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Abstract.Problems solved by computational mechanics are becoming increasingly complex, involving

diverse geometries, boundary conditions, and materials. Recent studies show that combining different

numerical methodologies is one of the most effective approaches for advancing fracture simulation. In

this context, this work presents the implementation of Peridynamics (PD) theory in the ANSYS LS-

DYNA finite element software, enabling the creation of hybrid models called PD-DYNA. PD is a non-

local theory in which particles are connected to one another, forming a continuum representation. Since

the theory is not based on classical continuum mechanics, fracture simulation occurs naturally through

bond breakage. To assess the results, comparisons with reference problems using the Finite Element

Method are carried out to verify the implementation, while benchmark cases are employed to validate

the fracture behavior of brittle materials. The results highlight the computational efficiency and appli-

cability of the proposed implementation in structural analyses. This work emphasizes the potential of

integrating PD and LS-DYNA as an advanced tool for fracture analysis in material engineering, pointing

toward promising applications in new materials, varied loading conditions, and three-dimensional prob-

lems.
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1 INTRODUCTION

The study of fracture in structural materials is one of the great challenges of engineering,

given the risks of catastrophic failures in critical components. Based on the renowned work

of Griffith, Inglis, and Irwin, fracture mechanics has established itself as a fundamental field,

providing more reliable design methods than traditional approaches based solely on material

strength (Anderson 2017).

However, numerical prediction of crack nucleation and propagation still has limitations when

using models derived from Classical Continuum Mechanics (CCM). This is because local differ-

ential equations are no longer valid in the presence of discontinuities, since spatial derivatives

are not defined at the crack tip (Macek and Silling 2007). In the case of the Finite Element

Method (FEM), widely applied in structural, thermal, and flow problems, such difficulties man-

ifest themselves, for example, in the need to align the crack with the mesh and in excessive

refinement in critical regions (Fang et al. 2019).

As an alternative, different numerical methods have been developed to directly address crack

initiation and propagation. Among them, the Discrete Element Method (DEM) (Bićanić 2004)

and the theory of (PD) (Silling and Askari 2005) stand out. PD, originally proposed by Silling

(2000), reformulates solid mechanics by replacing local derivatives with non-local integrals,

allowing a body to be represented as a set of interconnected material points. Fractures emerge

naturally in this context through the breaking of bonds between particles, without the need for

additional external criteria.

Although peridinamics provides a consistent and effective approach to dealing with disconti-

nuities, it has a high computational cost compared to FEM. Thus, the integration of approaches,

using PD in critical regions and FEM in the rest of the domain, has been considered a promis-

ing strategy, resulting in so-called hybrid models (Sun and Fish 2019). This type of coupling

is particularly advantageous in analyses involving heterogeneous and anisotropic materials, as

well as situations where fault propagation is complex (Belytschko et al. 2014).

In this scenario, the implementation of peridinamics theory in commercial software, such as

ANSYS LS-DYNA, gains relevance, as it combines the efficiency of FEM and the ability of PD

to deal with fracture. Thus, this research is dedicated to the implementation and verification of

the PD-DYNA method, seeking to validate its application in reference problems and contribute

to the advancement of numerical simulation techniques in fracture mechanics.

2 THEORETICAL BASIS

2.1 Peridynamic Theory

The peridynamic theory was originally proposed by Silling (2000), and it is based on the

interactions that occur within a neighborhood Hx of a material point, limited by a radius δ,

as illustrated in Figure (1). Within this approach, the formulation can be divided into two

categories: bond-based peridynamics and state-based peridynamics. In this work, the bond-

based model is adopted due to its conceptual simplicity and greater ease of implementation.

A formulação da peridinâmica pode ser interpretada como uma versão integral da equação

de equilíbrio do momento linear utilizada na Mecânica Clássica do Contínuo (MCC). Assim, o

movimento de um ponto material em um meio elástico pode ser descrito pela Equação (1)

ρü(x, t) =

∫
Hx

f (u (x′, t)− u(x, t), x′ − x) dVx′ + b(x, t) (1)

This equation, f represents the pairwise interaction function, indicating the force that point x′
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Figure 1: Main parameters of Peridynamics. [Adapted from Javili et al. (2019)]

exerts on point x, which is expressed in units of force per squared volume. The term u represents

the displacement field, b refers to the applied body forces, and ρ is the material density. The

integral is calculated over Hx, called the horizon or neighborhood, defined as the region around

point x where all points are within a distance less than δ in the reference configuration, as shown

in Figure (1). The set of points belonging to this neighborhood is referred to as the family of x
(Javili et al. 2019).

In peridynamics, the interaction between two material points occurs through a bond, whose

behavior is described by a linear relationship between force and stretch. This formulation is

known as the Prototype Microelastic Brittle (PMB) model, illustrated in Figure (2), and it is

widely used in simulations of brittle materials.

Figure 2: PMB peridynamic model. [Adapted from ?]

