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Abstract. This work presents a comparative study between two numerical approaches for modeling
fracture in quasi-brittle materials: the truss-based Discrete Element Method (DEM) and the Phase Field
Method (PFM), formulated within the Finite Element Method (FEM) framework. In the version of the
Discrete Element Method used here (referred to as DEM), the spatial discretization is performed using
a regular arrangement of pinned bars with masses concentrated at the nodes. The equivalent cross-
sectional area of the diagonal and normal bars allows the representation of an equivalent elastic solid. To
capture the nonlinear mechanical behaviour produced for the evolution of the material damage, a bilinear
constitutive law is applied to each bar. This formulation enables the definition of a motion equation
that must be integrated in time using an explicit scheme, such as the central difference finite difference
method. An important feature of the present model is its ability to incorporate material properties as
random fields. In contrast, the phase field model introduces a scalar damage field to describe fracture
as a continuous transition in the medium, and in this work, it is implemented based on the Principle of
Virtual Work. To compare the performance of both methods, three examples are presented. A Single
Edge Notch Bending (SENB) performed in epoxy resin, a Notched Plate with Hole (NPWH) also built
in cement mortar, and finally a parametric study where the influence of the material parameters of a
specimen composed of a substrate, and an interface orthogonal to the crack propagation direction is
analyzed. The comparison of the two approaches through these three examples allows the identification
of the strengths and weaknesses of each method.
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1 INTRODUCTION

Fracture in quasi-brittle materials, such as concrete, rocks, ceramics, and certain polymers,
remains a central challenge in computational mechanics. The heterogeneous microstructure of
these materials induces complex cracking phenomena including initiation, propagation, branch-
ing, and coalescence of cracks whose accurate description is crucial not only for ensuring struc-
tural safety but also for guiding the design of materials with enhanced toughness and damage
tolerance.

Traditional numerical methods, including the Finite Element Method (FEM) and the Bound-
ary Element Method (BEM), have been extensively applied in fracture mechanics. However, be-
ing rooted in continuum formulations, these methods face inherent limitations when simulating
crack evolution. The need for remeshing, enrichment techniques, or explicit crack tracking of-
ten renders their application computationally expensive and, in some cases, numerically unsta-
ble. Strategies such as the Extended Finite Element Method (XFEM) or Cohesive Zone Models
(CZM) have alleviated some of these difficulties, but they still exhibit restrictions when dealing
with complex crack paths or capturing the effects of microstructural heterogeneity (Kosteski
et al. (2011); Zambrano et al. (2022)).

To overcome these limitations, alternative methodologies have emerged in recent decades.
Among them, the Discrete Element Method (DEM), particularly in truss-based formulations,
has gained attention. In this approach, the solid is represented by a network of uniaxial ele-
ments with lumped masses at their nodes. Fracture is modeled directly through the progressive
breakage of bars, which naturally facilitates the representation of discontinuities, the interaction
between multiple cracks, and the incorporation of stochastic material properties (Kosteski et al.
(2012)). DEM has proven effective in addressing dynamic fracture, size effects, and unstable
crack propagation, as well as in recent developments where it has been integrated with FEM
formulations to extend its applicability to larger domains (Kosteski et al. (2024)).

On the other hand, the Phase Field Method (PFM) has emerged as a robust continuum-based
alternative. This approach introduces a scalar damage field that describes the smooth transi-
tion between intact and fully fractured states, thereby eliminating the need for explicit crack
tracking. Its variational foundation and ability to capture phenomena such as crack branching,
coalescence, and deflection explain its increasing acceptance within the scientific community
(Miehe et al. (2010); Duda et al. (2015); Tanné et al. (2018); Zambrano et al. (2022)). Moreover,
PFM can be applied to a wide range of fracture regimes, from brittle to quasi-brittle materials,
under both static and dynamic conditions.

