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Abstract. A washing machine is a household appliance that has an interesting and complex dynami-

calbehavior, which can be well described by a set of nonlinear differential equations. When analyzing

the dynamics of a washing machine, the steady state motion (periodic solution) is an important response

to consider and can be evaluated as a solution of a periodic boundary-valueproblem. The unbalance

generated by the unevenly distribution of clothes during centrifugationis highly random and, therefore,

a stochastic model is necessary to take this characteristic intoaccount. The novelty of this paper consists

in the analysis of a washing machine dynamics considering the uncertainty in the unbalance. Therefore,

a stochastic model is proposed for the dynamics of a washing machine. The steady state solutions are

calculated using the shootingmethod combined with a sequential continuation to evaluate it across all

the spin speeds of the machine. The probability distributions of the washing machine vibration at those

different spin speeds are approximated using Monte Carlo simulations. The impact of the random un-

balance in the vibration amplitude of the washing machine is also investigated and consists in a keyinput

for the fatigue design of many components.
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1 INTRODUCTION

Washing machines are considered nowadays an essential household appliance. They can

be divided in two main categories: vertical or horizontal axis washing machines. Although

the European market is composed almost exclusively by horizontal axes washing machines,

the vertical ones are still dominant in the Latin America, Middle East and South East Asia.

When considering only the main global manufacturers, all the vertical axis washing machines

in currently production are of the hang-suspension type. An illustrative drawing of this type of

washing machine is presented in the Fig. 1, where its main components are highlighted. When

considering the dynamics of washing machines, the analysis is usually restricted to a particular

assemble of components called Washing Group (WG). A WG is composed by a hydraulic bal-

ancer, a drum, a tank and a drivetrain, and it is connected through a hang-suspension system to

the cabinet of the washing machine.

This paper deals with the stochastic nonlinear dynamics (Cursi and Sampaio, 2015) of a WG

during centrifuge stage. The dynamics is interesting and complex, mostly because of the non-

usual suspension systems, that allows large displacements and rotations of the WG, the spinning

of the rotating parts, that generates gyroscopic effects, and the hydraulic balancer, that passively

compensates part of the unbalance in the machine. When analyzing the dynamics of a WG, the

random nature of the unbalance mass of clothes adds some significant difficulty. At each new

washing cycle, the pieces of clothes move randomly during the washing phase and therefore

become unevenly distributed around the drum during centrifuge. This uneven distribution gen-

erates a random unbalance mass, and therefore, must be incorporated in the model as random

variables. Surprisingly, as far as the authors know, all the publications about the dynamics of

vertical axis washing machines have considered the unbalance mass as a deterministic quantity,

which is unrealistic. The first dynamic model of hang-suspension washing machines was pro-

posed by Conrad and Soedel (1995) and corresponds to a rudimentary model that was used to

study the problem of oscillatory walk. Bae et al. (2002) proposed a new dynamic model of a

WG in which the hydraulic balancer was considered, but assuming only small rotations. Chen

and Zhang (2010) proposed a new model assuming finite rotation and analyzed the stability of

the solutions, but without considering the existence of a hydraulic balancer. Later, Chen et al.

(2011) incorporated the hydraulic balancer into the model and studied a new method for getting

a smaller deflection angle. In this paper, the main contribution consists in analyze the dynamics

of a WG using a stochastic model (Lima and Sampaio, 2018), so that the random nature of the

unbalance is taken into account. With this analysis, it is possible to investigate the impact of

the uncertain unbalance in the dynamics of the WG, which is crucial to improve the reliabil-

ity of new components during product development. The dynamics of this stochastic model

is analyzed in here through the computation of probability distributions of the WG’s vibration

(peak-to-peak amplitude) at different spin speeds. From those distributions of vibration levels,

which considers the uncertainty in the unbalance parameters, it becomes possible to, for exam-

ple, have a more precise procedure to evaluate the fatigue damage of the components. Also, it

allows a proper set of gaps in the product to avoid possible impacts between the WG and the

washing machine cabinet during centrifuge.

This paper is organized as follows. First, the deterministic nonlinear equation of motion

of the WG proposed by Chen et al. (2011) is presented. Then, two random variables that

characterize the random unbalance are incorporated to the dynamic model, transforming it from

a deterministic model into a stochastic one. Then, a periodic boundary-value problem is created

to evaluate the dynamic responses at steady state condition (constant spin speeds). The Shooting
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Figure 1: Illustration of a hang-suspension vertical axis washing machine.

method is used to evaluate periodic responses numerically, and it is combined with a sequential

continuation to evaluate the periodic solutions at predefined and discrete spin speeds. Monte

Carlo simulations are then performed based on samples of the probability distribution of the

unbalance random variables, allowing an estimation of the probability distribution of the WG

vibration. Finally, some analyses of the results are made, followed by some conclusions.

