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Resumen. La simulacién de medios granulares en fase densa mediante particulas resulta costoso compu-
tacionalmente a escala industrial. Por ello, se recurre a modelos continuos que describen el comporta-
miento macroscépico del material a partir de leyes reoldgicas. Para ajustar estos modelos, es necesario
contar con datos confiables que capturen las interacciones a nivel de grano. Las simulaciones con el
Meétodo de Elementos Discretos (DEM) permiten obtener esta informacién a escala de laboratorio, pe-
ro sus resultados se expresan en propiedades y variables asociadas a las particulas, las cuales deben ser
transformadas en campos del continuo. En este trabajo se presenta un c6digo que implementa técnicas de
promediado espacial para convertir resultados lagrangianos de simulaciones DEM en campos continuos
definidos sobre una malla euleriana. Asimismo, se presentan casos simples que demuestran la capacidad
para extraer informacion ttil que permite calibrar y validar dichos modelos continuos.

Keywords: Granular media, DEM, Spatial averaging

Abstract. Simulating dense-phase granular media using particles is computationally expensive on an
industrial scale. For this reason, continuous models based on rheological laws are used to describe the
macroscopic behaviour of the material. To adjust these models, reliable data capturing interactions at the
grain level is required. Simulations using the Discrete Element Method (DEM) can provide this infor-
mation on a laboratory scale, but the results are expressed in terms of particle properties and variables,
which must be transformed into continuous fields. This paper presents a code that implements spatial
averaging techniques to convert the results of DEM simulations from a Lagrangian perspective into con-
tinuous fields defined on an Eulerian mesh. Simple cases are also presented to demonstrate the ability to
extract useful information for calibrating and validating these continuous models.
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1. INTRODUCCION

Los medios granulares se pueden encontrar en diversas aplicaciones industriales y en siste-
mas naturales. Algunos ejemplos de este tipo son el transporte de semillas, la descarga de silos
y el desmoronamiento de rocas en la montafia. En todos estos casos, el abordaje con modelos
matematicos simplificados no es suficiente y las simulaciones computacionales son prioritarias
para estudiar con profundidad todos estos casos. No obstante la descripcion matemaética de estos
medios presenta dificultades, algunas de ellas son la gran cantidad de particulas involucradas
con sus complejidades en la interaccion, son medios en los que se disipa rapidamente la ener-
gia debido a las colisiones y en un mismo problema se puede notar que el medio granular se
asemeja a un solido, liquido o gas en funcién de su concentraciéon (Andreotti et al., 2013).

Las simulaciones por medio del método de elementos discretos (DEM, por sus siglas en
inglés), presentado por Cundall y Strack (1979), modela las interacciones entre particulas por
medio de una interpenetracion entre ellas. Actualmente, este método permite realizar simulacio-
nes confiables de medios granulares con la limitacién de que el costo computacional incrementa
rdpidamente a medida que se contempla una mayor cantidad de particulas. Estos altos costos
computacionales dificultan la posibilidad de abordar problemas a escala real, desde este punto
es que surgen teorias que ya no modelan cada interaccidn entre particulas, sino que describen al
medio granular en términos eulerianos, es decir, mediante campos continuos. La Teoria Cinéti-
ca de Flujos Granulares (KTGF, por sus siglas en inglés), fue presentada por Jenkins y Savage
(1983) y Lun et al. (1984). Esta teoria surge de un desarrollo similar a la teoria cinética mo-
lecular clasica, siendo valida para medios granulares muy diluidos. Un enfoque diferente fue
presentado por Jop et al. (2006) para flujos granulares en fase densa, el modelo propone una
ley reoldgica para el medio granular basada en un numero inercial, /. Estos modelos son utiles
cuando el comportamiento del medio granular se asemeja a un liquido (Venier et al., 2021a,b).