In the PMB model, the bond strain is given by Equation (2):

s =
|ξ + η| − |ξ|

|ξ|
=

|ξ + η| − ξ

ξ
(2)

Where:

- ξ is the relative position vector between two points;

- η is the relative displacement vector. Both are defined in the reference configuration.
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According to Cabral et al. (2019), the elasticity modulus is associated with the link, where

this parameter varies depending on the model’s dimensions. For the plane stress condition,

E ′ = E and ν ′ = ν are assumed. Nevertheless, for the plane strain condition, these values are

adjusted to E ′ = E/(1− ν2) and ν ′ = ν/(1− ν).
It is also worth noting that, in bond-based peridynamics, the Poisson’s ratio has restricted

values: 1/3 for plane stress and 1/4 for both plane strain and three-dimensional problems. In

the peridynamic model, damage is considered from the breaking of bonds, which occurs when

the critical stretch s0 is reached, as illustrated in Figure (1).

As rupture links are irreversible, the model depends on the applied loading history. Further-

more, if a point does not have rupture links, the local damage will be φ = 0, if the point is

completely disconnected from the body, the value will be φ = 1.

3 METHODOLOGY

This section will describes the methodology for implementing peridynamics in ANSYS LS-

DYNA. The application cases used to validate the implementation are presented in sequence.

3.1 PD-DYNA Implementation

ANSYS LS-DYNA integrates the program’s explicit finite element analysis capabilities with

the ANSYS APDL pre- and post-processing environments. This tool is widely used in transient

simulations involving nonlinearities, such as related to geometry, contact, large strain, and com-

plex material constitutive laws. The implementation of Peridynamics in ANSYS LS-DYNA,

called PD-DYNA, was accomplished through the following steps: - Declare the material prop-

erties;

- Calculate connection stiffness;

- Generate the geometry (nodes and connections): PD connections are represented by spring

elements;

- Calculate the volume correction factor;

- Calculate the surface correction factor;

- TAssign the constitutive law to each connection;

- Masses are distributed among the nodes and implemented using the explicit 3-D Structural

Mass (MASS166) element. This generates the PD-DYNA model.

- Boundary conditions are applied;

- Problem solution.

Further details of the adopted methodology can be found at Maciel (2022).

3.2 Case Studies

The results of the PD-DYNA and FEM models are shown using three different case studies.

In all cases, the same material properties listed in Table (1) are adopted. The model parameters

are determined according to the methodologies established in the previous section, with δ de-

fined as δ = 3.015∆.
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E (GPa) ν ρ (kg/m3)
192 1/3 8000

Table 1: Proprieties

3.2.1 Case Study 1

This study aims to evaluate the performance of the PD-DYNA model in a two-dimensional

problem. To this end, a comparison with the Finite Element Method (FEM) is performed using

a 2D plate. The plate is constrained on the left side, while a prescribed displacement is imposed

on the right side. The dimensions adopted for the model are: length L = 950,mm and height

W = 200,mm. Figure (3a) depicted the PD-DYNA model of the two-dimensional plate, in

which a material point spacing of ∆ = 50mm was adopted.

(a) (b)

Figure 3: Comparison between models: (a) PD-DYNA and (b) MEF.

The same problem was also modeled using FEM, employing the SHELL163 element, while

maintaining the same discretization level and boundary conditions adopted in PD-DYNA. Fig-

ure (3b) depicts the two-dimensional plate generated in ANSYS LS-DYNA.

The comparison between the two models is carried out by analyzing the displacements in

the x-direction of the nodes located along the plate’s centerline. Furthermore, the correlation

between the applied force and the imposed displacement is also evaluated.

3.2.2 Case Study 2

In this study, a two-dimensional plate with a central hole is considered. The structure is con-

strained on the left side, constrained in both the x and y directions. A prescribed displacement

is applied to the right side. The dimensions adopted for the model are: a length L = 190 mm, a

height W = 190 mm, and a central hole diameter D = 45 mm.

Figure (4a) shown the PD-DYNA model developed for the two-dimensional plate with a

central hole, using a spacing between material points of ∆ = 5mm. Figure (4b) provides a

detailed view of the upper-right region of the hole.

The same case was modeled in ANSYS LS-DYNA using the SHELL163 element, maintain-

ing the same level of discretization and the same boundary conditions applied to the PD-DYNA

model. Figure (4c) shows the two-dimensional plate with a central hole generated in LS-DYNA.

The comparison between the two models is performed by analyzing the displacements of the

nodes located along the X and Y lines. In addition, the force-displacement curve obtained in

each case is also evaluated.
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(a) (b) (c)

Figure 4: (a) PD-DYNA model for the plate with center hole, (b) Zoomed-in section of the hole

corner. (c) Plate with center hole in ANSYS LS-DYNA.

3.2.3 Case Study 3

The first model, whose geometry is illustrated in Figure (5a), was adapted from the work

of Braun and Fernández-Sáez (2014). The problem consists of a rectangular PMMA plate

containing a central notch starting from the left edge. The mechanical properties adopted for the

material correspond to the following: elastic modulus E = 32GPa, density ρ = 2450kg/m3,

Poisson’s ratio ν = 0.33, and fracture toughness Gf = 3Nm. The model was subjected a

constant tensile stress of 1MPa along its upper and lower edges.

