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Resumo. O uso de materiais com comportamento anisotrópico tem crescido nas últimas décadas, im-

pulsionado pela busca por soluções estruturais mais eficientes. O reforço com fibras destaca-se como

estratégia eficaz para melhorar o desempenho mecânico em direções de menor resistência. A modela-

gem de falhas desses materiais, contudo, ainda representa um desafio relevante. Este trabalho emprega a

Mecânica do Dano Concentrado Expandida (XLDM) para descrever o comportamento fisicamente não

linear de materiais anisotrópicos reforçado por fibras. A abordagem tem se mostrado robusta na análise

de processos de degradação estrutural. Adota-se uma técnica de embutimento para representar os efeitos

dos reforços sem introduzir novos graus de liberdade. A formulação foi implementada em um código

computacional baseado no método dos elementos finitos com estrutura baseada em posições, permitindo

considerar os efeitos da não linearidade geométrica na evolução do dano.

Keywords: Anisotropic materials, embedded reinforcements, damage mechanics.

Abstract. The use of materials with anisotropic behaviour has grown in recent decades, driven by the

pursuit of more efficient structural solutions. Fibre reinforcement stands out as an effective strategy to

improve mechanical performance in directions of lower intrinsic strength. However, failure modelling

in such materials remains a relevant challenge. This study employs the Extended Lumped Damage Me-

chanics (XLDM) approach to describe the physically nonlinear behaviour of fibre reinforced anisotropic

materials. The method has proven robust in analysing structural degradation. An embedding technique is

used to account for reinforcement effects without adding degrees of freedom. The formulation has been

implemented in a computational code based on the finite element method with a position-based structure,

allowing the consideration of geometric nonlinearity in damage evolution.
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1 INTRODUÇÃO

A crescente demanda por soluções estruturais sustentáveis tem impulsionado o uso de mate-

riais com menor impacto ambiental, como a madeira e materiais compósitos reforçados. Esse

cenário tem renovado o interesse na modelagem computacional da falha em materiais anisotró-

picos, os quais frequentemente apresentam comportamento não linear complexo, associado à

degradação direcional de suas propriedades mecânicas.

As teorias clássicas de plasticidade, mecânica da fratura e mecânica do dano contínuo (CDM)

fornecem os fundamentos para a modelagem de não linearidades físicas em estruturas. A plas-

ticidade é amplamente utilizada para representar deformações permanentes (Simo e Hughes,

2006; Souza Neto et al., 2008), enquanto a CDM introduz variáveis internas de dano para re-

presentar a degradação progressiva de rigidez, usualmente no contexto de processos termodina-

micamente irreversíveis (Chaboche, 1981; Sun, 2018). Já a mecânica da fratura, em especial os

modelos coesivos (Hillerborg et al., 1976; Santos e Sousa, 2020) e os modelos de campo de fase

(de Borst e Chen, 2024), permite representar a propagação de trincas de forma explícita ou di-

fusa. Apesar de seus avanços, modelos baseados em CDM e campos de fase podem apresentar

dependência de malha ou exigir discretizações altamente refinadas (de Borst, 2002; Peerlings

et al., 1996; Proserpio et al., 2020), salvo quando regularizados por técnicas não-locais ou de

gradiente (Lenz e Mahnken, 2023; Xue et al., 2024).

Como alternativa eficiente, a Mecânica do Dano Concentrado (LDM), proposta original-

mente por Flórez-López (1993), concentra a degradação material em regiões discretas da es-

trutura e vem sendo empregada com sucesso em análises não lineares de estruturas reticuladas

(Kaewkulchai e Williamson, 2004; Amorim et al., 2014; Bazán et al., 2019; Coelho et al., 2022).

Essa abordagem foi posteriormente estendida para domínios bidimensionais contínuos através

da Mecânica do Dano Concentrado Estendida (XLDM), utilizando extensômetros numéricos

embutidos em elementos finitos (Amorim et al., 2018; Picón et al., 2021). A XLDM tem mos-

trado resultados promissores na simulação de falhas em materiais quase-frágeis com leis de

dano exponenciais (Teles et al., 2023), no estudo de domínios reforçados com fibras (Cunha

et al., 2024) e em formulações isogeométricas (Nardi e Leonel, 2024). Além disso, estudos

comparativos com modelos coesivos demonstram sua objetividade de malha, uma vez que a

degradação é tratada de forma intra-elementar (Amorim et al., 2024).

