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Abstract. Post peak mechanical behavior of Fiber Reinforced Concrete (FRC) under tensile stress states

depends not only on the fibers material, shape, content and slenderness but also, on the mechanical and

physical properties of the cement paste. Being the improvement of ductility under tension, usually, the

main purpose of adding fibers to the concrete composition, an accurate consideration of the resulting

post peak behavior results a key parameter for an appropriate numerical simulation of the mechanical

behavior of structural FRC elements. In this work, particularly focused on steel FRC, the suitability of

cubic Bézier curves is analyzed, firstly, for determining Fracture Energy in mode I of FRC and then,

for replacing the traditional exponential decay function usually used for characterizing the softening

parameter in concrete constitutive formulations. The results show that the use of these parametric curves

allows a flexible numerical approach that can be used for characterizing concretes with very different

mechanical behaviors.
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1 INTRODUCTION

Concrete is a complex material characterized by a mechanical behavior governed, among

other influence factors, by the stresses state. On the one hand, it presents a compressive strength

much higher than its tensile one. On the other hand, while under uniaxial compression the

material behaves in a way that can be classified as quasi-brittle, under uniaxial tension this

behavior drastically turns to brittle while, on the contrary, under triaxial compression it almost

turns to ductile with an increase in strength depending on the confinement level (van Mier,

1997).

The addition of fibers to the concrete, leading to Fiber Reinforced Concrete (FRC), has

been proved to increase concrete ductility in tensile scenarios and to reduce crack widths by a

bridge effect on open cracks (Banthia and Nandakumar, 2003; Barros et al., 2005; Buratti et al.,

2011). However, regarding that the resulting composite material presents a mechanical behavior

highly dependent on the FRC composition, cannot be properly characterized only by its strength

properties. Any change in the fibers material, shape, slenderness or content, or in the cement

matrix mechanical properties, lead to a different mechanical behavior. Therefore, Three Point

Bending (TPB) or similar tests are necessary for obtaining the corresponding material fracture

properties (See Model Code (MC1, 2012) and RILEM-TC-162-TDF (RIL, 2003)). Simplified

methods for evaluating structural capacity consider the FRC Stress-Crack Opening relation as

perfectly-plastic, linear o bilinear. However, considering the real FRC post peak behavior, those

methods could not be enough accurate but conservative.

Bézier parametric curves are extensively used in the design of highways and railways, CAD

systems, design of prototypes in many industrial applications (Martín et al., 2006; Habib and

Sakaib, 2009; Sederberg, 2012), mesh design in FE environments (Menezes and Teodosiu,

2000), and also in the geometrical approximation of fibers in fiber reinforced composites (Kato

and Ramm, 2009). Regarding failure and yielding surfaces, it can be mentioned the work by

Vegter et al. (1995), who proposed a representation of the yield function using Bézier polyno-

mials, interpolating mechanical tests results directly for the case of anisotropic metallic sheets,

under a biaxial stresses state. In (Folino and Smilovich, 2015) a Bézier approximation was

proposed for the interpolation between tensile and compressie meridians of yield surfaces in

the deviatoric view. In this paper, it is explored the suitability of those parametric curves for

modeling the post peak behavior of FRC.

2 BÉZIER CURVES

Bézier curves are defined by functions relating a set of given points, denoted as control

points Pi, by blending functions in terms of a parameter 0 ≤ t ≤ 1, and are represented by the

following equation (Bézier, 2014; Piegl and Tiller, 1997)

B(t) =
n∑

i=0

n!

i! (n− i)!
(1− t)n−i tiPi (1)

being n an integer number and i = 0, 1, ..., n.

In this work, cubic Bézier curves are applied, which are defined by four control points (See

Fig.1), leading to a third-order polynomial in terms of parameter t. The broken line that can be

formed connecting the control points, is called control polygon. Therefore, the coordinates of a

curve y = y(x) can be represented by Eq. (2)
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Figure 1: Typical cubic Bézier curve

{
x(t) = (1− t)3xo + 3(1− t)2tx1 + 3(1− t)t2x2 + t3x3

y(t) = (1− t)3yo + 3(1− t)2ty1 + 3(1− t)t2y2 + t3y3
(2)

where xi and yi are the coordinates of each one of the four control points P0, P1, P2 and P3.

Eq. (2) can be also written as detailed in Eq. (3), where coefficients ax, bx, cx and dx are

functions of the x coordinates of the control points, while ay, by, cy and dy are functions of the

corresponding y coordinates.

