La esencia de DEM es permitir una interpenetración, δ, entre las particulas rigidas. A partir

de esta hipótesis, se propone un modelo para calcular las fuerzas de contacto en función de dicha

interpenetración. En el modelo resorte–deslizador-amortiguador, el resorte representa la recu-

peración elástica del contacto, el amortiguador modela las pérdidas asociadas a la inelasticidad

de la colisión y el deslizador actúa cuando existe deslizamiento dinámico entre partículas.

Cuando dos partículas entran en contacto se produce una deformación local que genera un

área de interacción, sobre la cual se distribuyen fuerzas que pueden descomponerse en dos

componentes: una normal y otra tangencial al plano de contacto, Fc
αβ = Fc

n;αβ + Fc
t;αβ .

La teoría de contacto hertziana (Tsuji et al., 1992) establece que la componente normal de

la fuerza de contacto varía con la potencia 3/2 de la interpenetración normal, |δn| =
1
2
(dα +

dβ) − |pα − pβ|, siendo pα y pβ la posición de las partículas α y β. Mientras que la fuerza de

contacto normal se expresa en la Ec. (2).

Fc
n;αβ =

(
−kn |δn|

3/2 − ηn Uαβ · n
)
n (2)

Donde kn es la constante de rigidez del resorte y ηn la constante de amortiguamiento, ambas

calculadas según lo propuesto en Tsuji et al. (1992). Por su parte, Uαβ representa la velocidad

relativa entre las partículas α y β, definida como Uαβ = Uα −Uβ .

En el modelo de fricción de Amontons–Coulomb, la fuerza de rozamiento permanece inde-

terminada mientras no exista deslizamiento entre las superficies de contacto. Por ello, para la

componente tangencial de la fuerza se adopta un modelo resorte–amortiguador lineal en ausen-

cia de deslizamiento relativo, y se aplica el modelo de fricción de Coulomb cuando las partículas

comienzan a deslizarse entre sí. Ver Ec. (3).

Fc
t;αβ =

{

(−kt |δt| − ηtUt;αβ · n)n si |Fc
t;αβ| ≤ µ|Fc

n;αβ|,

−µ|Fc
n;αβ|

Ut;αβ

|Ut;αβ |
si |Fc

t;αβ| > µ|Fc
n;αβ|.

(3)

Donde µ es el coeficiente de fricción, kt la rigidez del resorte tangencial, y ηt el coeficiente

de amortiguamiento tangencial (en OPENFOAM® se asume igual al normal). El término δt
representa la interpenetración tangencial, la cual se acumula en el tiempo hasta que la fuerza

resultante supera el límite impuesto por la fricción. Ut;αβ es la velocidad relativa tangencial,

calculada con la Ec. (4). Con dicha fuerza se calcula el momento de contacto Mc
αβ según la

Ec. (5). Siendo rα y rβ los radios de las partículas α y β respectivamente.

Ut;αβ = Uαβ − (Uαβ · n)n+ (rαωα − rβωβ)× n (4)
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Mc
αβ =

nc
α∑

β=1

rα
pα − pβ

|pα − pβ|
× Fc

t;αβ (5)

2.2. Promediado espacial

El objetivo de estas técnicas de promediado es recuperar campos continuos partiendo desde

la dinámica microscópica de las partículas. Estas técnicas fueron desarrolladas por Glasser y

Goldhirsch (2001); Goldenberg y Goldhirsch (2002); Goldhirsch (2010) en la cuál se propone

una función de convolución, G(x) (siguiendo la notación propuesta por Andreotti et al. (2013),

donde x puede ser cualquier punto del dominio). Dicha función debe ser semidefinida positiva,

su integral sobre todo el dominio debe ser uno y debe tener un único máximo en 0.

Haciendo uso de esta función y considerando un empaquetamiento de N partículas, todas

con la misma masa m, cuya posición y velocidad del centro de masa se definen como xα(t) y

uα(t). Se puede definir la densidad, ρ(x, t), y el momento lineal, ρu(x, t), del medio como:

ρ(x, t) = m
N∑

α=1

G(x− xα(t)) (6)

ρu(x, t) = m

N∑

α=1

uα(t)G(x− xα(t)) (7)

Con el fin de encontrar una expresión para el tensor de tensiones del medio, σij(x, t), se

deriva temporalmente la definición de momento lineal para el medio granular, ver Ec. (8), y se

plantea el balance de momento lineal para un medio continuo, ver Ec. (9).