Recentemente, Teles et al. (2025) propuseram uma generalização da XLDM ao formulá-la

no contexto do Método dos Elementos Finitos baseado em Posição (Bonet et al., 2000; Coda e

Greco, 2004). Essa abordagem permite análises geometricamente exatas, com consideração in-

trínseca de grandes deslocamentos e rotações, resultando em uma formulação não corrotacional

de implementação compacta. A precisão do método tem sido validada em diversas aplicações

não lineares (Coda et al., 2022; Carvalho et al., 2023; Avancini et al., 2024). Tal estratégia é

adotada aqui como base computacional para os avanços explorados.

Com base nesse arcabouço, propõe-se uma reformulação da XLDM sem o uso de extensô-

metros numéricos, o que contribui para a redução do custo computacional e para a simplificação

da implementação. A abordagem também é estendida a materiais anisotrópicos, permitindo a

análise de estruturas com propriedades direcionais, e aplicada a domínios reforçados com fi-

bras embutidas, modeladas elasticamente conforme a técnica proposta por Vanalli et al. (2008)

e adaptada ao MEF posicional por Sampaio et al. (2013). As análises numéricas incluem a

flexão de três pontos em viga de madeira colada e a tração de uma chapa ortotrópica com furo

central e reforços, possibilitando avaliar o desempenho da formulação em diferentes contextos

estruturais.
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2 XLDM SEM NUMEXES NA ABORDAGEM POSICIONAL DO MEF

O presente trabalho dá continuidade a desenvolvimentos prévios da XLDM, formulada no

contexto da abordagem posicional do MEF. Detalhes adicionais sobre a formulação original e

os algoritmos de correção global e local podem ser encontrados em Teles et al. (2025). Neste

estudo, o foco recai sobre as contribuições relacionadas à reformulação da XLDM sem o uso de

extensômetros numéricos (numexes) e à sua aplicação em materiais anisotrópicos na presença

de reforços.

Na XLDM, as bandas de localização, responsáveis por concentrar os efeitos da danificação

material, são posicionadas nas faces dos elementos finitos, com crescimento orientado na dire-

ção perpendicular a essas faces, conforme ilustrado na Figura 1(a). A evolução dessas bandas é

regida por uma lei de evolução da danificação, sendo adotada neste trabalho a lei exponencial

proposta em Teles et al. (2023), cujo comportamento está representado na Figura 1(b) e cuja

forma matemática é dada por:

g(σ, e) = σ − h(e) ≤ 0 ; h(e) = σcr exp(qe) (1)

em que e representa o valor da banda de localização e σ a componente de tensão associada.

Como o crescimento das bandas ocorre perpendicularmente às faces dos elementos, represen-

tando a abertura de fissuras, a equação da lei de danificação (Eq. 1) deve ser avaliada em cada

nó de cada banda de localização:
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grau de amolecimento e pode ser relacionado às propriedades do material conforme:

q = −
σcr

Gf

(3)

em que σcr é a resistência à tração do material e Gf a energia de fratura.

σ
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e

(a)                                                    (b)

Figura 1: Representação das bandas de localização na XLDM e comportamento da lei de dano.

A determinação dos valores das bandas de localização em cada passo de carga é realizada

por meio de um esquema preditor-corretor que emprega as leis constitutiva e de dano adotadas.

Mais detalhes sobre a implementação deste procedimento encontram-se em Teles et al. (2025).
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Uma vez conhecidos os valores das bandas de um dado elemento, calcula-se o deslocamento

associado à danificação por meio da seguinte relação:
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(4)

Conforme discutido anteriormente, este trabalho emprega a abordagem posicional do MEF

(Bonet et al., 2000; Coda e Greco, 2004), na qual o campo de deformações é obtido diretamente

a partir das posições nodais do elemento. Além disso, utiliza-se o modelo constitutivo de Saint-

Venant-Kirchhoff (SVK), que relaciona os tensores de Green-Lagrange e de Piola-Kirchhoff de

segunda espécie. Definindo X⃗d como o vetor de posições do sólido na configuração imediata-

mente anterior ao início da danificação, e somando-o ao deslocamento induzido pela degradação

(Eq. 4), obtém-se o vetor de posições na configuração danificada:

Y⃗ d = X⃗d + u⃗d (5)

Na formulação clássica da XLDM, os valores das bandas são usados para calcular os alonga-

mentos dos extensômetros numéricos. Contudo, neste estudo, os vetores X⃗d e Y⃗ d são utilizados

diretamente para calcular o tensor de deformações de Green-Lagrange devido à danificação:

E
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1

2

(

(

A
d
)T

·A
d
− I

)

(6)

em que A
d é o gradiente da função de mapeamento deformado, calculado conforme a aborda-

gem posicional, mas com base nos vetores X⃗d e Y⃗ d. A partir disso, determina-se o campo de

tensões de Piola-Kirchhoff de segunda espécie com o modelo SVK:

S = C :
(

E− E
d
)

(7)

em que C é o tensor constitutivo do material e E o tensor de deformações totais.