{
x(t) = axt

3 + bxt
2 + cxt+ dx

y(t) = ayt
3 + byt

2 + cyt+ dy
(3)

Bézier polynomials are characterized by the following properties: (1) The start point and end

point of Bézier curve coincide with start point and end point of the control polygon, (2) The

tangent vector of the curve at the start and end points coincides with the direction of the first

and last edges of the control polygon, respectively, (3) The curve is inside the convex hull of

the control polygon and (4) It is an approximation, not an interpolation, of the Control Points.

Figure 2: TPB tests: Load vs. CMOD

3 TPB TEST RESULTS REPRESENTED BY BÉZIER CURVES

In this Section, Bézier curves are applied for approximating the post peak non linear response

of FRC in TPB tests, with two aims: (1) Convert the experimental data into a continuous curve,

and (2) Obtain the fracture energy in mode I (GI
f ). For this purpose, the experimental results

depicted in Fig. 2 are considered, corresponding to a normal strength concrete, plain (PC) and

with two different contents of end-hooked steel macro-fibers, 40 kg/m3 (FRC40) and 60 kg/m3

(FRC60), rescpectively (For further details, see Folino et al. (2020)).
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3.1 Load-CMOD TPB test curves

By applying Eq. (2) for approximating TPB tests post peak response, now coordinate x
corresponds to the measured Crack mouth opening displacement (CMOD), and coordinate y,

to the applied load (P ) in the considered TPB test.

As previously explained, for creating a cubic Bézier approximation curve, it is necessary to

define four control points. In this case, the first and last points (See Fig. 1), P0 and P3, respec-

tively, correspond to experimental data. P0 is defined as the limit of proportionality point, or

in other words, the point where the non linear response starts, while P3 is defined as the ulti-

mate point of the experimental curve to be captured. For the intermediate points, the following

expressions are proposed, based on the coordinates of points P0 and P3 and considering three

parameters greater than zero, denoted as C1, C2 and C3, to be calibrated for each data set, by an

appropriate optimization procedure

P1

{
x1 = C1 x0 ; y1 =

(y0 − y3)

C1

+
y3
C2

P2

{
x2 = x1 +

(x3 − x1)

5
; y2 =

(y0 − y3)

10 C1

+
y3
C3

(4)

Once the control points are defined, the curve is obtained based on Eq. (2) by adopting

values for parameter t between 0 and 1. It is important to remark that t is itself a normalized

coordinate along the length of the curve. In other words, for example t= 0.4 is located at the

40% of the curve length, starting from P0.

Parameters C1, C2 and C3 were calibrated in order to approximate the results in Fig. 2 and

the resulting values are presented in Table 1. The obtained approximation curves are depicted

in Fig. 3.

Cubic Bézier Other

C1 C2 C3 R2 R2

PC 4.80 0.97 1.00 0.996 0.994 (Exp.)

FRC40 4.00 2.05 0.86 0.988 0.945 (Polyn. 6th)

FRC60 1.50 0.88 0.88 0.921 0.929 (Polyn. 6th)

Table 1: Approximation curves for the TPB tests: Parameters and R-squared values for the Bézier

curves and for other considered functions

In the case of PC, an exponential law was adopted to be compared with the Bézier curve.

It is well known that an exponential decay function can appropriately represent the post peak

behavior of plain concrete in a TPB test and therefore, there is no advantage to consider a

Bézier function instead. On the contrary, when fibers are considered, an exponential law is not

useful to approximate the corresponding complex non linear behavior. Therefore, 6th degree

polynomials were considered in the frame of this work in order to compare the corresponding

results with the proposed Bézier approximation.

R-squared values R2 obtained in each case are included in Table 1, where it can be seen

that using a cubic Bézier approximation and considering only three parameters, the non linear

behavior was captured with a good accuracy. The corresponding R2 scores obtained for the
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(a) (b)

(c)

Figure 3: Bézier approximation curves for the nonlinear post peak response obtained in TPB tests (a)

PC, (b) FRC40 and (c) FRC60

6th degree polynomials are also included in Table 1 and it can be observed that in all cases

the obtained results are very similar to those of Bézier approximations. In practice, a bilinear

softening law is usually adopted for simulating the post peak response of FRC. However, the

proposed three parameters Bézier approximation can improve numerical results, mainly in high

complex constitutive modeling.