∂ρui(x, t)

∂t
= −

N∑

α=1

muα
i (t)u

α
j (t)

∂G

∂xj

+
N∑

α=1

m
duα

i (t)

dt
G(x− xα(t)) (8)

(
∂ρui

∂t
+

∂ρuiuj

∂xj

) =
∂σij

∂xj

+ ρgi (9)

Al substraer la Ec. (9) a la Ec. (8) se obtiene una expresión para la divergencia del tensor

de tensiones, ver Ec. (10). La misma resulta de la adición de dos términos, el primero esta

relacionado con la fluctuación de la velocidad de las partículas y el segundo con la fuerzas de

contacto entre partículas.

∂σij

∂xj

=
∂

∂xj

(ρuiuj −

N∑

α=1

muα
i (t)u

α
j (t)G(x− xα))

︸ ︷︷ ︸

=

∂σk
ij

∂xj

+
N∑

α=1

m(
duα

i

dt
− gi)G(x− xα(t))

︸ ︷︷ ︸

=

∂σc
ij

∂xj

(10)

El primer término se encuentra escrito como una divergencia, con lo cual se recupera direc-

tamente una expresión para la contribución cinética al tensor de tensiones, Ec. (11).

σk
ij = ρuiuj −

N∑

α=1

muα
i (t)u

α
j (t)G(x− xα) (11)
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En el caso de la contribución colisional, se deben realizar manipulaciones algebraicas para

expresar el término en forma de divergencia. El primer paso consiste en aplicar la segunda ley

de Newton a la partícula arbitraria α, donde fαβ
i denota la fuerza ejercida por la partícula β

sobre α (Ec. 12).

m
duα

i

dt
= mgi +

∑

β

fαβ
i (t) (12)

Con la segunda y tercera ley de Newton, se reescribe el segundo término de la Ec. (10) como:

∂σc
ij(x, t)

∂xj

=
1

2

∑

α,β

fαβ
i (G(x− xα(t))− G(x− xβ(t))) (13)

Las identidades Ec. (14) y Ec. (15) son validas para cualquier función suave, siendo s ∈ [0, 1]
un parámetro auxiliar que interpola linealmente entre las posiciones de las partículas α y β.

G(x− xα(t))− G(x− xβ(t)) = −

∫ 1

0

∂

∂s
G(x− xβ(t) + sxαβ(t)) ds (14)

∂

∂s
G(x− xβ(t) + sxαβ(t)) = xαβ

j (t)
∂

∂xj

G(x− xβ(t) + sxαβ(t)) (15)

Aplicando dichas identidades a Ec. (13) se puede reescribir el segundo término de la Ec. (10)

como divergencia, tal como se muestra en Ec (16).

∂σc
ij(x, t)

∂xj

=
∂

∂xj

[−
1

2

∑

α,β

fαβ
i xαβ

j

∫ 1

0

G(x− xβ(t) + sxαβ(t))ds] (16)

Finalmente, podemos escribir una expresión para el tensor de tensiones (a partir de las po-

siciones, velocidades y fuerzas de las partículas) como una suma de dos contribuciones una

cinética y una por contacto entre partículas, σij(x, t) = σk
ij(x, t) + σc

ij(x, t).
Trabajando algebraicamente la Ec. (11) y considerando a la fluctuación de la velocidad de

la partícula α como la diferencia entre la velocidad de la partícula y la velocidad del campo

homogeneizado (u
′α
i = uα

i (t)− ui(x− xα)). Se arriba a Ec. (17) para la contribución cinética.

Mientras que de Ec. (16) se extrae la expresión Ec. (18) para la contribución por contacto.

σk
ij(x, t) = −

N∑

α=1

mu
′α
i (t)u

′α
j (t)G(x− xα(t)) (17)

σc
ij(x, t) = −

1

2

∑

α,β

fαβ
i xαβ

j

∫ 1

0

G(x− xβ(t) + sxαβ(t))ds (18)

El último aspecto a definir es la función de peso, la cual tiene una influencia débil en los

resultados, siendo el parámetro clave el ancho w de dicha función (Weinhart et al., 2013). En

este trabajo se emplea la función indicada en la Ec. (19), que adopta el valor 1/V cuando la

partícula se encuentra dentro de la región de promediado y cero en caso contrario.

