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Resumen. Los sistemas Lagrangianos mecdnicos dependientes del tiempo son de gran interés en diver-
sas ramas de la ingenierfa y la fisica. En particular, en robdtica, se consideran numerosos sistemas no
auténomos, es decir, dependientes del tiempo. En este trabajo presentamos la dindmica de tales sistemas
en grupos de Lie, considerando tanto variables temporales continuas como discretas. En este marco, abor-
damos el problema de integrar sus ecuaciones de movimiento mediante técnicas variacionales discretas.
Ilustramos el enfoque con ejemplos sencillos cuyo espacio de configuracion es el grupo euclidiano y pro-
ponemos sus versiones discretas. Asimismo, estudiamos un ejemplo en el grupo de rotaciones espaciales
y, finalmente, discutimos posibles lineas de investigacion futura orientadas al desarrollo de integradores
variacionales para sistemas mds generales.

Keywords: Lagrangian systems, Lie groups, Time-dependent Lagrangian systems, Variational integra-
tors.

Abstract. Time-dependent Lagrangian mechanical systems are of great interest in various branches of
engineering and physics. In particular, in robotics, many non-autonomous, that is time-dependent La-
grangian systems, are considered. In this work, we present the dynamics of such systems on Lie groups,
considering both continuous and discrete time variables. Within this framework, we address the problem
of integrating their equations of motion using discrete variational techniques. We illustrate the approach
with simple examples whose configuration space is the Euclidean group, and propose their discrete coun-
terparts. We also study an example on the group of spatial rotations, and finally discuss future research
directions aimed at developing variational integrators for more general systems.
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1. INTRODUCCION

La formulaciéon Lagrangiana de la mecdnica constituye una de las herramientas fundamen-
tales para el estudio de sistemas fisicos y de ingenieria, ya que permite describir su dindmica
a partir de principios variacionales con un fuerte trasfondo geométrico. En particular, los siste-
mas no auténomos, es decir, aquellos cuyo comportamiento depende del tiempo, aparecen de
manera natural en numerosos contextos.

La version Lagrangiana de la mecdnica clésica se realiza considerando el fibrado tangente de
una variedad diferenciable y una funcién diferenciable sobre él, llamada funciéon Lagrangiana o
Lagrangiano que usualmente estd dada por la energia cinética menos la energia potencial.

Sean () una variedad diferenciable de dimension n y T'Q) su fibrado tangente. Un sistema
Lagrangiano estd dado por el par (@), L) donde () describe sus configuracionesy L : TQ) — R
es una funcién suave. Su dindmica queda determinada por el bien conocido Principio de accion
critica de Hamilton usando el funcional accidén del sistema que estd definido como

Alq) = [ L(q(t), q(t))dt,

donde ¢ : [0,7] — @ es una curva suaveen Q y ¢ : [0,7] — TQ es su curva velocidad de
manera tal que ¢(t) € Ty»@ Vt € [0,7]. Una variacion infinitesimal de ¢ es una curva suave
dq : [0,T] = TQ tal que dq(t) € T,»Q Yt € [0,T]y se dice que dq es a extremos fijos si
dq(0) = 0y dq(T) = 0. El principio variacional de Hamilton establece que las trayectorias del
sistema estdn dadas por los puntos criticos del funcional .A(g). Tomando variaciones a extremos
fijos se tiene que los puntos criticos de A son las soluciones de las llamadas ecuaciones de
Euler-Lagrange (E-L) dadas por

oL . d (0L )
8—q(q,Q) - <8—q(q,Q)> = 0.

Considerando (¢")"_, en @Q un sistema local de coordenadas, esta ecuacion determina un sistema
de n ecuaciones diferenciales ordinarias de segundo orden
0L . O*L .. OL
——§ + ——¢ — — =
0¢'0¢7 0¢'0q’ aq

0 i=1,..n (1)

Bajo condiciones de regularidad, (1) se resuelve de manera explicita y se encuentra la ace-
leracion de la trayectoria. Esta condicion consiste en que FL : TQ) — T*(Q, la transformada

L
de Legendre, dada por FL(q,q) := | q,p := En sea un difeomorfismo local. En este caso se
dice que L es regular y si, ademads, es un difeomorfismo global se dice que L es hiperregular.