Tanto en la KTGF como en los modelos friccionales, es necesario ajustar pardmetros del
medio granular para obtener resultados confiables. Estos pardmetros de ajustes pueden obte-
nerse con simulaciones DEM, pero los resultados lagrangianos deben ser trabajados para que
sean comparables con los modelos eulerianos. En este aspecto es que toman relevancias las
técnicas de promediado espacial desarrolladas en primera instancia por Glasser y Goldhirsch
(2001); Goldenberg y Goldhirsch (2002); Goldhirsch (2010) y continuadas en la ultima década
por Weinhart et al. (2012, 2013). Bhateja y Khakhar (2020); Gu et al. (2019) presentan apli-
caciones concretas de estas estrategias para la construccion de leyes reoldgicas y validacion de
KTGF y propuesta para contemplar efecto cohesivos.

En este trabajo realizamos una implementacion en python3 de las estrategias de promediado
espacial. Esta herramienta fue disefiada para incorporar como datos de entrada los resultados de
simulaciones DEM de OPENFOAM® (OpenCFD Ltd./ESI Group, 2023)..

2. METODOLOGIA Y MARCO TEORICO
2.1. Meétodo de Elementos Discretos

En el presente trabajo se emplea el solver icoUncoupledKinematicParcelFoam, en el cual
se encuentra implementado el método DEM de Cundall y Strack (1979) con las modificacio-
nes propuestas por Tsuji et al. (1992). Una particula perteneciente a un medio granular puede
presentar dos tipos de movimiento: traslacional y rotacional. Durante el desarrollo de estos mo-
vimientos, las particulas interactiian con sus vecinas o con las paredes a través de colisiones y
fuerzas de friccion. En las simulaciones DEM, dichas trayectorias se determinan mediante la
integracion de la segunda ley de Newton, ver Ec. (1). Siendo U, y w,, la velocidad lineal y
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angular de la particula «, respectivamente.

du, & dw, <=
e NT R, e e N e 1

Los términos Fyg 5 y MY 5 corresponden a la fuerza y al momento de contacto ejercidos por
la particula 3 sobre la particula a.. A su vez, m,, e I, denotan la masa y el momento de inercia
de la particula . Finalmente, n¢, indica el nimero de contactos asociados a la particula a.

Cabe destacar que los problemas analizados en este trabajo no cuentan con un fluido inter-
particula. Las particulas se asumen perfectamente rigidas, esféricas y de densidad uniforme. La
gravedad es la unica fuerza externa actuante (FY, = V,p,g = %dz Tpag). Donde V,, d, y pa
representan el volumen, el didmetro y la densidad de la particula o.

La esencia de DEM es permitir una interpenetracion, 9, entre las particulas rigidas. A partir
de esta hipétesis, se propone un modelo para calcular las fuerzas de contacto en funcién de dicha
interpenetracion. En el modelo resorte—deslizador-amortiguador, el resorte representa la recu-
peracion eléstica del contacto, el amortiguador modela las pérdidas asociadas a la inelasticidad
de la colision y el deslizador actiia cuando existe deslizamiento dindmico entre particulas.

Cuando dos particulas entran en contacto se produce una deformacién local que genera un
area de interaccion, sobre la cual se distribuyen fuerzas que pueden descomponerse en dos
componentes: una normal y otra tangencial al plano de contacto, ¥z = F, 5+ Fi 5.

La teoria de contacto hertziana (Tsuji et al., 1992) establece que la componente normal de
la fuerza de contacto varia con la potencia 3/2 de la interpenetracién normal, |, | = % (do +
dsg) — |pa — Psl, siendo p, y pg la posicion de las particulas o y 3. Mientras que la fuerza de
contacto normal se expresa en la Ec. (2).

Sz;aﬁ = <_kn |5n|3/2 — Nn Ua,B : 1’1) n (2)

Donde k,, es la constante de rigidez del resorte y 7),, la constante de amortiguamiento, ambas
calculadas segun lo propuesto en Tsuji et al. (1992). Por su parte, U,z representa la velocidad
relativa entre las particulas a y 3, definida como U,z = U, — Ug.