In regard to PC, from plots in Fig. 3(a) it can be concluded that the proposed cubic Bézier

approximation can be used as an alternative of the exponential decay function regarding that

similar R2 values were obtained, demonstrating a good accuracy.

3.2 Fracture Energy GI
f

Fracture energy in mode I, GI
f , can be obtained from TPB tests on notched specimens un-

der CMOD control by calculating the area under the P − CMOD curve and introducing a

correction factor equal to 0.75 (Guinea et al., 1992; Michelini et al., 2023). Using a Bézier

approximation and based on Eq. (3), the area under the Load-CMOD curve is determined as

detailed in Eq. (5)

A =
1∫
0

y(t)x′(t)dt = ax
(
1
2
ay +

3
5
by +

3
4
cy + dy

)
+ bx

(
2
5
ay +

1
2
by +

2
3
cy + dy

)
+

+cx
(
1
4
ay +

1
3
by +

1
2
cy + dy

) (5)

As it can be observed, with the proposed formulation, GI
f can be easily determined by a

closed expression, in terms of the coordinates of the control points. For the analyzed cases,

GI
f values of 0.1067, 1.2777 and 2.2381 N/mm were obtained for PC, FRC40 and FRC60,

respectively.
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4 PROPOSED SOFTENING LAW FOR PLAIN AND FIBER REINFORCED CON-
CRETE

In this section, the obtained Bézier approximation is applied for transforming the exponential

decay function of the softening, both for plain and FRC.

4.1 Typical softening law based on an exponential decay function

For the purpose of this Section, the Performance Dependent Model (PDM) (Folino and Etse,

2012) is used as a basis. This constitutive formulation, based on the three stress invariants, is

applicable to predict the mechanical behavior of PC of different qualities.

Under continuous loading, when the peak load is reached at a material point, it means that

the maximum strength surface is reached. At that moment, the softening law of the model is

activated and plastic yield surfaces, defined in the Haigh Westergaard stresses space, are ob-

tained by progressive contraction of the failure surface. These softening surfaces are associated

to a softening parameter c which represents the decohesion as the ratio between the actual stress

and the strength. It varies between a maximum value c=1 at peak strength, before activating the

degradation or softening process in the material, and a minimum value c = σres/σmax, being

σres the residual strength and σmax, the maximum one.

In the PDM, a fracture-energy based plastic softening law is adopted. The fracture energy

GI
f , defined as the energy necessary to create a crack of unit surface area in a plane parallel

to the crack direction, At , is considered to be equal to the energy W dissipated during plastic

softening in an equivalent elastoplastic continuum (See (Eq. 6)).





dGI
f At =

∫

At

σt duf dA (Discontinuous)

dWf =

∫

Vt

σt dε̃f dV (Discontinuous)

(6)

The rate of crack opening displacement u̇f and the rate of the tensile fracture strains ˜̇εf
uniformly distributed in the equivalent continuum are related by

u̇f = lc ˙̃εf (7)

being lc the characteristic length at the material level, acting as a gage length. In this case (mode

I), the characteristic length lc associated to a direct tensile test is represented as ht. To extended

this concept to a general mode II type of failure, the corresponding fracture energy GII
f needs

to be considered as well as the appropriate characteristic length. In case of PDM, the evolution

of the softening parameter c is defined by an exponential decay function as

c = exp

(
−δ κs

ur

)
(8)

where κs is the fracture energy based softening measure, ur the maximum crack opening dis-

placement, and δ is a parameter defining the shape of the decay function. The evolution law of

the fracture energy based softening measure κs is defined as

κ̇s = u̇f = lc ˙̃εf = lc ∥⟨m⟩∥ λ̇ (9)
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(a) (b)

Figure 4: Evolution of decohesion parameter c during softening process for different loading scenarios

by applying (a) Exponential decay function and (b) Bézier polynomials

where the McCauley operator extracts only the tensile components of the gradient to the plastic

potential m and λ is the plastic multiplier. The characteristic length lc for mode II type of

fracture is defined as

lc = ht / ω(GII
f
/GI

f
) (10)

where ω is an internal function of the PDM that estimates the ratio between the fracture energies

in modes II and I (GII
f and GI

f ) in terms of the acting confinement that is represented by the

normalized first Haigh Westergaard stress coordinate ξ and depending on the concrete quality.

In Fig. 4(a) it can be observed the PDM resulting evolution of the decohesion parameter c for a

normal strength concrete.