0L
Asi la matriz Hess(L) := (8"8 -
q'Jq

g PL N\ (0L L
T \ogog) \og ~ ogog?)

Ahora bien, la variacién de la accién d.A(q).d, puede interpretarse como

) es no singular en cualquier punto y la solucién de (1) esta

dada por

T

dA(q(t)) - dq(t) = /0 EL(q(t),4(t),(t))-0q(t)dt + (0r(q(t), 4(t)).0q(t))

0
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donde 6, es la 1-forma sobre 7'() dada por g—é}dqi, y&L: Q) — T*Q es el llamado operador de
E-L definido por

! aL 9L d (dL oL 0L .. 0L .
L(q,q,q Z = — | === 5=¢ — ===¢
’ dtl T 9q¢  dt \ 9g o OGO 9§ 0q

=

siendo 7@ el fibrado cotangente de la variedad Q, 7rq : T(1TQ) = TQ y g : TQ — Q las
proyecciones canénicas y Q = {w € T(TQ) / Tro(w) = mro(w)} € T(TQ) la subvariedad
de segundo orden.

Consideremos ahora un sistema Lagrangiano dependiente del tiempo. Esto es, un par (@, L)
donde la variedad diferenciable () describe las configuraciones del sistema y el Lagrangiano L
depende explicitamente del tiempo. Es decir, L : R x T'Q) — R. En este caso, la transformada
de Legendre asociada F L : R x TQ — R x T*Q estd dada por FL(t,q,q) := (t,q,p := 0L/0q).
Como en el caso auténomo, decimos que L es hiperregular si /'L es un difeomorfismo global
y si las trayectorias del sistema verifican el principio de accion critica de Hamilton que en este
caso da lugar a las ecuaciones de movimiento

0L o?L . 0*L 0L

J v

oioa ! " agog? T oot ag

y, por lo tanto, el operador de E-L queda dado por

o oL d (0L oL 0?L » 0?L y 0?L
ELG 4=~ — |5 ) =5 5@ — 570 — 7omr
dq dt \ 0q ¢t 0¢'0¢ 0G 0q? 0¢ ot
Si L is hiperregular estas ecuaciones definen explicitamente las aceleraciones en términos de
las posiciones y las velocidades de la siguiente manera

G (LN (oL L ., L
T =\ Bjog 8¢ ool ~ agot )

Ahora bien, es claro que estas las ecuaciones de movimiento pueden no tener soluciones
analiticas y por lo tanto se debe recurrir a integradores que permitan aproximar de manera satis-
factoria las trayectorias del sistema. Lo mismo ocurre cuando el sistema presenta algtn tipo de
vinculos o estd sometido a distintos tipos de fuerzas. Existen muchos trabajos que se ocupan de
proponer distintos métodos de integracion y de estudiar sus propiedades. En particular, cuando
el espacio de configuraciones () es un grupo de Lie GG, explotando la riqueza de esta variedad
y su fibrado tangente, en Arnold et al. (2016) y Briils et al. (2012) los autores proponen in-
tegradores y analizan su convergencia tratando el caso particularmente interesante de sistemas
multicuerpo. Como dijimos, en este trabajo, proponemos definir integradores a partir de un prin-
cipio variacional discreto (integradores variacionales) que dan lugar a ecuaciones algebraicas
cuyas soluciones aproximan a la solucion del sistema en lugar de discretizar ecuaciones.