G(x) =
1

V
H(w − |x|) (19)

Aplicando esta elección se obtiene la siguiente expresión para el tensor de tensiones.
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σij = −
1

V

∑

α∈V

mu
′α
i u

′α
j −

1

V

∑

c∈V

f c
i b

c
j (20)

La segunda sumatoria se da sobre todos los contactos c dentro del volumen V . El vector f c

es el módulo de la fuerza entre las 2 partículas que están en el contacto c. Mientras que el vector

bc es el vector que une los 2 centroides de las partículas α y β.

En lo referente a la contribución de las paredes, Weinhart et al. (2012) propone incorporarla

en la derivación original, considerando tres términos: σij(x, t) = σk
ij(x, t)+σc

ij(x, t)+σw
ij(x, t).

En este trabajo, cada contacto con las paredes se incluyó dentro de σc
ij , considerando que el

vector bc
w = ri− rwc conecta el centro de la partícula con el punto de contacto.

2.3. Implementación en código

La implementación del algoritmo de homogenización se realizó en Python 3. La filosofía

adoptada en el desarrollo del código es que sea modular y portable a otras plataformas de

simulación DEM. Para ello, se estructuró el programa en funciones independientes, de modo

que la salida de cada una constituye la entrada de la siguiente. En la Fig. 1 se muestra un

diagrama de flujo con las funciones principales que componen el código.

El esquema puede pensarse en cuatro niveles. El primero corresponde a la lectura de los

datos, encontrándose dos funciones: load_VTK(), que lee la malla desde un archivo VTK

mediante pyvista (Sullivan y Kaszynski, 2019), y load_lagrangian_data(), diseñada

para importar todos los campos de interés escritos para la nube kinematicCloud. Esta última

devuelve tres diccionarios: uno para las partículas, otro para los contactos entre partículas y

un tercero para los contactos entre partículas y pared. Según el tipo de campo a importar, se

implementaron funciones específicas que emplean el paquete foamlib (Gerlero y Kler, 2025),

NumPy y expresiones regulares.

El segundo nivel agrupa los cálculos previos a proyectar los campos sobre la malla euleriana.

Allí se incluyen dos funciones que recuperan las fuerzas internas entre partículas y entre partí-

culas y pared, tal como las calcula OPENFOAM® . Previo a estas funciones, se obtiene el paso

temporal directamente del archivo log, con el fin de contemplar los subpasos empleados por

OPENFOAM® en el cálculo de fuerzas. Finalmente, una función de este nivel asigna a cada

partícula y punto de contacto el identificador de la celda en la que se encuentran alojados.

El tercer nivel corresponde al cálculo y construcción de los campos continuos sobre la malla

de pyvista. Por último, el cuarto nivel está compuesto por la función encargada de escribir los

archivos de salida, que pueden visualizarse con herramientas de postproceso como ParaView.

3. RESULTADOS Y DISCUSIONES

3.1. Presentación casos

Se abordan dos casos de aplicación del algoritmo de promediado espacial: uno dinámico

y otro estático. En la Fig. 2 se muestran las geometrías de ambos problemas. El primer caso

corresponde a una rampa inclinada en la cual se posicionan las partículas según una distribución

inicial predeterminada. En los limites verticales se imponen condiciones periódicas, de modo

que las partículas que abandonan el dominio por el lado derecho reingresan por el izquierdo

y las que abandonan el dominio por el frente ingresan por detrás, conservando sus variables

cinemáticas. Estas condiciones de periodicidad en el eje z convierten la simulación en pseudo-

2D. En la pared superior se aplica una condición tipo patch, que permite la salida libre de

partículas, aunque la altura considerada es lo suficientemente grande como para evitar pérdidas
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Figura 1: Diagrama de flujo de las funciones que se utilizan para homogeizar una simulación DEM en OPEN-

FOAM®

de material. La pared inferior presenta un coeficiente de fricción µ = 0,5, valor que también

se adopta para las interacciones partícula–partícula. Este rozamiento detiene las partículas en la

base y permite el desarrollo de un perfil de velocidad ascendente en la dirección vertical x. La

gravedad se descompone en los dos ejes según g = −9,81(sin(21,5o); cos(21,5o)).
El segundo caso corresponde a un silo en el cual las partículas son inyectadas desde una

posición inicial y se dejan evolucionar bajo la acción de la gravedad hasta alcanzar el estado

de reposo. La simulación es bidimensional, por lo tanto no se resuelven las ecuaciones para la

coordenada z. Tanto en las paredes laterales y las interacciones entre partículas se establece un

coeficiente de fricción µ = 0,5.