2 EQUATION OF MOTION

The equation of motion applied here to describe the WG dynamics was first presented by

Chen et al. (2011), and it was derived using a Lagrangian approach. In this model, it is assumed

that all the components of the WG are rigid bodies, that the upper joints of the suspension

system can not translate with respect to an inertial frame, and the suspension rods can not spin.

Also, the inertial forces of the suspension’s rods are neglected because of their small masses.

Since this model describes the WG dynamics during centrifuge, it is assumed that all water from

the washing phase have been drained out, leaving in the drum only wet clothes. A additional

simplification of constant inertial parameter for the clothes are used.

To evaluate the equation of motion, two reference frames were used: XrYrZr, which is an

inertial frame fixed to the ground, and XbYbZb, which is a local frame embedded in the tank.

The Xb and Yb axes are located in the plane that crosses all the lower spherical joints, and the

Zb axis is equal to the axis of rotation of the drum with respect to the tank. Both frames are

schematically presented in Figure 2.

2.1 Deterministic model

Following the model proposed by Chen et al. (2011), the equation of motion of the WG can

be written as

(M+∆M) q̈ =
1

2

[
∂M

∂q
q̇

]T

q̇− Ṁq̇+ F
(

θ̇, θ̈
)

+Q+ L−
∂VWG

∂q
, (1)

where q =
[
x y z α β γ

]T
∈ R

6 corresponds to the vector of generalized coordinates

and it defines the position and orientation of the local frame with respect to the inertial frame.

The matrices ∆M and M ∈ R
6×6 correspond to the mass matrix of the hydraulic balancer and

Mecánica Computacional Vol XLI, págs. 299-308 (2024) 301

Copyright © 2024 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


Xr

Xb

Yb

R

Yr

Zr

Or

Ob

Zb

Hu

Random 

unbalance mass

x

r

Figure 2: Schematic representation of the global and local frames. Characterization of the random unbalance

through two random variables Hu and Mu.

the mass matrix of the rest of the WG’s components, respectively. The vector F
(

θ̇, θ̈
)

∈ R
6

collects all the terms related to the spin speed θ̇ and spin acceleration θ̈ of the drum. Vectors Q

and L ∈ R
6 represent the generalized forces from the suspension system and from the hydraulic

balancer, respectively. At last, VWG represents the gravitational potential energy of the system.

Any dot superscript represents a time derivative. Interested readers should resort for Chen and

Zhang (2010) and Chen et al. (2011) for the complete derivation of this equation of motion.

2.2 Stochastic model

In order to incorporate the random unbalance mass into the model, two continuous, uniform

and independent random variables are first defined as:

U ∼ U [0.5, 1.5] (kg) (2)

H ∼ U [0, 0.4] (m), (3)

where U is the random variable that defines the uncertain mass of the unbalance and H is

the random variable that defines to height of the unbalance mass with respect to XbYb plane.

The intervals for both uniform distributions were defined from experience and experimental

observations of a global major manufacturer.

Details of how to derive the stochastic model of the WG including the effects of the random

unbalance can be found in Wagner and Sampaio (2024). It is given by the following equation

of motion:

(M+∆M+Mu)
︸ ︷︷ ︸

MT (q,θ,U ,H)

q̈ = fT

(

q, q̇, θ, θ̇, θ̈,U ,H
)

, (4)

where q is a random response for the washing machines dynamics since it depends directly on

the random variable of the unbalance, U and H. It consists in a nonautonomous mechanical

system since θ is a known function of time.
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3 STEADY STATE RESPONSE

The steady state response of the WG vibration is now calculated. Therefore, the drum spin

speed is considered constant and equals to Ω, so that it is possible to set θ̈ = 0, θ̇ = Ω and

θ = Ωt in the equation of motion. The steady state response corresponds to the closed orbit

found as the solution of the following periodic boundary-value problem:

{

ẏ(t) = g (t,y(t),Ω,U ,H) , for 0 ≤ t ≤ T

y(0) = y(T )
, (5)

where

g (t,y(t),Ω,U ,H) =

[
q̇(t)

M−1
T (t,q,U ,H) fT (t,q, q̇,Ω,U ,H)

]

(6)

is the vector field, y(t) =
[
qT (t) q̇T (t)

]T
is the state of the system, and T = 2π

Ω
is the known

period of the solution. The first line in Eq. (5) represents the same equation of motion defined

in Eq. (4), rewritten in its state space form.