En el modelo de friccién de Amontons—Coulomb, la fuerza de rozamiento permanece inde-
terminada mientras no exista deslizamiento entre las superficies de contacto. Por ello, para la
componente tangencial de la fuerza se adopta un modelo resorte—amortiguador lineal en ausen-
cia de deslizamiento relativo, y se aplica el modelo de fricciéon de Coulomb cuando las particulas
comienzan a deslizarse entre si. Ver Ec. (3).

c o (_kt ‘515‘ - ntUt;a,B ’ l'l)Il si ’Fg;ocﬁ‘ < /’L|FSL;O¢6’7
tiaf T Fe Utas i |Fe Fe 3)
_M| n;aﬁ‘ [Ut.agl S1 ’ t;oaﬁ‘ > ,LL| n;aﬁ|'

Donde 1 es el coeficiente de friccidn, k, la rigidez del resorte tangencial, y 7, el coeficiente
de amortiguamiento tangencial (en OPENFOAM® se asume igual al normal). El término 0,
representa la interpenetracion tangencial, la cual se acumula en el tiempo hasta que la fuerza
resultante supera el limite impuesto por la friccion. U,z es la velocidad relativa tangencial,
calculada con la Ec. (4). Con dicha fuerza se calcula el momento de contacto Mg, ; segtn la
Ec. (5). Siendo 7, y 7 los radios de las particulas o y 3 respectivamente.

Utop = Usp — (Uyp - n)n + (raw, — rpwps) X n 4)
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2.2. Promediado espacial

El objetivo de estas técnicas de promediado es recuperar campos continuos partiendo desde
la dindmica microscépica de las particulas. Estas técnicas fueron desarrolladas por Glasser y
Goldhirsch (2001); Goldenberg y Goldhirsch (2002); Goldhirsch (2010) en la cudl se propone
una funcién de convolucién, G(x) (siguiendo la notacién propuesta por Andreotti et al. (2013),
donde x puede ser cualquier punto del dominio). Dicha funcién debe ser semidefinida positiva,
su integral sobre todo el dominio debe ser uno y debe tener un tnico maximo en 0.

Haciendo uso de esta funcién y considerando un empaquetamiento de N particulas, todas
con la misma masa m, cuya posicién y velocidad del centro de masa se definen como x°(¢) y
u®(t). Se puede definir la densidad, p(x,t), y el momento lineal, pu(x,t), del medio como:

plx,t) =m Y G(x—x*(1)) (6)
pu(x, ) =m» u*(t)G(x —x(t)) (7)

Con el fin de encontrar una expresién para el tensor de tensiones del medio, 0;;(x, 1), se
deriva temporalmente la definicién de momento lineal para el medio granular, ver Ec. (8), y se
plantea el balance de momento lineal para un medio continuo, ver Ec. (9).

N

Opu;(x,t) og dug(t N
pu i Zmu )8_%—'_27” udt( )g(x—x (1)) (8)
a=1

Opu;  Opujuy,

Al substraer la Ec. (9) a la Ec. (8) se obtiene una expresion para la divergencia del tensor
de tensiones, ver Ec. (10). La misma resulta de la adicién de dos términos, el primero esta
relacionado con la fluctuacion de la velocidad de las particulas y el segundo con la fuerzas de
contacto entre particulas.

9)

aUzj . 0 N a a o f‘ o
Dur = o, P~ D mf (1) (1) (x = x)) (- = 9)G(x—x(1))  (10)
:8_% a ﬁxj

El primer término se encuentra escrito como una divergencia, con lo cual se recupera direc-
tamente una expresion para la contribucidn cinética al tensor de tensiones, Ec. (11).

N
o = pugu; — Y muf (t)us (t)G(x — x°) (11)
a=1
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En el caso de la contribucién colisional, se deben realizar manipulaciones algebraicas para
expresar el término en forma de divergencia. El primer paso consiste en aplicar la segunda ley
de Newton a la particula arbitraria «, donde ff‘ﬁ denota la fuerza ejercida por la particula 3
sobre « (Ec. 12).

du®
= mgi Y [0) (12)
B

Con la segunda y tercera ley de Newton, se reescribe el segundo término de la Ec. (10) como:

80

ax] Zf“ﬁ x = x*(t) - G(x - x"(1))) (13)

Las identidades Ec. (14) y Ec. (15) son validas para cualquier funcién suave, siendo s € [0, 1]
un parametro auxiliar que interpola linealmente entre las posiciones de las particulas o y 3.