Despite the significant progress achieved by both methodologies, direct comparative studies
remain scarce. Open questions persist regarding their relative performance in terms of compu-
tational cost, numerical robustness, accuracy in crack path prediction, and ability to represent
material heterogeneity. In this context, systematic analyses are highly desirable to clearly iden-
tify the strengths and limitations of each approach. The present work addresses this issue by
providing a comparative study between a truss-based Discrete Element Method (DEM) and a
Phase Field formulation implemented within the FEM framework. The comparison is carried
out through three representative examples: (i) a Single Edge Notch Bending (SENB) test in
epoxy resin, (ii) a Notched Plate with Hole (NPWH) test, and (iii) a parametric study of a spec-
imen composed of a substrate, and an interface orthogonal to the crack propagation direction.
The analysis of these cases allows for a detailed assessment of the response of both methods in
different quasi-brittle fracture scenarios, establishing criteria for their applicability and provid-
ing insights for selecting the most suitable technique depending on the problem under study.
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2 METHODOLOGY AND RESULTS

Reference problems in Fracture Mechanics, specifically within the context of quasi-brittle
fracture, are solved by implementing both the truss-based Discrete Element Method (DEM)
and the Phase Field Method (PFM) within the FEM framework. Regarding the DEM, in the
formulation employed here, the continuum is spatially discretized into regular lattice modules,
with the stiffness of the bars (elements) defined in such a way that their overall behavior is
equivalent to that of the continuum being represented. The mass of the model is discretized and
concentrated at the nodes. Fig. 1 shows a module composed of eight nodes located at the vertices
plus a central node. Each node has three associated degrees of freedom, corresponding to the
spatial components of the displacement field u. The nodal masses are connected by longitudinal
and diagonal elements of lengths L. and \/TELC, respectively. The equivalence between this cubic
arrangement and an orthotropic elastic solid, with the material principal axes aligned along the
longitudinal elements, was verified by Hayashi (1982) within the framework of linear elasticity.
A restriction of v = 0.25 on Poisson’s ratio must be imposed to achieve perfect equivalence.
For other values of v, small differences appear in the shear terms; however, these discrepancies
can be neglected, particularly when the focus is on the nonlinear response of the model under
study.

2l

Figure 1: (a) Detail of the basic cubic module, (b) Prism composed of several cubic modules.

In the case of materials with a linear elastic constitutive law, the equation of motion of the
system with N degrees of freedom, resulting from the spatial discretization, can be expressed
as:

M.i+ K.u = q(t), (1)

where M denotes the (diagonal) mass matrix, u and u represent the nodal displacement and
acceleration vectors, respectively. The term () is the vector containing the applied external
forces. System (1) can be numerically integrated in the time domain using a classical explicit
integration scheme (the central difference finite difference method). On the other hand, Rocha
(1989) proposed a bilinear constitutive relation for the elements, which allows modeling the
brittle failure of the material. The general form is given by:

Force = function(bar deformation), ()

This constitutive relation is illustrated in Fig. 2, where P, denotes the maximum tensile force
transmitted by the element, and ¢, is the strain associated with ... For € < ¢,, the unloading
process is linear up to the origin. However, when € > ¢, unloading occurs with a reduced slope,
reflecting the stiffness degradation due to damage (Fig. 2b). The critical strain, €, is defined as:
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where G is the average fracture energy associated with the length of the adopted DEM basic
module, L.. The parameter d., is a material characteristic length, analogous to the plastic zone
width at the crack tip in the Dugdale model. The area under the curve represents the energy
density required to break the element, and it is defined using the relation between the fracture
energy, G (a material property), and the characteristics of the DEM model. £, is a constant
proportional to the bar stiffness that relates the previous parameters (P, = FE4.¢,). Finally,
k, is the parameter that determines the ultimate strain at which the element loses its capacity
to transmit stress, leading to the rupture strain ¢,. In this way, the DEM accounts for both the
nucleation of damage and the failure of specific regions of the model, which translates into the
deactivation of elements that have exhausted their strength. At this point, it becomes evident
that the parameters of the constitutive relationship do not depend solely on the material but also
on the model discretization. Thus, F.,, €,, €. and Gy are material-specific properties, while A
and L. are model-specific properties, and the parameters /4 and &, depend on both the model
and the material. Finally, it is worth noting that the method allows for the consideration of
material property randomness by varying these parameters from element to element according
to a defined statistical law.

(a) (b)

Pa Le

€ &= ke £

Figure 2: Elemental constitutive relationship of the truss bars. (a) Adopted constitutive diagram with its controlling
parameters, (b) Schematic for loading and unloading.

