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Abstract. High-performance concretes are cementitious composites developed for particular structural
or construction needs. They can include high-strength, fiber-reinforced and ultra-high-performance con-
cretes. Those concrete types have different compositions and mechanical properties, leading to variable
failure properties under given load scenarios. The focus of this work is to explore if diffuse and localized
failure modes can be mathematically predicted taking as a basis the non-linear Performance Dependent
Model (PDM), that has been proved to appropriately capture failure conditions for plain concretes of
variable compressive strengths. The numerical results in terms of characteristic failure modes and criti-
cal directions are compared against experimental evidences.
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1 INTRODUCTION

A new generation of high-performance concretes which included high-strength concrete
(HSC), fiber-reinforced concrete (FRC) and ultra high-performance concrete, among others,
have been developed in recent years, presenting numerous advantages over the normal strength
concretes (NSC) , such as higher uniaxial strengths and elasticity modulus. In order to pre-
dict their mechanic behavior, the so-called Performance Dependent Model (PDM), originally
developed by Folino et al. (2009) in terms of the concrete quality, has achieved very good ap-
proximations.

In turn, according to experimental evidences, these materials generally present greater brit-
tleness, [Naaman and Reinhardt (2006), di Prisco et al. (2009)]. Just as the transition from
diffuse to localized failure modes have been numerically predicted for plain concretes, it be-
comes necessary to numerically analyze the influence of the reinforcements on the transition
between diffuse and localized failure and on the critical surfaces directions. These aspects are
addressed for the first time in this work.

After summarizing the main features of the cited constitutive model in Section 2, the math-
ematical indicators for diffuse and localized failure are formulated in the Section 3. Subse-
quently, numerical examples corresponding to uniaxial tensile and compression tests as well as
direct shear ones are developed in Section 4. Finally, the main conclusions are presented in
Section 5.

2 CONSTITUTIVE FORMULATION OF THE PERFORMANCE DEPENDENT MODEL

The PDM, developed by Folino et al. (2009), Folino and Etse (2011) and Folino and Etse
(2012) to predict the mechanical behavior of plain concretes with variable strength through the
inclusion of a performance parameter, has been extended for the case of FRC. The maximum
strength criterion F;,,,, named Performance Dependent Failure Criterion (PDFC), is defined
in terms of the normalized Haigh-Westergaard stress coordinates (with respect to the uniaxial
compressive strength f;), Z*, p*and 6, as

£ = %f% , P = 2J2fi; , cos(30) =
being /; the first invariant of the stress tensor o, while J; and .J3 represent the second and third
invariants of the deviatoric stress tensor s. The expressions for the tension and compression
meridians are given by the following parabolic equations, respectively
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with the coefficients A, B,., B; and C, depending on fcl and on the performance parameter [Sp,
computed as
1 f

bp= 1000 (w/b)’

being w/b the water-binder ratio. The ellipticity factor r is defined in terms of the eccentricity
€= 7 /P> as
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In pre-peak or hardening regime, loading surfaces are cap-cone type: whereas the cone por-
tion coinciding with the PDFC, remain fix, the cap portion evolves.

In post-peak or softening regime, the yield surfaces represent homogeneous contractions of
the cone, according to decay softening functions based on fracture energy concepts.

The formulation is complemented by an associated plastic flow in hardening regime. Whereas
in softening, a volumetric non-associated flow, that only differ from the yield surface in the vol-
umetric component, is defined. For a complete description of the model, please refer to Folino
and Etse (2012).

3 FAILURE INDICATORS

In the framework of the Smeared Crack Approach, three different forms of failure can be
distinguished as the load increases: diffuse, localized and discrete. From a mathematical point
of view, the jumps in the rate of the kinematic fields, i.e. displacements [[@]] and deformations
[[€]], characterize the failure modes according to Table 1.

Failure ‘ Displacement field ‘ Strain field
Diffuse | Continuous (Ch) - [[@]] =0 | [[€]] =0
Localized | Continuous (C%) - [[4]] =0 | [[€]] > 0
Discrete | Discontinuous - [[u]] >0 | [[€]] >0

Table 1: Kinematic conditions of failure modes.

3.1 Diffuse failure indicators

The mathematical indicator of diffuse failure is adopted as the classical Hill instability cri-
terion by Hill (1958), given by the energetic delimiter, i.e. the second-order work density
d*W = 0, leading to the stationary stress condition & = 0, being & the stress tensor rate.
This condition implies the singularity of the elasto-plastic tangent material tensor, as

det (E*7) =0. (6)

Non-associative flow rules give rise to non-symmetric elasto-plastic tangent operators. The
vanishing determinant of the symmetric part of the tangent operator, provides a more critical
lower bound condition according to the Bromwich bounds, as

det (EZI) =0. (7

sym

Consequently, in this case, the loss of stability takes place before the limit point condition
(o = 0) is reached. In this case, the critical hardening modulus may stills be positive.