G(x — x*(t)) — G(x — X" / —Q (x — xP(t) + sx*P(t)) ds (14)
a (0%
&g(x xP(t) 4 sx*F(t)) :xjﬁ(t)a—xjg(x—x (t) 4 sx*P (1)) (15)

Aplicando dichas identidades a Ec. (13) se puede reescribir el segundo término de la Ec. (10)
como divergencia, tal como se muestra en Ec (16).
dos;(x, 1)
aSL’j

0 1 b o 1 N
=, 3 2 A | g6+ sxv(oas (16)

Finalmente, podemos escribir una expresion para el tensor de tensiones (a partir de las po-
siciones, velocidades y fuerzas de las particulas) como una suma de dos contribuciones una
cinética y una por contacto entre particulas, 0;;(x,t) = of;(x, 1) + o§;(x, 1).

Trabajando algebraicamente la Ec. (11) y con51derando a la fluctuacion de la velocidad de
la particula o como la diferencia entre la velocidad de la particula y la velocidad del campo
homogeneizado (u,* = u®(t) — u;(x — x*)). Se arriba a Ec. (17) para la contribucién cinética.
Mientras que de Ec. (16) se extrae la expresion Ec. (18) para la contribucién por contacto.

N
= — Z mu;o‘(t)u;o‘(t)g(x —x%(t)) (17)
a=1
1
o (x,1) = —% > fa” /O G(x — x(t) + sx°P(t))ds (18)
a,B

El dltimo aspecto a definir es la funcién de peso, la cual tiene una influencia débil en los
resultados, siendo el pardmetro clave el ancho w de dicha funcién (Weinhart et al., 2013). En
este trabajo se emplea la funcion indicada en la Ec. (19), que adopta el valor 1/V cuando la
particula se encuentra dentro de la regién de promediado y cero en caso contrario.

0(x) = - H(w ~ x| 19

Aplicando esta eleccion se obtiene la siguiente expresion para el tensor de tensiones.
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1 ‘o 1
0ij =~ > mufu — - > (20)
acV ceV

La segunda sumatoria se da sobre todos los contactos ¢ dentro del volumen V. El vector f*
es el médulo de la fuerza entre las 2 particulas que estén en el contacto c. Mientras que el vector
b¢ es el vector que une los 2 centroides de las particulas a 'y 5.

En lo referente a la contribucion de las paredes, Weinhart et al. (2012) propone incorporarla
en la derivaci6n original, considerando tres términos: 0;;(x, ) = ol (x, ) +05;(x, )+ 0 (x, t).
En este trabajo, cada contacto con las paredes se incluyé dentro de o7, considerando que el
vector b, = ri — rw® conecta el centro de la particula con el punto de contacto.

2.3. Implementacion en codigo

La implementacion del algoritmo de homogenizacion se realizé en Python 3. La filosofia
adoptada en el desarrollo del cédigo es que sea modular y portable a otras plataformas de
simulacion DEM. Para ello, se estructur6 el programa en funciones independientes, de modo
que la salida de cada una constituye la entrada de la siguiente. En la Fig. 1 se muestra un
diagrama de flujo con las funciones principales que componen el cédigo.

El esquema puede pensarse en cuatro niveles. El primero corresponde a la lectura de los
datos, encontrdndose dos funciones: 1oad_VTK (), que lee la malla desde un archivo VTK
mediante pyvista (Sullivan y Kaszynski, 2019), y 1load_lagrangian_data (), disefiada
para importar todos los campos de interés escritos para la nube kinematicCloud. Esta ultima
devuelve tres diccionarios: uno para las particulas, otro para los contactos entre particulas y
un tercero para los contactos entre particulas y pared. Segun el tipo de campo a importar, se
implementaron funciones especificas que emplean el paquete foamlib (Gerlero y Kler, 2025),
NumPy y expresiones regulares.