On the other hand, in the context of the challenges associated with modeling discontinuous
(discrete) cracks, this situation has motivated the development of other computational tech-
niques in which crack paths are determined automatically as part of the solution. Among these
numerical techniques, a currently very popular one is the Phase Field Model (PFM). This model
is fundamentally based on the formulation for brittle fracture originally proposed by Francfort
and Marigo (1998), which relies solely on Griffith’s concept of the competition between the
stored elastic energy of the body and the fracture energy. This fracture model is capable of ad-
dressing issues such as crack path and crack nucleation. In the original version by Francfort and
Marigo, more in line with Linear Elastic Fracture Mechanics (LEFM), the concept of nucleation
did not exist. In later versions, with a reinterpretation of the model parameters, the concept of
nucleation can be addressed using this technique. As shown in Pham et al. (2011), Bourdin et al.
(2014), and Nguyen et al. (2016), this method can potentially reconcile stress- and toughness-
based criteria for crack nucleation, capture size effects relevant at both small and large length
scales, and provide a robust and relatively simple approach for modeling crack propagation
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in complex two- and three-dimensional environments. Therefore, consider a body B, which
contains an arbitrary diffuse crack and is subjected to displacement and traction boundary con-
ditions, as schematically illustrated in Fig. 3. The governing equations of the phase field model
consist of a mechanical balance and a phase field balance, as presented below:

-Integral balance of mechanical forces:

V-o+b=0 vX € 8, “4)
o-n=t" , VXeipy, (5)

-Integral balance of the phase field:

V'E_(ﬂ-a_"ﬂ-?“):o ) VXGB, (6)
En=0 |, VXE@B}‘\’,, (7

where o is the Cauchy stress tensor, b is the vector of external forces per unit volume, and n is a normal
vector to the surface of body 3, where the displacement boundary conditions 93}, and traction t* are also
applied. On the other hand, £ is the micro-stress parameter, and 7 is the microforce parameter, which is
divided into active and reactive components (7, + 7, ), with the boundary condition in the phase field
context being zero on the surface of body /.

Figure 3: Body [ with an arbitrary diffuse crack and boundary 03

These equations are solved through a staggered solution procedure, which is a standard approach in
variational fracture theory. Consequently, the phase field model has a scalar variable called the phase field
, which varies within the interval [0, 1]. If ¢ = 0 at a point, it indicates that the material is unfractured.
Conversely, if ¢ = 1 at a point, it is fully fractured. Values of ¢ between zero and one correspond to
partially fractured material. Points satisfying ¢ = 1 define cracks, i.e., traction-free surfaces embedded
within the bulk material.

2.1 Application 1: Single Edge Notch Bending Tests (SENB)

The first reference problem addressed involves a SENB-type bar, whose dimensional scheme and
boundary conditions are shown in Fig. 4a, with the following dimensional values: W = 10.02210 3m, L =
46210 3m, B = 5.07z1073m, a, = 4.9210>m, w, = 0.3521073m. The material properties used
were: Young’s modulus £ = 3.512109 Pa, Poisson’s ratio v = 2.5, density p = 1250%, and fracture
energy G = 1010%. The parameters implemented for the DEM simulations were: critical failure strain
€p = 0.023%, cubic module length L = 3210~ *m, time increment At = 1.06210~7s, and a charac-

teristic material length d., = 4.4210~*m. The model discretization was performed using 153234216
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basic cubic modules, as shown in Fig. 1a, corresponding to a total of 1061351 bars. The configuration
of the experimental test is shown in Fig. 4b, while the cracking patterns obtained with the Phase Field
Model (PFM), using the same material properties as in the experiment with a characteristic length of
l. = 0.06mm, and with the DEM are illustrated in Figs. 4c and 4d.

(d

(b)

Figure 4: (a) Dimensional scheme and boundary conditions of the SENB model, b) Experimental test configuration,
¢) SENB bar results with the Phase Field model, d) Deformed SENB model with the DEM

As aresult of the simulations carried out using the DEM and compared with both experimental results
and numerical results obtained using a phase field model, taken from the work of Li et al. (2022), these
results are graphically illustrated in Fig. 5.

——DEM CV 0.25 Seed 855
DEM CV 0.25 Seed 650

———DEM CV 0.25 Seed 455

——PFM Li etal. (2022)

— — —Experimental
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Displacement [mm]