3 ANISOTROPIA EM XLDM

A XLDM tem sido empregada com sucesso na modelagem de comportamentos fisicamente

não lineares em problemas de engenharia. No entanto, este trabalho representa, até onde sabem

os autores, o primeiro esforço em aplicar a XLDM a problemas envolvendo materiais anisotró-

picos.

No modelo constitutivo de Saint-Venant-Kirchhoff, adota-se o mesmo tensor de elasticidade

utilizado na lei de Hooke. Considerando estados planos, o tensor constitutivo e sua inversa são

definidos por:

C =





C11 C12 C16

C12 C22 C26

C16 C26 C66



 and D = C
−1 =




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em que Cij e Dij são os componentes do tensor de elasticidade e de sua inversa, respectiva-

mente, já considerando as condições de simetria tensorial. As componentes da inversa do tensor

de elasticidade são dadas por:

D11 =
1

E1

, D12 = −
ν12

E1

, D16 =
η12,1

2E1

, D22 =
1

E2

, D26 = −
η12,2

2E2

, D66 =
1

2G12

(9)

em que E1 e E2 são os módulos de elasticidade nas direções 1 e 2, ν12 é o coeficiente de Poisson,

G12 é o módulo de elasticidade transversal, e η12,1 e η12,2 são os coeficientes de influência mútua

nas respectivas direções. Esses dois últimos coeficientes são nulos para materiais ortotrópicos

e isotrópicos.

Para incorporar o comportamento anisotrópico na formulação XLDM, além da adoção do

tensor constitutivo apresentado, são considerados valores distintos para os parâmetros da lei de

dano em cada direção do material. Assim, tanto a resistência à tração σcr quanto o parâme-

tro q (Eq. 3) são definidos separadamente por direção, permitindo representar a diferença de

resistência e ductilidade ao longo das direções principais da anisotropia.

4 RESULTADOS

Para validar a formulação proposta da XLDM sem a utilização de numexes em meios ani-

sotrópicos, foram realizadas duas aplicações numéricas. A tolerância adotada, tanto para o

equilíbrio global quanto para o processo de correção local, foi de 10−8. Todas as simulações fo-

ram conduzidas em um computador pessoal com processador AMD RyzenTM 9 7950X 16-Core

@ 4.50 GHz e 64 GB de memória RAM.

4.1 Flexão em 3 pontos em viga de madeira

O primeiro exemplo visa verificar a formulação proposta em uma viga de madeira da espécie

Norway spruce (Picea abies), submetida à flexão em três pontos. O corpo de prova é composto

por três peças coladas com resina epóxi ARALDITE® AW106/953U, conforme ilustrado na

Figura 2. Assume-se adesão perfeita nas interfaces coladas. A orientação das peças foi esco-

lhida de modo a evitar a propagação indesejada de fissuras devido à concentração de tensões

nos apoios. Detalhes adicionais a respeito do experimento realizado podem ser encontrados em

Dourado et al. (2008).

As propriedades experimentais reportadas para o material são: módulo de elasticidade nas

direções 1 e 2, respectivamente, E1 = 9900 MPa e E2 = 410 MPa; coeficiente de Poisson ν12 =
0,018; módulo de elasticidade transversal G12 = 610 MPa; resistência à tração σcr = 1,66 MPa;

e energia de fratura Gf = 0,14481 N/mm. No entanto, nas simulações realizadas no presente

trabalho foi adotado E2 = 270 MPa. Esta redução é justificada em Dourado et al. (2015),

que sugerem a utilização de um módulo de elasticidade equivalente para levar em consideração

175                                             35            35                                          175

35

35

u 

E2

E1

E1

E2

E1
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dimensions in mm

thickness = 20 mm

notch

Figura 2: Geometry and boundary conditions of the three-point bending test.
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efeitos de cisalhamento. Além disso, foi adotada uma lei de dano exponencial, com σcr igual

à resistência à tração reportada. Substituindo-se os valores de σcr e Gf na Eq. 3, obtém-se o

parâmetro q = −11,46 mm−1.