El segundo nivel agrupa los célculos previos a proyectar los campos sobre la malla euleriana.
Alli se incluyen dos funciones que recuperan las fuerzas internas entre particulas y entre parti-
culas y pared, tal como las calcula OPENFOAM® . Previo a estas funciones, se obtiene el paso
temporal directamente del archivo 1og, con el fin de contemplar los subpasos empleados por
OPENFOAM® en el calculo de fuerzas. Finalmente, una funcién de este nivel asigna a cada
particula y punto de contacto el identificador de la celda en la que se encuentran alojados.

El tercer nivel corresponde al calculo y construccion de los campos continuos sobre la malla
de pyvista. Por ultimo, el cuarto nivel estd compuesto por la funcién encargada de escribir los
archivos de salida, que pueden visualizarse con herramientas de postproceso como ParaView.

3. RESULTADOS Y DISCUSIONES
3.1. Presentacion casos

Se abordan dos casos de aplicacioén del algoritmo de promediado espacial: uno dindmico
y otro estdtico. En la Fig. 2 se muestran las geometrias de ambos problemas. El primer caso
corresponde a una rampa inclinada en la cual se posicionan las particulas segtin una distribucion
inicial predeterminada. En los limites verticales se imponen condiciones periddicas, de modo
que las particulas que abandonan el dominio por el lado derecho reingresan por el izquierdo
y las que abandonan el dominio por el frente ingresan por detrds, conservando sus variables
cinematicas. Estas condiciones de periodicidad en el eje z convierten la simulacién en pseudo-
2D. En la pared superior se aplica una condicion tipo patch, que permite la salida libre de
particulas, aunque la altura considerada es lo suficientemente grande como para evitar pérdidas
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[ |

[ mesh = load_VTK(...) J [ particles, contacts_particles, contacts_wall = load_lagrangian_data(time) ]
1

dt = return_dt(...)

[ 1
contacts_particles['pairForce'] = contacts_wall['wallForce'] =
PairSpringSliderDashpo(...) WallSpringSliderDashpot(...)
I ]

I

[ particleCell, paircontacCell, wallcontacCell = map_to_cells_pv(..,)]

l

[ mesh.cell_data['Uparticle'], mesh.cell_data['sigma_c'], mesh.cell_data['sigma_k'] = construct_fields(...) ]

l

[ write_fields(time, mesh) }

Figura 1: Diagrama de flujo de las funciones que se utilizan para homogeizar una simulacién DEM en OPEN-
FOAM®

de material. La pared inferior presenta un coeficiente de friccién ;o = 0,5, valor que también
se adopta para las interacciones particula—particula. Este rozamiento detiene las particulas en la
base y permite el desarrollo de un perfil de velocidad ascendente en la direccion vertical x. La
gravedad se descompone en los dos ejes segiin g = —9,81(sin(21,5%); cos(21,5°)).

El segundo caso corresponde a un silo en el cual las particulas son inyectadas desde una
posicion inicial y se dejan evolucionar bajo la accion de la gravedad hasta alcanzar el estado
de reposo. La simulacién es bidimensional, por lo tanto no se resuelven las ecuaciones para la
coordenada z. Tanto en las paredes laterales y las interacciones entre particulas se establece un
coeficiente de friccion p = 0,5.

3.2. Flujo en rampa

Bhateja y Khakhar (2020) presentan una solucién analitica para el flujo en rampa pseudo-
2D, donde el perfil de velocidades es proporcional a 3*/2. En la Fig. 3b se muestra el perfil de
velocidades en una franja central de la geometria, tanto a partir de los datos obtenidos mediante
DEM como de los valores calculados con el algoritmo de promediado espacial. La comparacién
entre ambas curvas revela un buen acuerdo, lo que confirma que el campo de velocidades se
recupera correctamente a partir de las velocidades lagrangianas de las particulas.