3.2. Flujo en rampa

Bhateja y Khakhar (2020) presentan una solución analítica para el flujo en rampa pseudo-

2D, donde el perfil de velocidades es proporcional a y3/2. En la Fig. 3b se muestra el perfil de

velocidades en una franja central de la geometría, tanto a partir de los datos obtenidos mediante

DEM como de los valores calculados con el algoritmo de promediado espacial. La comparación

entre ambas curvas revela un buen acuerdo, lo que confirma que el campo de velocidades se

recupera correctamente a partir de las velocidades lagrangianas de las partículas.

Al igual que Bhateja y Khakhar (2020) los datos de ambas curvas se ajustan con la función

f(y) = A
(
h3/2 − (h− y)3/2

)
+ Ux;mı́n, donde h es la altura de partículas. En ambos casos se

observa una buena correlación con esta ley, destacándose el ajuste correspondiente a la veloci-

dad promediada, para el cual se obtuvo un coeficiente de determinación R2 = 99% y un error

cuadrático medio RMS = 0,12 m/s. Estos resultados muestran que las técnicas de promediado

espacial permiten reproducir adecuadamente el comportamiento físico esperado.

3.3. Silo estático

En la Fig. 4a se muestran los campos correspondientes a las componentes diagonales σc
xx y

σc
yy, junto con el campo de presión P . Se observa que la componente σc

yy presenta una magni-

tud superior a la de σc
xx, lo que refleja la predominancia de los esfuerzos verticales sobre los

horizontales esperable para este caso.
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Figura 2: Características geométricas de los casos de estudio. (a) Caso de flujo en rampa y (b) silo estático
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DEM y campo promediado, con ajustes para ambos casos proporcionales a y3/2.
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Figura 4: (a) Campos de la componente diagonales del tensor de tensiones colisional y de Presión calculado como

P = 1/2(σc
xx+σc

yy). (b) Presión promediada en función de la profundidad y ajuste tipo hidrostático y tipo Janssen.

En la Fig. 4b se muestra la presión promedio en función de la profundidad. El promedio se

calculó sobre celdas que estan a una misma altura. Inicialmente, la curva numérica muestra un

buen ajuste con la ley hidrostática (P = ρgy), válida hasta aproximadamente 0,4 m de profun-

didad. A partir de este punto, la presión deja de crecer linealmente y comienza a desviarse del

comportamiento hidrostático, mostrando una tendencia a la saturación compatible con el efecto

Janssen, ver Ec. (21), donde parte del peso granular se transfiere a las paredes por fricción.

No obstante, los resultados obtenidos a partir de la simulación DEM muestran un leve de-

crecimiento de la presión a mayores profundidades, lo cual no es consistente con el comporta-

miento teórico esperado. Este efecto puede deberse a limitaciones de la propia simulación DEM,

principalmente relacionadas con su carácter bidimensional (al no resolverse la coordenada z) y

con la falta de un promediado sobre distintas realizaciones del experimento.

P (y) = ρgλ · (1− e−y/λ) , λ = W/(2 ∗ µw ∗K) (21)

4. CONCLUSIONES

En este trabajo se presentó en detalle una técnica que permite obtener campos continuos a

partir de variables asociadas a cada partícula. Se implementó esta técnica en Python y se vali-

daron con casos iniciales, los cuales muestran la potencialidad de la herramienta para trabajos

futuros, como el ajuste de leyes reológicas. El marco teórico propuesto brinda la posibilidad

de considerar interacciones más complejas entre partículas y de definir modelos más comple-

tos de manera sistemática. Una vez ajustada la reología para el sistema de interés, es posible

cuantificar la precisión del modelo en configuraciones típicas, como los ejemplos propuestos.
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