Finalmente, la organizacion del trabajo es la siguiente. En la Seccion 2 introducimos estos
sistemas sobre grupos de Lie, destacando las herramientas geométricas necesarias y mostrando
ejemplos representativos. En la Seccién 3 abordamos la version discreta, definiendo los sistemas
Lagrangianos no auténomos en el marco variacional. En la Seccién 4 presentamos la construc-
cion de integradores variacionales dependientes del tiempo y discutimos su relacién con el caso
continuo. Finalmente, en la Seccion 5 exponemos las conclusiones y trabajo futuro.
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2. SISTEMAS LAGRANGIANOS DEPENDIENTES DEL TIEMPO SOBRE GRUPOS
DE LIE

Modelar estos sistemas en espacios de configuracién con estructura algebraica adicional, co-
mo los grupos de Lie, introduce nuevas posibilidades. Por un lado, la estructura facilita la des-
cripcion intrinseca de movimientos complejos, como rotaciones o traslaciones, evitando recurrir
a coordenadas locales. Obliga a adaptar las técnicas cldsicas para incorporar adecuadamente las
simetrias y restricciones geométricas del grupo. En esta seccion presentamos las ecuaciones de
movimiento de sistemas Lagrangianos dependientes del tiempo sobre grupos de Lie adaptando
las técnicas variacionales usuales que describimos en la Introduccién.

Consideremos un sistema Lagrangiano dependiente del tiempo (G, L), donde el espacio de
configuraciones es un grupo de Lie G y Lagrangiano L : R x T'G — R. Como es usual, deno-
tamos el dlgebra de Lie del grupo G como g y el difeomorfimo dado por la multiplicacién a
izquierda de GG’ sobre si mismo como [, : G — G paratodo g € G. Es bien sabido que el fibrado
tangente 7'G se puede identificar con el producto cartesiano G x g mediante la llamada triviali-
zacion a izquierda T'G' — G x g dada por (g, §) — (9, := T,4l,-1(g)) donde Tyl,—1 : T,G — g
es la aplicacién tangente en g de la multiplicacion a izquierda /,-1. Via esta identificacion con-
sideramos que el Lagrangiano del sistema dependientes del tiempo (G, L) estd definido como
una funcién L : R x G x g — Ry el funcional accion A esta dado por

Al(t,g,¢&) = fOTL(t,g,f)dt.

Sea ¢(t) una curva suave en G definida para ¢ € [0, T']. Para considerar variaciones infinitesi-
males dg(t) de esta curva consideremos variaciones del tipo g°(¢) : [0,7] — G con € € (—c¢, ¢)
y ¢ > Otales que ¢°(t) = g(t),Vt € [0,T], g°(0) = g(0) y g°(T) = g(T'). Estas variaciones pue-
den expresarse usando la aplicacién exponencial e : g — G de manera tal que ¢(t) = g(t)e“"®
para una curva suave 7(t) en g satisfaciendo que 7(0) = n(7") = 0y por lo tanto sus variaciones
infinitesimales asociadas estdn dadas por (ver Colombo et al. (2025) para més detalles)

_4d
" de

d
g(t) = - g(£)e = g(t)e ()| = g(t)n(t) € Tyu)G.
e=0 e=0

dg(t)

e=0

Se puede calcular la variacién infinitesimal de la curva {(t) := T},l,-1(¢g) que estd dada por

d
" de

o&(t)

(@155 = i)+l = i0) + adeonte)

donde, como es usual, ad denota la accién adjunta de g sobre si misma definida por adg)n(t) :=
[€,n] y ad” denota la acci6n co-adjunta de g* sobre si misma definida por (adgn)8 := n(aden).

Para calcular la variacion de la accién A veamos primero como se expresa la variacion del
Lagrangiano. Como en el caso auténomo,

oL oL
0L(t,g,&) = 8—g(t,g,€)59 + a_g(t’g’ £)o¢

L L
donde g— € T"G esta dado por g—(t, 9,£)0g = L(t, ¢ &)
g g

. Entonces, puede VEerse que
e=0

oL oL oL
SL(t,g,€) <T:lga—g<t,g,5> n adza—f(t,g,i),n> ; <a—§(t,g,£),f7> .
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T
Como 0.A(t,g,&) = / dL(t, g,&)dt, aplicando técnicas usuales del célculo de variaciones se
obtiene que 0.A(t, g,&) = fo <T*lgg§ t,g,8) + adgg—é(t,g,«g) — %g—é(t,g,g),n> dt. Como el
principio de Hamilton establece que .4 = 0 para toda 7 € g con extremos fijos, las ecuaciones
de E-L para un Lagrangiano L : R x G x g — R estan dadas por

d OL L L .
a0 —-(t,9,:6) — fag (t.g,8) — a —(t,9,6) =0, ¢=g¢& (2)
Calculando la derivada temporal, (2) se escribe como
0L . O*L . 0*L oL 8L .
agangr (%agﬁ et —adi— o€ (t,g,8) — a —(t,9,) =0, g=g&.