(a) (b)

Figure 5: (a) Pre-notched PMMA plate under tensile loading. [Braun and Fernández-Sáez

(2014)]. (b) PD-DYNA model of application 3.

The 2D peridynamic model (PD-DYNA), whose configuration is shown in Figure (5b), com-

prises a mesh of 100× 40 nodes, equidistant in the x and y directions, respectively. The initial

interparticle spacing, ∆x, adopted in the model is 1.0 mm. The interaction horizon, δ, was set

according to the relation δ = 3.015∆x.

4 RESULTS

4.1 Case Study 1

The displacement fields in the x-direction for the flat plate, obtained using PD-DYNA and

FEM, are shown in Figure (6). Visual analysis reveals a good agreement between the two

models.

For a more detailed analysis, the displacements in the x-direction of the nodes located along

the central region of the plate were compared, as shown in Figure (7). The results demonstrate

good agreement among the both models.

A.V.G. PINTO, Q. RIBEIRO DOS SANTOS, A. BORDIN COLPO, L. FERREIRA FRIEDRICH, V. BERGAMINI PUGLIA670

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


(a) (b)

Figure 6: Comparison between x-displacement fields using: (a) PD-DYNA and (b) FEM.

Figure (7b) presents the force-displacement curve in the x-direction (Ux) for the PD-DYNA

and FEM models. Good agreement between the results is observed, with the relative error in

the maximum tensile at the end of the applied displacement not exceeding 3.75%.

(a) (b)

Figure 7: (a) Displacement field at x for each node along the bar with the FEM and PD-DYNA.

(b) Force-displacement relation (Ux) for the flat plate.

4.2 Case Study 2

Figure (8) compares the displacement fields in the x-direction for the plate with a central

hole, as modeled by the PD-DYNA and FEM methods. Figure (9) shows the corresponding

displacement fields in the y-direction for the same problem.
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(a) (b)

Figure 8: Displacement fields in x for the plate with a central hole using: (a) PD-DYNA and

(b) FEM.

(a) (b)

Figure 9: Displacement fields in y for the plate with a central hole using: (a) PD-DYNA and (b)

FEM.

The comparison is illustrated in Figures (10a) and (10b), which show the displacements

in the x- and y-directions along the reference lines. A slightly more pronounced difference

is observed only for the displacements in the x-direction, (Figure 10a), yet the relative error

remains limited to 3.71%.

4.3 Case Study 3

The PMMA plate simulation (Figures 11a–11c), crack propagation is observed at different

instants, with branching resulting from the high stress concentration, as predicted by classical

fracture theories. Figures (11d–11f) show comparative results from Song et al. (2008) (XFEM),

Braun and Fernández-Sáez (2014) (2D Discrete Models), and Islam and Shaw (2020) (SPH

with pseudo-springs).

Furthermore, analyses at different stress levels were performed in Case Study 3. The results,

presented in Figure (12), demonstrate that the method maintains its accuracy even under varying

loads.

At 0.5 MPa, the crack propagated linearly and uniformly, without significant branching. At

1.5 MPa and 2 MPa, more complex branching emerged, demonstrating the influence of load

magnitude on fracture progression. These results are in agreement with those reported by Islam

and Shaw (2020) for PMMA plates under similar conditions.

A.V.G. PINTO, Q. RIBEIRO DOS SANTOS, A. BORDIN COLPO, L. FERREIRA FRIEDRICH, V. BERGAMINI PUGLIA672

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


(a) (b)

Figure 10: (a) Horizontal displacements along the model’s X line. (b) Vertical displacements

along the model’s Y line.

(a) (b) (c)

(d) (e) (f)

Figure 11: Result of application I in the PD-DYNA model with times of (a) 30 µs, (b) 40 µs

and (c) 50 µs; fracture patterns found by (d) Song et al. (2008), (e) Braun and Fernández-Sáez

(2014) and (f) Islam and Shaw (2020)

(a) 0,5 MPa (b) 1 MPa (c) 1,5 MPa (d) 2 MPa

(e) 0,3 MPa (f) 1 MPa (g) 1,2 MPa (h) 2 MPa

Figure 12: (a), (b), (c) and (d) Result of application 3 with variation of the loads applied in

PD-DYNA; (e), (f), (g) and (h) patterns found by Islam and Shaw (2020).
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5 CONCLUSIONS

The implementation of the peridynamic model in ANSYS LS-DYNA yielded results con-

sistent with the Finite Element Method (FEM) and other numerical methods documented in

the literature, confirming its effectiveness and reliability for fracture analysis in brittle mate-

rials. PD-DYNA accurately captured crack propagation and branching patterns, even under

varying load levels, demonstrating its potential for addressing complex fracture problems. Con-

sequently, the method establishes itself as a promising alternative for future investigations in-

volving heterogeneous materials and diverse loading scenarios.
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