O domínio foi discretizado com quatro malhas diferentes, considerando estado plano de

tensões. A região central da viga foi refinada, pois é onde se espera a concentração e evolução

da danificação (Fig. 3a). O entalhe central do corpo de prova foi representado por duplicação

dos nós centrais ao longo de sua altura.

A Figura 3(b) mostra a evolução das bandas de localização apenas na região central da viga,

dado que não há danificação nas regiões laterais. Observa-se que as bandas se desenvolvem

justamente na região onde se espera a fissuração para as condições de contorno adotadas.

1058 elementos

1058 elementos

(a)                                                                     (b)

2312 elementos
2312 elementos

3362 elementos 4608 elementos

3362 elementos

4608 elementos

Figura 3: Malhas utilizadas (a) e evolução das bandas de localização (b).

A Figura 4(a) apresenta os resultados numéricos obtidos com as quatro malhas testadas,

juntamente com os dados experimentais reportados em Dourado et al. (2008). Já a Figura 4(b)

mostra a comparação entre as malhas mais refinadas. Observa-se boa concordância ao longo de

toda a curva, bem como a convergência dos resultados com o refinamento da malha.
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Figura 4: Resultados numéricos para todas as malhas testadas (a) e para as duas mais refinadas (b).

4.2 Chapa anisotrópica com furo e reforços

O segundo exemplo trata de uma chapa ortotrópica com furo central submetida à tração,

conforme ilustrado na Figura 5(a). A chapa é reforçada com fibras distribuídas aleatoriamente

em seu domínio, em uma fração volumétrica de 1%, com diferentes valores de módulo de

elasticidade. O objetivo é avaliar a influência da rigidez dos reforços na evolução da danificação

e na rigidez global da estrutura.

As propriedades adotadas para o material da matriz são: E1 = 300 MPa, E2 = 3000 MPa,

ν12 = 0,01 e G12 = 30 MPa. Adota-se novamente a lei de dano exponencial, com σcr = 3,0
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Figura 5: Geometria e condições de contorno (a); malha dos reforços (b).

MPa e q = −0,1 mm−1. As fibras de reforço apresentam comportamento elástico, com diâmetro

de 0,5 mm, comprimento de 5 mm e módulo de elasticidade variável conforme indicado nas

legendas dos resultados. O domínio foi discretizado com 7755 elementos em estado plano de

tensões e as fibras foram representadas por 1528 segmentos, resultando na fração volumétrica

desejada. A Figura 5(b) apresenta a distribuição das fibras no domínio.

A Figura 6 mostra os resultados numéricos para diferentes valores de módulo de elasticidade

das fibras. Como esperado, o aumento do módulo da rigidez dos reforços promove o aumento

da rigidez global da chapa. Além disso, observa-se que chapas com fibras mais rígidas apresen-

tam comportamento mais frágil após o início da danificação, com um trecho de endurecimento

seguido de falha. Em contraste, chapas com reforços menos rígidos exibem um comportamento

dúctil, com um trecho maior de amolecimento.
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Figura 6: Malha de fibras e resultados numéricos.

A Figura 7 ilustra a evolução das bandas de localização. Observa-se que a danificação ocorre,

como esperado, na região do furo — onde há concentração de tensões. Nota-se ainda que

o aumento da rigidez dos reforços promove uma distribuição mais ampla e homogênea das

bandas, com menor intensidade de danificação. Esse comportamento reforça o papel estrutural

dos reforços na redistribuição de tensões e no atraso da propagação da danificação.
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E = 1000 MPa                                                  E = 5000 MPa

E = 10000 MPa                                                E = 15000 MPa

E = 20000 MPa                                                E = 25000 MPa

Figura 7: Evolução das bandas de localização.

5 CONCLUSÕES

Neste trabalho, foi empregada a abordagem da XLDM sem o uso de extensômetros numé-

ricos para modelar o comportamento fisicamente não linear de materiais anisotrópicos com

reforços embutidos. A formulação proposta foi implementada em um código computacional

baseado no método dos elementos finitos com estrutura posicional, permitindo a consideração

dos efeitos da não linearidade geométrica na evolução do dano.

A anisotropia material foi incorporada por meio da modificação do tensor constitutivo elás-

tico e da adoção de parâmetros distintos na lei de dano para cada direção do material. Além

disso, a técnica de embutimento utilizada para representar os reforços não introduziu novos

graus de liberdade no sistema, contribuindo para a eficiência computacional da abordagem.

Os resultados numéricos obtidos em dois casos distintos demonstraram a robustez, consis-

tência e aplicabilidade da formulação proposta, evidenciando seu potencial para análise de ma-

teriais com comportamento anisotrópico e reforços internos.
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