Consideremos algunos ejemplos de sistemas Lagrangianos no auténomos sobre grupos de
Lie. Cuando el grupo de Lie GG es un espacio euclideo R" no necesitamos trivializar su fibrado
tangente sino que identificamos 7'G con R" x R".

Para ilustrar las ideas desarrolladas presentamos algunos ejemplos representativos. Estos
muestran cdmo la dependencia del tiempo y la estructura geométrica del espacio de configura-
ciones influyen en las ecuaciones de movimiento. Primero, consideramos un Lagrangiano con
decaimiento exponencial definido en un espacio euclideo, que sirve como caso base. El mismo
es un ejemplo fisico que estd dado por una disipacion lineal en las velocidades del sistema.

Ejemplo 1: Consideremos un Lagrangiano dependiente del tiempo dado por el decaimiento
exponencial con tasa constante k > 0 para un Lagrangiano mecdnico (esto es, energia cinética
menos energia potencial) sobre el grupo de Lie G = R™. Esto es,

1
L:RxR"xR" =R dado por L(t,q,4) =e™ (§||q||2 - V(q))

donde ¢ = (q1,...,q,) € R™, ¢ = (1, - .- n G R"y V : R" — R una funcion potencial.
oL oL d

Como — = —e ¥V,.V, e Mgy — i — ke *q las ecuaciones de E-L
dq e Yt

del sistema se escriben como
e i — ke Mg+ e MV, V =0

donde V ;, representa la derivada parcial de L con respecto a q;. Equivalentemente, eliminando
el factor e se tiene § = kq — VvV, V.

Para el segundo ejemplo analizamos un sistema con interaccién magnética en R?, que intro-
duce efectos adicionales derivados de un potencial vectorial. El mismo es un ejemplo fisico de
particulas magnéticas en el espacio.

Ejemplo 2: Consideremos el sistema dado por una particula en G = R* con un campo
magnético cuyo Lagrangiano se descuenta con tasa constante k > . Este estd dado por

La(g,q) =e™" (A(Q)fi + %tf) :

oL oL d (0L
Dado que G = e (V,A), 57 = e (Al0) + )y 5 (—) — ke (A(g) + ) +

e "j+e "V ,Aq, las ecuaciones de E-L son e "' (—r(A(q) + ¢) + § + V,A¢ — V,Aq) = 0.
Dividiendo por e~ obtenemos que G = x(A(q) + q).
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Finalmente, estudiamos el caso de un cuerpo rigido con pivote fijo en el grupo SO(3), ejem-
plo que pone de manifiesto la riqueza de trabajar en un grupo de Lie no euclideo. El mismo es
un ejemplo relacionado con la robética que representa la dindmica de un satélite.

Ejemplo 3: Consideremos el sistema dado por un cuerpo rigido con un pivote fijo que evo-
luciona sobre G = SO(3). El Lagrangiano L : R x T'SO(3) — R estd dado por

—kKt

L(t, R, B) = (R, R)),

donde . € Rt y (R, R)) = / p(X)||RX||? d*X siendo p la distribuién de masa del cuerpo.

La accion de G sobre si mis?no es la multiplicacion de matrices lr, : SO(3) — SO(3); esto
es, lp,(R) = RiRy Tglg,(Y) = RY paraY € TrSO(3). El dlgebra de Lie del grupo SO(3),
denotada como s0(3), consiste en las matrices anti-simétricas de dimensiones 3 x 3y puede
identificarse con R? via un isomorfismo. La accion adjunta estd dada por el conmutador de las
matrices. Esto es, aden = &n — n& con &, 1 € s0(3).