3.2 Localized failure indicator

The localization condition, based on the early works of Hadamard (1903); Thomas (1961);
Hill (1958, 1962), characterized through a discontinuity in the rate of the displacement gradient
while the displacement rate remains continuous, is given by the singularity of the elasto-plastic
acoustic tensor, as

det (Q"F) =0 with Q"' =N -E*". N, (8)

being IV the unit vector normal to the discontinuity surface, see Fig. 1. By varying /N between
0 and 180°, Eq. (8) is computed and the localized failure direction « is obtained when the
condition det(Q)PF < 0 is satisfied.
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Figure 1: Diagram of the localized failure.

4 NUMERICAL APPLICATIONS

In this section, failure modes and critical directions for FRC are numerically predicted re-
garding simple load states at material level. Uniaxial tensile and compression as well as direct
shear tests are evaluated.

To this end, the material properties corresponding to the samples used in the experimental
campaigns by Folino et al. (2020) and Xargay et al. (2018) are taken into account, i.e.

* Plain concretes with f’=30 and 80 M Pa (NSC and HSC, respectively).
 FRC with a steel fibers content of 0.50% in volume fraction (40 kg/m?).
 FRC with a steel fibers content of 0.75% in volume fraction (60 kg/m?).

The benefits of the reinforcement on the overall mechanical behavior can be appreciated in
Fig. 2, where the curves of recorded loads in terms of the crack mouth opening displacements
(CMOD) evolution for the three point bending tests (TPB) are depicted. Increased stiffness,
strength and fracture energy, especially in the case of NSC, can be observed.
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Figure 2: TPB tests. (a) NSC by Folino et al. (2020); (b) HSC by Xargay et al. (2018).

4.1 Uniaxial tensile test

First, the uniaxial tensile test is considered and the normalized localized failure indicator
det(Q)ET /det(Q)F is analyzed at the peak. Fig. 3 shows brittle failure modes preceding the
peak for both, plain NSC (a) and HSC (b). The addition of steel fibers delays it until the peak
but maintaining the same critical angles.
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Localization directions are o= 70° and 110° for NSC, while for HSC result o= 73° and 107°.
Moreover, more negative indicator values are obtained for HSC, indicating greater fragility.
These results are in agreement with the experimental evidences, shown in Fig. 4.
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Figure 3: Numerical localization analysis of the uniaxial tensile test. (a) NSC; (b) HSC.

(a)

Figure 4: Final view of FRC specimens after the TPB. (a) NSC; (b) HSC.

4.2 Uniaxial compression test

As is well known, steel fibers addition not necessary leads to an increase of the compressive
strength. Likewise, no notable differences are observed regarding failure properties for plain
and reinforced concretes.

Diffuse failure modes has been obtained for all cases. For plain NCS, a= 23°. With the
addition of fibers, the cracks tend to be parallel to the load direction being a= 21°, see Fig.
5-(a).

In case of HSC, this effect is negligible. According Fig. 5-(b), the critical angle results
more parallel to the loading direction than for NSC, being a= 20°. This is shown in Fig. 6-(a),
corresponding to the end of the uniaxial compression test by Xargay et al. (2018).

4.3 Direct shear test

For all cases, the direct shear test leads to brittle failure surfaces located to 25° and 65°, as
can be appreciated in the polar plots of Fig. 7, in agreement the 63° observed by Soltanzadeh
et al. (2015) for HSC with f/= 68 M Pa, see Fig. 6-(b).
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Figure 6: Failure patterns of fiber-reinforced HSC. (a) Uniaxial compression test by Xargay et al. (2018); (b) Direct
shear test by Soltanzadeh et al. (2015).

The effect of fibers in delaying localized failure is notable for both, NSC in Fig. 7-(a) and
HSC in (b). The latter, when unreinforced, demonstrate greater fragility with higher failure
indicator values than NSC.

S CONCLUSIONS

This work presents the application of an elasto-plastic numerical approach, the Performance
Dependent Model, extended to simulating the failure behavior of high-performance concretes
at material level, particularly FRC.

Failure modes and critical directions have been numerically evaluated for simple loading
states, obtaining good approximations with the experimental evidences. Uniaxial tension and
compression test as well as the direct shear one have been considered.

Under uniaxial tension and shear conditions, plain concrete exhibits localized failure even
in the pre-peak regime. The addition of steel fibers delays this process. For uniaxial compres-
sion conditions, no significant fiber contributions are evident. The obtained critical angles are
consistent with experimental evidence in all cases.
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Figure 7: Numerical localization analysis of the direct shear test. (a) NSC; (b) HSC
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