Figure 5: Comparative force-displacement plot for the SENB model

The plot in Fig. 5 shows the satisfactory performance of the simulations obtained with the DEM,
which were conducted considering the randomness of material properties through a statistical law. In
this particular case, a coefficient of variation (CV) of 0.25 was implemented, using three different seed
values to generate the corresponding random distribution. These DEM results accurately capture the ex-
perimental behavior of the SENB model, even showing slightly better agreement than the curve obtained
using the phase field method, which exhibits notable deviations from the experimental curve in both the
elastic and post-critical stages. On a more general level, all problems modeled with the DEM achieved
quite satisfactory convergence, although at a higher computational cost compared to the standard phase
field model (Zambrano et al. (2024)). This cost can be reduced by implementing algorithmic optimiza-
tion tools within the DEM computational framework. Furthermore, it is worth noting that the DEM, like
the phase field model, has the advantage of not requiring a pre-defined crack in a given model to perform
a simulation. Another advantage of the DEM is that its dynamic scheme allows for the consideration of
randomness in material properties, which provides multiple benefits: it enables a more robust capture
of various phenomena observed in experiments and allows for a more accurate interpretation of these
results. In contrast, the phase field model presents a limitation in this regard.
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2.2 Application 2: Notched Plate with Hole Tests (NPWH)

As a second benchmark problem, a compact tension test with a notch and a hole (NPWH) was ad-
dressed. The geometric representation, with dimensions expressed in “mm,” together with the bound-
ary conditions, is shown in Fig. 6a. The material properties adopted were: Young’s modulus £ =
3.0x10% Pa, Poisson’s ratio v = 2.5, density p = 1190%, and fracture energy G = 700%. The param-
eters implemented in the DEM simulations were: critical failure strain €, = 0.023%, module length L =
3210~ %m, time increment At = 1.12210"s, and characteristic material length deqg = 8.82210*m.
The simulations were performed under plane strain conditions. The discretization of the model was car-
ried out with 500240022 basic cubic modules, corresponding to a total of 2988312 bars. Accordingly,
Fig. 6b shows the photoelasticity result of the experimental test, while Figs. 6¢ and 6d illustrate the con-
figurations obtained with the Phase Field Model (PFM), taken from the work of Cavuoto et al. (2022),
and the DEM technique, respectively. It can be observed that both numerical techniques (PFM and DEM)
provide an excellent prediction of the crack trajectory for this problem, showing good agreement with
the experimental crack propagation pattern.

. :
(b) © d

)

6

|
.l

|

E
120

Figure 6: (a) Geometric scheme (measurements in “mm”) and boundary conditions for the compact tension test,
b) Experimental deformation for the NPWH, c) Deformation obtained with the Phase Field model for the NPWH,
d) Deformation obtained with the DEM for the NPWH

The results of the simulations obtained with the DEM are presented in a force—displacement com-
parative plot in Fig. 7, where both the experimental curve from the compact tension test and the curve
obtained with the Phase Field model are illustrated. The latter two curves were taken from the work
of Cavuoto et al. (2022). Consequently, Fig. 7 shows the three curves obtained with the DEM using
a coefficient of variation (CV) of 0.5 with three different seed values, reflecting the method’s inherent
randomness. The curves exhibit satisfactory behavior, although some differences with the experimental
compact tension test curve are observed, both in terms of the maximum force reached and the amount
of energy dissipated. The dissipated energy in the numerical curves is considerably higher than in the
experiment, as the area under the curve is much larger. One possible approach to address this discrep-
ancy would be a more thorough calibration of the DEM simulations. Regarding the curve obtained with
the Phase Field model, it also shows some differences compared to both the experimental curve and the
DEM numerical curves.

2.3 Application 3: Analysis of the interaction of a propagating crack with an interface

The third benchmark problem is a standard case in fracture mechanics, concerning the interaction
of a propagating crack with an interface. A plate with an interface orthogonal to the crack propagation
direction is modeled, with the following dimensions: a = b = 0.01m, as shown in Fig. 8a along with
the corresponding boundary conditions. Plane strain conditions are considered. This plate is composed
of two materials: a substrate material, which contains a pre-crack and serves as the medium through
which the crack initiates propagation, and the interface material present in the specimen. The substrate
properties implemented were: Young’s modulus £ = 3.3x10° Pa, Poisson’s ratio v = 2.5, density p =
1188%, and fracture energy G = 810%. The initial properties of the interface were set equal to those
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Figure 7: Comparative force—displacement plot for the NPWH tests

of the substrate and were varied using dimensionless ratios to obtain different factors for configuring the
DEM simulations. These dimensionless ratios are as follows: (i) the ratio of the fracture energies of the
substrate and the interface, (ii) the ratio of the critical strengths of the substrate and the interface, and (iii)
the ratio of the K. coefficients, a parameter related to the material properties and the size of the basic
cubic module. This coefficient ensures the stability of the DEM computational algorithm, which must
satisfy K, > 1.1. The discretization of the plate was carried out with 100210022 basic cubic modules,
as illustrated in Fig. 8b, corresponding to a total of 147412 bars.