Identificando T'G con G x g el Lagrangiano L : R x SO(3) x s0(3) — R se escribe como

e—mf

Lt R, = S5 (6.6) = yir (€7T6)

siendo 1 el tensor de inercia del cuerpo rigido. Considerando todas estas identificaciones se
llega a que las ecuaciones de E-L estan dadas por ]If — & x € — KIE = 0. Estas ecuaciones
describen el caso equilibrado de los sistemas de actitud de cuerpo rigido. Estos sistemas se
definieron en Shen et al. (2003) como una abstraccion para el banco de pruebas de control de
actitud triaxial presentado en Bernstein et al. (2001). Es decir, un cuerpo rigido, soportado por
un punto de pivote fijo, que puede rotar libremente en tres dimensiones. En el caso equilibrado,
las ecuaciones de E-L describen la dindmica de un cuerpo rigido libre, incluyendo los efectos
de disipacion lineal. La dindmica de este sistema se ha estudiado desde el punto de vista de la
reduccion por simetrias en la geometria de contacto en Anahory et al. (2024).

3. SISTEMAS LAGRANGIANOS DISCRETOS DEPENDIENTES DEL TIEMPO

Una idea bésica de la formulacion estandar de la mecanica discreta consiste en reemplazar el
fibrado tangente T'Q) por () x Q. Es decir, si se considera un sistema mecénico con espacio de
configuracién (), en el contexto continuo el espacio de velocidades es T'() y el Lagrangiano es
una aplicacién L : T'() — R. En el contexto discreto se reemplaza T'¢) por () x () considerando
que dos puntos cercanos en () son el andlogo discreto de un vector velocidad y el Lagrangiano
discreto es una aplicacion Ly : (Q x (Q — R. Un sistema mecanico discreto se define, entonces,
como un par (@), Ly). La evolucién de estos sistemas estd determinada por un principio varia-
cional discreto que da lugar a un sistema de ecuaciones algebraicas en recurrencia; a diferencia
de lo que ocurre en el contexto continuo, donde la trayectoria del sistema se obtiene a partir de
un sistema de ecuaciones diferenciales (ver por ejemplo Marsden y West (2001)).

La idea es construir una sucesién de tiempos discreta {t, = k : k = 0,..., N} C R, de-
finir el espacio de curvas discretas como Cy(Q) := {qq : {tx}h_, — Q} e identificar las cur-
vas discretas q; € Cy(Q) con su imagen en (), es decir, una curva discreta estd dada por
qa = {qr : k = 0,...,N} donde g, := qq(tx). Asociada al Lagrangiano discreto L, se de-
fine la accidn discreta A, : Cy(Q) — R como

N—-1
Ai(qq) = Z La(q, qes1)-
k=0
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Asi que este espacio de curvas discretas resulta, como en el caso continuo, una variedad di-
ferenciable de dimension infinita y el espacio tangente 7}, (C4(())) a Cy((Q)) es el conjunto de
aplicaciones v, : {tx : k =0,..., N} — TQ tales que mpg © v, = g4 y que se denotan por
Vg = {(qr,v) 1 k=0,...,N}.

El principio de E-L discreto establece que las trayectorias del sistema discreto son puntos
criticos de esta accion considerando curvas discretas con extremos fijos qo, gn. Es decir, g4 es
una trayectoria del sistema mecénico discreto (Q), Lg) si d.A4(qq) - 6ga4 = 0 para toda variacion
6qa = {0qr 5, tal que dgp = dqy = 0.

El célculo de la derivada de la accién discreta da lugar a las ecuaciones de E-L discretas:

N-1

dAs(ga) - 6¢0 = Y D1La(qr; Ghsr) + D2La(ge-1, )
k=1

donde D, y D representan las derivadas parciales de L, respecto de la primera y segunda
variable, respectivamente. Entonces, las ecuaciones de E-L discretas estdn dadas por

DlLd<Qk7 Qk+1> + D2Ld(q1f717 Qk) =0 para k= 1, RN ,N — 1.