4.2 Plain Concrete - Evolution of decohesion parameter c expressed by Bézier functions

In this Subsection, the evolution law based on the exponential decay function detailed in Eq.

(8), is replaced by Bézier polynomials as

{
ε̃f (t) = ax(κs)t

3 + bx(κs)t
2 + cx(κs)t+ dx(κs)

c(t) = ay(κs)t
3 + by(κs)t

2 + cy(κs)t+ dy(κs)

(11)

where now, coordinate x represents the tensile fracture strain and y, the decohesion parameter

c.
The proposal involves the following hypotheses for the case of Uniaxial Tension (UT): (1)

Coordinates of control point P0 are (0, 1); (2) Coordinates of control point P3 are (ur/lc, 0); (3)

For the considered concrete type, apply the same parameters C1, C2 and C3 in Eq. (4) estimated

for the TPB test case for PC. Therefore, the evolution of c for the UT case is completely defined.

For increasing confinement levels: coordinate y of control point P3 is always equal zero,

while coordinate x continuously evolves, considering that the characteristic length varies with

confinement, causing a less localized failure type with higher confinement (Bažant and Pijaudier-

Cabot, 1989). This value should be defined regarding the material quality and experimental data.

Once defined the position of point P3, and considering that coordinates of P0 are always (0, 1),

coordinates of points P1 and P2 are defined in terms of Point P3.

In Fig. 4(b) it can be observed the resulting evolution of the decohesion parameter c for a PC

based on Bézier functions for different levels of confinement.
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Figure 5: Fracture Energy for Fiber Reinforced Concrete in a TPB test

4.3 FRC - Evolution of decohesion parameter c expressed by Bézier functions

For PC, fracture energy increases with confinement level. On the contrary, in the case of

FRC, fracture energy under tensile stress scenarios is not necessary smaller than that corre-

sponding to uniaxial compression. This is due to the fact that fibers are activated when a crack

tends to open. However, this contribution of the fibers is almost insignificant in the case of high

confinements.

The total GI
f obtaines from a TPB test, as it was previously described, can be decomposed

in the contribution of plain concrete GI
f−m and the contribution of fibers GI

f−f as (See Fig.5)

GI
f = GI

f−m +GI
f−f (12)

The proposal herein is as follows:

- Modify the failure criterion by considering the FRC tensile strength

- Evaluate the total fracture energy of FRC GI
f from TPB tests

- Evaluate the fracture energy of Plain Concrete GI
f−m and obtain the corresponding con-

tribution of the fibers GI
f−f

- Determine for the FRC the evolution of c under Uniaxial Tension (UT): (1) Coordinates of

control point P0 are (0, 1); (2) Coordinates of control point P3 are calibrated considering

the increase of fracture energy relative to the plain concrete case; (3) For the considered

concrete type, apply the same parameters C1, C2 and C3 in Eq. (4) estimated for the TPB

test case for FRC.

- Consider the hypothesis that the contribution of GI
f−f gradually disappears with increas-

ing confinement. Therefore, the relation GII
f /GI

f gradually pass from the actual value

under UT, to GII
f /GI

f−m for medium confinement levels. Evolution of parameter c can be

seen in Fig. 6, where, in comparison with Fig. 4(b), it can be observed that only the UC

is slightly affected by the contribution of fibers, while for medium and high confinement

levels, almost no change is observed.

5 CONCLUSIONS

In the first part of this paper, cubic Bézier curves were proposed for approximating TPB test

results of Fiber Reinforced Concrete. The results showed that a good accuracy can be obtained

by appropriately calibrating three parameters. Once the resulting Bézier polynomial is obtained,
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Figure 6: Evolution of decohesion parameter c for FRC40

it was demonstrated that Fracture Energy in mode I of the composite material can be obtained

in a single step, in terms of the curve properties.

In the second part, the obtained Bézier approximation was applied for transforming the ex-

ponential decay function of the softening or decohesion parameter c, both for plain and for

Fiber Reinforced concretes. The presented results demonstrated that a more flexible function is

obtained particularly suitable for characterizing the post peak behavior of FRC.

The work presented herein is the first step of an ongoing research program. In the future,

the proposal has to be implemented in the frame of a FE environment in order to obtain the

structural response of FRC elements under different load scenarios. In particular, an extension

for including the incidence of high temperatures on the mechanical behavior of FRC will be

considered.
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