This periodic boundary-value problem can be solved numerically using the Shooting method

Wagner et al. (2023). This particular method searches for a specific initial state that, after the

equation of motion is integrated along the known period, returns the system to the same initial

state and therefore closes the orbit. To find this specific initial state, a residual vector R must

be first defined as

R(y0) = y(T )− y0, (7)

where y0 = y(0) is the specific initial state that represents the unknowns of the problem.

Notice that the final state y(T ) also depends on the specific initial state since it is obtained

as the solution of an initial value problem with y0 as initial conditions. The solution of the

periodic boundary value problem is found solving R(y0) = 0, which can be done (within some

error tolerance) using the Newton-Raphson solver. To integrate the equation of motion from the

initial state to the final state, the 4th order Runge-Kutta method was used here. The Jacobian

matrix
∂R(y0)
∂y0

required by the Newton-Raphson method was also computed numerically using

a finite difference method.

It is important for the analysis discussed in this paper to evaluate the periodic solution of

the WG vibration for the entire range of spin speeds of the machine. To this end, a sequential

continuation was used Wagner and Sampaio (2023). The operational spin speed range was first

defined from zero to the maximum spin speed, so that Ω ∈ [0, Ωmax]. A discrete set of spin

speed values, {Ωk}
Ns

k=0, was then defined dividing the operational spin speed range into equally

spaced intervals, where Ωk = kΩmax

Ns
, and Ns is the number of intervals. The Shooting method

was then used to solve the periodic boundary-value problem for each of those discrete values of

spin speeds, sequentially, from low to high speeds. The first guessed solution for the periodic

solution at a given spin speed Ωk was set as the previous known solution at a spin speed Ωk−1.

The sequential continuation allows the periodic solutions to be define for the same values of

discrete spin speed at every new simulation. This is an important requirement to evaluate the

probability distribution of the WG vibration discussed in the next section and computed using

Monte Carlo simulations. From experience, the sequential continuation should not face any

problem while performing this continuation of periodic solutions since no bifurcation point is

expected.

For each calculated periodic solution, the displacement of the tank was also calculated at

two particular points, the top and bottom position, i.e., st and sb respectively, as illustrated in
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Figure 3: a) and b) represents the steady state response of the washer vibration. c) and d) are the radial
displacements of the tank in the top and bottom position. e) and f) are the pk-pk top and bottom displace-
ments of the tank for different spin speeds.

Fig. 1. The Analysis of the WG dynamics in this paper will be restricted to those points. The top

and bottom positions of the tank were chosen because they are common points used to attach

accelerometers during vibration tests. For those two key displacements, st and sb, the analysis

will be restricted to the peak-to-peak amplitude of the displacement in the Xr direction.

To illustrate this analysis procedure, a periodic solution of the WG computed using the

Shooting method is presented in Fig. 3. For this particular simulation, a sample for of the

unbalance mass and height was used (U = 0.576kg and H = 0.335m). In Fig. 3a, the trans-

lation of the local frame is presented, while its orientation (the Euler’s angle) is presented in

Fig. 3b. From this periodic solution, the displacements at the top and bottom of the tank in the

Xr direction are presented in Fig. 3c and Fig. 3d, respectively. Repeating this procedure to all

discrete predefined spin speeds, where the periodic solutions were calculated using the Shoot-

ing method and the sequential continuation, the peak-to-peak amplitude of the top and bottom

displacements in the Xr direction can be plotted with respect to the spin speed, as showed by

the in Fig. 3e and Fig. 3f. The red dots represent the peak-to-peak amplitude at 450 RPM. The

steady state vibration curve can then be constructed connecting all the dots.