Como en el caso de variable temporal continua, bajo las condiciones de regularidad sobre el
Lagrangiano discreto L, estas ecuaciones se resuelven de manera explicita y se encuentra el
valor de ¢;2 en funcién de g y qr+1. Cuando la variable temporal es discreta se definen dos
transformaciones de Legrende discretas

FLg:QxQ—T"Q dadapor F~ La(qo,q1) = (g0, —D1La(q0, 1)),

FTLg:Q xQ —T*Q dada por ]:+Ld(QO>Q1) = (q1, D2La(q0, q1))-

Si ambas transformadas discretas son isomorfismos locales se dice que L, es regular y si
son isomorfimos globales se dice que L4 es hiperregular y en este caso L, determina el flujo
discreto que define la evolucién del sistema (Q, Lq) como ¢ := (FTLg) "o F Ly : Q x Q —
@ x Q dada por ¥ (qx, gr+1) = (qr+1, Gr+2) donde g2 = Gr42(qr; gr+1) estd definido por las
ecuaciones de E-L discretas.

Consideremos ahora un sistema Lagrangiano discreto dependientes del tiempo. Entonces,
consideramos un sistema con espacio de configuraciones descrito por una variedad diferenciable
@ y una familia de Lagrangianos discretos L% : Q x Q — Rparak =0,...,N — 1.

Considerando el espacio de curvas discretas como en el caso auténomo se define la accién
discreta asociada a esta familia de Lagrangianos discretos como

N-1
Alaa) ==Y Lh(ak, ars).
5=0

El céalculo de la derivada de la accion discreta da lugar a las ecuaciones de E-L discretas:

N-1

dAa(qa) - 0qa =Y dL}(qr, Grs1(Oqr, 5G11))
h=1

y con las técnicas usuales se llega a que las ecuaciones de E-L discretas para este caso:

Dy LA (qrar, qrra) + DaLk(qry gryr) =0 conk =0,..., N — 2.
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Asi como en el caso de sistemas Lagrangianos con variable temporal continua tanto auténo-
mos como no auténomos, pudimos ver que las ecuaciones de E-L discretas correspondientes a
un sistema Lagrangiano discreto dependiente del tiempo pueden escribirse a partir de un opera-
dor asociado a la siguiente funcién Lagrangiana de segundo orden Ly: ()4 — R dada por

La(q Qs Grra) = LE(qr, qryn) + LA (qrrr, Qrra)

donde Q := {wq € (Q x Q) x (Q x Q) /7 00(wy) = myom(wy)} siendo 7 y o las proyecciones
de (@ X Q) x (Q x Q) sobre () x @ en el primer y segundo factor respectivamente y, como es
usual, 7 y 7y las proyecciones en el primer y segundo factor de @ x () en (). Luego, el operador
de E-L de Ld estard definido tal que £ Ld Qd — T™() como

ELa(qr Grsr, Grra) = Dy LE N (g, Gora) + DaLE(qr, qrrn)

pertenece a T, . Definiendo esto de esta manera, las ecuaciones de E-L discretas dependien-

tes del tiempo son exactamente aquellas que cumplen que & Ly=0.

Notemos que al considerar un sistema Lagrangiano discreto dependientes del tiempo sobre
un grupo de Lie G no aparece el fibrado 7T'G y por lo tanto no es necesario utilizar ninguna
trivializacion sino que solamente se trabaja en la variedad diferencial producto G x GG como en
cualquier variedad producto. Al considerar las variaciones infinitesimales con extremos fijos de
una curva g(t) C G se tiene, como es usual, que

d
Et:_
g(t) = -

()™ = g(t)e (1) = 9tn(t) € TG

donde 7)(t) es una curva en g tal que satisface que 7(0) = 7(7") = 0 y se obtienen las ecuaciones
de E-L discretas sobre G

DlL (gk+1’g/€+2) +‘D2Ld<gk7gk+1) - O con k= 077N_2

Cabe sefalar que en el caso discreto cuando el espacio de configuraciones es una variedad
diferenciable general, el fibrado tangente se reemplaza por el producto () x (). Sin embargo,
al trabajar con grupos de Lie, la estructura algebraica adicional permite utilizar herramientas
especificas como la multiplicacién a izquierda y la aplicacién exponencial, que resultan utiles
para definir variaciones y discretizaciones sin abandonar la geometria del grupo. En particular,
en los ejemplos que analizamos mds adelante, donde es necesario emplear retracciones debido
a que no se trata de grupos euclideos, estas construcciones facilitan el tratamiento discreto de
los sistemas, igual que ya se habia hecho en el marco de la variable temporal continua.