Regarding the results obtained for this third problem, they can be observed in Figs. 8c and 8d.
The DEM simulations show a satisfactory capture of the penetration (Fig. 8c) and deflection (Fig. 8d)
mechanisms of a crack interacting with an interface orthogonal to the crack propagation direction. The
penetration mechanism corresponds to the case in which the crack propagates through medium 1, strikes
the interface, and crosses it, continuing its propagation into medium 2. Conversely, the deflection mech-
anism occurs when the crack propagates through medium 1, strikes the interface, and deviates along the
interface. It is also important to highlight the presence of a third mechanism, termed crack deviation out
of the interface, in which the crack, once propagating through the interface, seeks to exit it and propagate
into medium 2. This mechanism can be observed in Fig. 8d. Consequently, these results emphasize that
the DEM is anumerical technique with excellent capability to represent material heterogeneity.

A

1

Substrate Substrate

i i W%W;M .
/ Nﬂl,,;wx.vx

Interface i

o o o o e |
(a) (b) (c) (d)

Figure 8: (a) Geometric scheme of the plate composed of a substrate and an interface, (b) DEM discretization of
the plate under study, (c) Penetration mechanism of a crack interacting with an interface, (d) Deflection mechanism
of a crack interacting with an interface

Finally, Figs. 9a and 9b show plots constructed in a dimensionless space, with the vertical axis rep-
resenting the ratio of the fracture energies of the substrate and the interface, and the horizontal axis
representing the ratio of the critical strengths of the substrate and the interface. The red points connected
by a solid red line indicate the boundary where the deflection mechanism of a propagating crack interact-
ing with an interface occurs, while the blue points connected by a solid blue line indicate the boundary
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where the penetration mechanism occurs, i.e., a crack propagating through one medium crosses an inter-
face. Each point in the plots corresponds to a simulation performed with both the DEM and the PFM,
the latter taken from the work of Zambrano et al. (2022), and in both plots the presence of each mecha-
nism (penetration and deflection) was verified. It is noteworthy that the overall behavior of both curves
satisfactorily captures a mixed criterion of strength and toughness that characterizes the deflection and
penetration mechanisms of a propagating crack interacting with an interface. Moreover, the behavior of
the DEM-derived plot qualitatively agrees with the plot obtained using the PFM in the study by Zam-
brano et al. (2022). It is also important to note that the DEM curves do not extend above % = 2 on the
vertical axis due to the limitations of the discretization used. Therefore, employing a finer discretization
would allow further extension of these curves.

! 2.5
doqisustrato) = 4.6 X107+ m. Deflection

f GE/oth=01
B i A a

el 16 i G/Eh=1x10"

2 & / g /3
l : \>/ T / l P i /=00
15 Ny 12 & /
o d 2
\\ '..
0.5 [

Transition Zone

Penetration

0 1 2 3 4 5
C C
o, /o

(a) (b)

Figure 9: Graphical behavior of the penetration and deflection mechanisms of a propagating crack interacting
with an interface orthogonal to its propagation direction: a) DEM modeling, b) Phase Field modeling taken from
Zambrano et al. (2022)

3 CONCLUSIONS

The Discrete Element Method (DEM) based on truss-type bars is an alternative numerical technique
that allows modeling quasi-brittle fracture problems. It essentially consists of the spatial discretization of
the continuum using regular lattice modules, defined in such a way that their behavior is equivalent to that
of the continuum being represented. Therefore, it emerges as a valuable numerical alternative, alongside
others existing in the literature, particularly the phase field model (PFM), which represents an arbitrary
crack in a body in a diffuse manner using a scalar variable called the phase field. Consequently, in the
various benchmark problems modeled using the DEM, the technique demonstrates satisfactory perfor-
mance in robustly capturing the physics of these problems, yielding results with very good accuracy and,
in some cases, even surpassing the precision achieved by the phase field model. Furthermore, the DEM
provides excellent prediction of crack trajectories, showing excellent agreement with experimental ob-
servations and a high capability for representing material heterogeneity. Additionally, the DEM has the
advantage of incorporating randomness in material properties, which is not considered in the phase field
model (PFM). The DEM achieves excellent convergence in each of the reference problems modeled,
although it entails a higher computational cost compared to other numerical techniques, particularly the
phase field model (PFM). This limitation could be mitigated by implementing algorithmic optimization
tools within the DEM computational framework, which will be addressed in future work.
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