4 MONTE CARLO SIMULATIONS

The unbalance generated by the tangled clothes during a washing cycle is highly random. If

the same pieces of clothes are washed twice, the expected unbalance inside the drum, during

centrifuge, can be significantly different. Therefore, the unbalanced mass and its relative height

with respect to the bottom of the drum had to be set as random variables in the stochastic

dynamical model. To analyze the probability distribution of the WG dynamics, Monte Carlo

simulations were performed. For each simulation run, a random sample of the unbalance mass

and its height was used as inputs to compute the respective steady state vibration curve, as

described the in last section. A total of 10000 simulations were performed to estimate the

probabilistic distribution of the WG vibration. Using all the computed steady state vibration

curves, one histogram was constructed for each discrete spin speed (from 10 to 850 RPM with
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Figure 4: Probability distribution of the WG peak-to-peak vibration at different spin speeds.

a 20 RPM increment). To this end, a total of 430000 periodic solutions of the stochastic model

had to be calculated, which shows the computational cost of this analysis. With the implemented

algorithm, a total of 1.15 s was required, on average, to compute each periodic solution on a

personal computer. Figure 4a-f shows some of those histograms (for 150, 350 and 850 RPM).

Figure 4g-h shows the concatenation of all histograms using color plots, where the dark red

represents the highest probability, while the dark blue represents the lowest.

It is possible to notice that the histogram of the top displacements at 150 RPM (Fig. 4a) can

be approximate by a uniform distribution. Meanwhile, all the other histograms with spin speed

above 200 RPM show a long tail for high vibration amplitudes, an therefore they lose their

symmetry with respect to the mean. This characteristic is enhanced as the spin speed increases.

To better understand this changing behavior in the distributions as function of the spin speed,

two scatter plots are presented for two spin speeds, 130 and 850 RPM, as shown in Fig. 5. Both

plots show the vibration amplitude (peak-to-peak) of the top displacement as function of the

unbalance mass and height samples used in the Monte Carlo simulation. Examining Fig. 5a,

it becomes clear that the vibration amplitude at low spin speeds (in this case 130 RPM) have a
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Figure 5: Scatter plot of the top displacement vibration amplitude (peak-to-peak) as function of the random vari-

ables samples.

linear dependency on the unbalance mass and it is independent of the unbalance height. Since

the top displacement depends on only one of the random variables, and because this dependency

is linear, the distribution of the displacement follows the same type of distribution of the random

variable, in this case, a uniform one. Such behavior drastically changes at high spin speeds, as

shown in Fig. 5b. Although an approximately linear dependency in the unbalance mass is still

true, the vibration amplitude becomes also dependent on the unbalance height. Apparently, the

dependency in the unbalance height is not linear since an increasing in the vibration level is

observed when the unbalance height is low (0 < H < 0.1).

To investigate if the number of simulation runs used was large enough to properly charac-

terize the probability distribution of the WG vibration, a convergence analysis of the first four

statistical moments of the computed data was performed. The mean, standard deviation, skew-

ness, and kurtosis of the vibration amplitudes were calculated for each spin speed as function of

the number of simulations runs. The convergences of all spin speed were similar, and therefore,

only the result for 850 RPM is presented in Fig. 6. It was decided to use a logarithm scale

for the number of simulations to better visualize the fluctuation of the statistical moments with

a small number of samples. From those result, it was possible to confirm that those first four

statistical moments reached their convergence with approximately 5000 simulations, which is

half of the number used to generate the results in this paper.

5 CONCLUSIONS

In this paper, the uncertainty in the unbalance mass caused by the unevenly distribution of

the clothes in a washing machine was considered for the dynamic analysis of the WG. To this

end, the deterministic model proposed by Chen et al. (2011) was modified and transformed

into a stochastic model. The random unbalance was characterized by two random variables,

and the resulting forces in the equation of motion were computed using the Lagrange’s equa-

tion. The obtained nonlinear equation of motion for the WG dynamics corresponds to a nonau-

tonomous stochastic system, and its steady state solutions (periodic solutions) for different spin

speeds were calculated using the Shooting method combined with a sequential continuation.

The probability distribution of the WG vibration was approximated using Monte Carlo simu-

lations. From the results, it was observed a changing in the probability distribution of the WG

vibration as function of the spin speed. At high speeds, the distributions became less symmet-

ric with a long tail towards the high vibration levels. To better understand these changes in
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Figure 6: First four statistical moments of the top and bottom vibration amplitude (peak-to-peak) as function of

the number of simulations in the Monte Carlo simulation for a spin speed of 850 RPM.

the distributions, a scatter plot of the vibration amplitude as function of the random variables

were created. It was possible to conclude that at low spin speed, the vibration depends only

on the unbalance mass and not on its height. As the spin speed becomes high, the unbalance

height becomes also relevant in the vibration amplitude. At the end, a convergence analysis of

some statistical moments of the vibration levels was conducted, and it was used to validated the

amount of simulation runs used in the Monte Carlo simulation of this paper.
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