4. INTEGRADORES VARIACIONALES DEPENDIENTES DEL TIEMPO

Como es bien sabido, muchas veces ciertos sistemas mecanicos discretos aproximan a sis-
temas mecdnicos continuos. Una manera de hacer esto es considerar un sistema mecanico con
Lagrangiano L : T'Q) — R y un difeomorfismo ¢ : T'Q) — () x () que permita identificar los
vectores del espacio tangente 7'() con elementos del espacio producto () x (). Esta aplicacién
1 es conocida como discretizacion y es por medio de su inversa que se define un Lagrangiano
discreto Ly := L o t)~! a partir de un Lagrangiano L que usualmente llamamos Lagrangiano
discretizado y se llama sistema discretizado a un sistema discreto definido a partir de una dis-
cretizacion de un sistema continuo.
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Muchas veces es conveniente discretizar un sistema continuo para encontrar un integrador de
sus ecuaciones de movimiento. Esta idea consiste en definir integradores de un sistema Lagran-
giano continuo a partir de un principio variacional discreto y por eso se suele llamar integra-
dores variacionales a estos integradores. Es bien sabido que ellos gozan de buenas propiedades
geométricas tales como la conservacion del momento y la simplecticidad, y presentan un buen
comportamiento de la energia (ver Marsden y West (2001); Hairer et al. (2006)).

Para analizar la relacion entre un sistema Lagrangiano con variable temporal continua y un
sistema Lagrangiano discreto y, en particular, entre un sistema Lagrangiano y alguna version
discreta de él, se debe introducir la nocién de Lagrangiano discreto exacto.

Dado un Lagrangiano hiperregular L : T'() — R consideremos la funcién llamada Lagran-
giana discreta exacta LdE R x @ x @ — R dada por

h
LE(h, g0, 1) 1:/ L(qon(t), do,n(t)) dt,
0

donde ¢ (t) es la tnica solucién de las ecuaciones de E-L para L con las condiciones de
borde ¢(0) = qo, ¢(h) = ¢1. Se puede demostrar que a partir de dos posiciones iniciales el flujo
asociado a este Lagrangiano discreto exacto determina una curva discreta que coincide con la
evaluacion de la curva solucion del sistema continuo en los puntos correspondientes.

La idea es definir Lagrangianos discretos que aproximen al Lagrangiano discreto exacto y
asf determinen un integrador de las ecuaciones de E-L. Es decir, Ly(h, o, ¢1) ~ L5 (h, qo, q1)-

Para construir integradores variacionales para sistemas Lagrangianos dependientes del tiem-
po sobre grupos de Lie se deben definir Lagrangianos discretizados LY : G x G — R con k =
0,..., N — 1 a partir del Lagrangiano L : R x TG — R del sistema. Siguiendo lo desarrollado
en Colombo et al. (2023) para un espacio arbitrario, contruimos integradores variacionales para
casos particulares que son de interés tanto en el drea de la robdtica como en tantas otras.

Cada una de las aplicaciones LX : G x G — Rconk = 0,..., N — 1 es suave y se puede
usar el Teorema de la funcién implicita y despejar g en funcioén de g; y gr11 de la siguiente
manera: dados (gx, gk+1, gk+2) solucién de las ecuaciones de E-L discretas dependientes del
tiempo, es decir que hay una curva solucién y ademds Dy D L% (gy., g.11) es invertible, se tiene
que existen un entorno V,, C G x G de (gx, gr+1), un entorno U, C G x G de (grr1, grr2) ¥

una aplicacién ¢y, : U, — Vi tal que ¥r(gr, grr1) = (Grr1, grro) ¥ V(g,g) € Uy se tiene que
D1 Lq(§,¥x(9,9)) + D2Lyg ™ (9,3) = 0.