Al igual que Bhateja y Khakhar (2020) los datos de ambas curvas se ajustan con la funcién
fy) = A(R*? = (h—y)*?*) + Uy, donde h es la altura de particulas. En ambos casos se
observa una buena correlacién con esta ley, destacdndose el ajuste correspondiente a la veloci-
dad promediada, para el cual se obtuvo un coeficiente de determinacién R? = 99 % y un error
cuadrético medio RM S = 0,12 m/s. Estos resultados muestran que las técnicas de promediado
espacial permiten reproducir adecuadamente el comportamiento fisico esperado.

3.3. Silo estatico

En la Fig. 4a se muestran los campos correspondientes a las componentes diagonales o¢, y
oy, junto con el campo de presion P. Se observa que la componente o, presenta una magni-
tud superior a la de o¢,, lo que refleja la predominancia de los esfuerzos verticales sobre los

horizontales esperable para este caso.
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d = 0,75 mm

0,0321 m

;02112

21,5°

(a)

Figura 2: Caracteristicas geométricas de los casos de estudio. (a) Caso de flujo en rampa y (b) silo estatico

- Ux DEM
0.030 —~Ux promedio
0.0251 — Ajuste Ux DEM

= 0.0201 —Ajuste Ux promedio

= 0.015
0.010
0.005
0.000{_roF==2 =7 i i i
2 4 6 8 10
—U, [m/s]
(a) (b)

Figura 3: (a) Campo de velocidades x aplicando el algoritmo de promediado espacial (b) Perfil de velocidad x para
DEM y campo promediado, con ajustes para ambos casos proporcionales a 3%/
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o5, [Pa] oy, [Pa] P [Pa

20000~
18000
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16000 120001 Ajuste hidrostético
14000 [ 10000+ — Ajuste Janssen )
cvs
12000 80001 ,
8 60001 4
10000 .
4000 1 I
8000 )
2000
6000
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b
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Figura 4: (a) Campos de la componente diagonales del tensor de tensiones colisional y de Presién calculado como
P=1/2(cS, +a§y). (b) Presién promediada en funcién de la profundidad y ajuste tipo hidrostético y tipo Janssen.

En la Fig. 4b se muestra la presién promedio en funcién de la profundidad. El promedio se
calculd sobre celdas que estan a una misma altura. Inicialmente, la curva numérica muestra un
buen ajuste con la ley hidrostatica (P = pgy), valida hasta aproximadamente 0,4 m de profun-
didad. A partir de este punto, la presion deja de crecer linealmente y comienza a desviarse del
comportamiento hidrostatico, mostrando una tendencia a la saturacién compatible con el efecto
Janssen, ver Ec. (21), donde parte del peso granular se transfiere a las paredes por friccion.

No obstante, los resultados obtenidos a partir de la simulacion DEM muestran un leve de-
crecimiento de la presién a mayores profundidades, lo cual no es consistente con el comporta-
miento tedrico esperado. Este efecto puede deberse a limitaciones de la propia simulacién DEM,
principalmente relacionadas con su cardcter bidimensional (al no resolverse la coordenada 2) y
con la falta de un promediado sobre distintas realizaciones del experimento.

P(y) = pgh- (1 —e V) | X=W/(2% pio * K) (21)
4. CONCLUSIONES

En este trabajo se present6 en detalle una técnica que permite obtener campos continuos a
partir de variables asociadas a cada particula. Se implementé esta técnica en Python y se vali-
daron con casos iniciales, los cuales muestran la potencialidad de la herramienta para trabajos
futuros, como el ajuste de leyes reoldgicas. El marco tedrico propuesto brinda la posibilidad
de considerar interacciones mds complejas entre particulas y de definir modelos mas comple-
tos de manera sistemdtica. Una vez ajustada la reologia para el sistema de interés, es posible
cuantificar la precision del modelo en configuraciones tipicas, como los ejemplos propuestos.
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