Se puede observar que ésto vale para cada terna de puntos solucién de las ecuaciones de
E-L, necesitando ademds que U, N U1 # (. Asi, las ecuaciones de E-L discretas definen
implicitamente una familia de flujos discretos {wlj’kﬂ}ff:}f como wij’kﬂ GxG—Gxd
dada por ¥(gy, gk+1) = (Gis1s Grr2) donde grvo = gsa(gh, grs1) ¥ estd localmente definido
por las ecuaciones de E-L.

Ahora bien, esta construccion de un integrador para aproximar la solucién de un sistema
continuo implica la definicién y el uso de una discretizacién de 7'G. En el caso general de un
grupo de Lie G cualquiera se pueden considerar retracciones para identificar 7’G on G x g (ver
Vivek et al. (2025)). Nosotros, por simplicidad, vamos a considerar el caso de un grupo abeliano
Euclideo para integrar las ecuaciones del sistema (ver Colombo et al. (2023)).

Ejemplo 4: Analicemos ahora la discretizacion del Ejemplo 1, siendo el Lagrangiano dis-
creto Ly : R™ x R™ — R dado por la discretizacion trapezoidal. Tomando §; = —qk“h_ U on
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t € [ty, tks1], el Lagrangiano discreto dependientes del tiempo estd dado por

h - h _
Lfl,h<qk7qk+1) = §L (kh,qk, W) + 5L <(k + 1)h,qk+1, Qk+1h qk)

Entonces las ecuaciones de E-L discretas dependientes del tiempo son

e "N (guyr — qi) — e "D (guy — quiy) — e NV (2R V(i) — 2ais1 + Gk + Geg2) = 0

Ejemplo 5: Consideramos ahora la discretizacion del Ejemplo 2, siendo el Lagrangiano
Q1 — G

discreto Ly : R" x R"™ — R dado por la discretizacion trapezoidal. Tomando ¢; = W

cont € [tg,try1], el Lagrangiano discreto dependientes del tiempo estd dado por

h — h _
Ls,h(le Qk-i-l) - EL (kh, gk, W) + §[/ ((k + ].)h, Qi1 Q/ﬁ—l—lh Qk)

Entonces las ecuaciones de E-L discretas dependientes del tiempo son

o rilkh) (A(qk) + Qk+1h— Qk) _ g H(k+2)h (A(qk+2) 4 k42 ; Qk+1)

5 o
kDR <qu+1A(Qk+1)(Qk+2 — ) + < &S Zk Qk+2>) -0

S. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo consideramos la dindmica de sistemas mecdnicos Lagrangianos dependientes
del tiempo sobre grupos de Lie tanto para el caso de variable temporal continua como discreta.
En el marco de variable temporal continua, consideramos ejemplos en grupos de Lie euclideos
y no euclideos y para el primero de estos casos consideramos su version discreta para definir
integradores variacionales de las ecuaciones de E-L. En particular se construyen integradores
variacionales para abordar el problema de aproximar las trayectorias de este tipo de sistemas.
Si bien en este trabajo no hacemos ningun andlisis de error de los integradores variacionales
propuestos, seria muy interesante hacerlo y poder comparar con los integradores presentados en
Arnold et al. (2016) y Briils et al. (2012).

Estamos trabajando sobre la construccion de integradores variacionales sobre grupos de Lie
para sistemas Lagrangianos dependientes del tiempo para un grupo arbitrario GG. Esto es, nos
proponemos generalizar lo obtenido en Vivek et al. (2025). También, motivados por sus diversas
aplicaciones que involucran sistemas formados por vehiculos aéreos no tripulados realizando ta-
reas de manera conjunta, estamos considerando sistemas Lagrangianos dependientes del tiempo
sobre fibrados principales triviales; esto es, sistemas cuyo espacio de configuraciones estd dado
por el producto cartesiano M x G de una variedad suave arbitraria M y un grupo de Lie G.
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