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Resumen. Los sistemas Lagrangianos mecánicos dependientes del tiempo son de gran interés en diver-

sas ramas de la ingeniería y la física. En particular, en robótica, se consideran numerosos sistemas no

autónomos, es decir, dependientes del tiempo. En este trabajo presentamos la dinámica de tales sistemas

en grupos de Lie, considerando tanto variables temporales continuas como discretas. En este marco, abor-

damos el problema de integrar sus ecuaciones de movimiento mediante técnicas variacionales discretas.

Ilustramos el enfoque con ejemplos sencillos cuyo espacio de configuración es el grupo euclidiano y pro-

ponemos sus versiones discretas. Asimismo, estudiamos un ejemplo en el grupo de rotaciones espaciales

y, finalmente, discutimos posibles líneas de investigación futura orientadas al desarrollo de integradores

variacionales para sistemas más generales.

Keywords: Lagrangian systems, Lie groups, Time-dependent Lagrangian systems, Variational integra-

tors.

Abstract. Time-dependent Lagrangian mechanical systems are of great interest in various branches of

engineering and physics. In particular, in robotics, many non-autonomous, that is time-dependent La-

grangian systems, are considered. In this work, we present the dynamics of such systems on Lie groups,

considering both continuous and discrete time variables. Within this framework, we address the problem

of integrating their equations of motion using discrete variational techniques. We illustrate the approach

with simple examples whose configuration space is the Euclidean group, and propose their discrete coun-

terparts. We also study an example on the group of spatial rotations, and finally discuss future research

directions aimed at developing variational integrators for more general systems.
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1. INTRODUCCIÓN

La formulación Lagrangiana de la mecánica constituye una de las herramientas fundamen-

tales para el estudio de sistemas físicos y de ingeniería, ya que permite describir su dinámica

a partir de principios variacionales con un fuerte trasfondo geométrico. En particular, los siste-

mas no autónomos, es decir, aquellos cuyo comportamiento depende del tiempo, aparecen de

manera natural en numerosos contextos.

La versión Lagrangiana de la mecánica clásica se realiza considerando el fibrado tangente de

una variedad diferenciable y una función diferenciable sobre él, llamada función Lagrangiana o

Lagrangiano que usualmente está dada por la energía cinética menos la energía potencial.

Sean Q una variedad diferenciable de dimensión n y TQ su fibrado tangente. Un sistema

Lagrangiano está dado por el par (Q,L) donde Q describe sus configuraciones y L : TQ → R

es una función suave. Su dinámica queda determinada por el bien conocido Principio de acción

crítica de Hamilton usando el funcional acción del sistema que está definido como

A(q) :=
∫ T

0
L(q(t), q̇(t))dt,

donde q : [0, T ] → Q es una curva suave en Q y q̇ : [0, T ] → TQ es su curva velocidad de

manera tal que q̇(t) ∈ Tq(t)Q ∀ t ∈ [0, T ]. Una variación infinitesimal de q es una curva suave

δq : [0, T ] → TQ tal que δq(t) ∈ Tq(t)Q ∀ t ∈ [0, T ] y se dice que δq es a extremos fijos si

δq(0) = 0 y δq(T ) = 0. El principio variacional de Hamilton establece que las trayectorias del

sistema están dadas por los puntos críticos del funcional A(q). Tomando variaciones a extremos

fijos se tiene que los puntos críticos de A son las soluciones de las llamadas ecuaciones de

Euler-Lagrange (E-L) dadas por

∂L

∂q
(q, q̇)−

d

dt

(

∂L

∂q̇
(q, q̇)

)

= 0.

Considerando (qi)ni=1 enQ un sistema local de coordenadas, esta ecuación determina un sistema

de n ecuaciones diferenciales ordinarias de segundo orden

∂2L

∂q̇i∂q̇j
q̈j +

∂2L

∂q̇i∂qj
q̇j −

∂L

∂qi
= 0 i = 1, ..., n. (1)

Bajo condiciones de regularidad, (1) se resuelve de manera explícita y se encuentra la ace-

leración de la trayectoria. Esta condición consiste en que FL : TQ→ T ∗Q, la transformada

de Legendre, dada por FL(q, q̇) :=

(

q, p :=
∂L

∂q̇

)

sea un difeomorfismo local. En este caso se

dice que L es regular y si, además, es un difeomorfismo global se dice que L es hiperregular.

Así la matriz Hess(L) :=

(

∂2L

∂q̇i∂q̇j

)

es no singular en cualquier punto y la solución de (1) está

dada por

q̈j =

(

∂2L

∂q̇i∂q̇j

)

−1 (
∂L

∂qi
−

∂2L

∂q̇i∂qj
q̇j
)

.

Ahora bien, la variación de la acción dA(q).δq puede interpretarse como

dA(q(t)) · δq(t) =

∫ T

0

EL(q(t), q̇(t), q̈(t)).δq(t)dt+ (θL(q(t), q̇(t)).δq(t))

∣

∣

∣

∣

T

0
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donde θL es la 1-forma sobre TQ dada por ∂L
∂q̇i
dqi, y EL : Q̈→ T ∗Q es el llamado operador de

E-L definido por

EL(q, q̇, q̈) :=
1

∑

l=0

(−1)l
dl

dtl

(

∂L

∂ql

)

=
∂L

∂q
−

d

dt

(

∂L

∂q̇

)

=
∂L

∂qi
−

∂2L

∂q̇i∂q̇j
q̈j −

∂2L

∂q̇i∂qj
q̇j

siendo T ∗Q el fibrado cotangente de la variedad Q, πTQ : T (TQ) → TQ y πQ : TQ→ Q las

proyecciones canónicas y Q̈ = {w ∈ T (TQ) / TπQ(w) = πTQ(w)} ⊂ T (TQ) la subvariedad

de segundo orden.

Consideremos ahora un sistema Lagrangiano dependiente del tiempo. Esto es, un par (Q,L)
donde la variedad diferenciable Q describe las configuraciones del sistema y el Lagrangiano L
depende explícitamente del tiempo. Es decir, L : R× TQ→ R. En este caso, la transformada

de Legendre asociada FL : R× TQ→ R× T ∗Q está dada por FL(t, q, q̇) := (t, q, p := ∂L/∂q̇).
Como en el caso autónomo, decimos que L es hiperregular si FL es un difeomorfismo global

y si las trayectorias del sistema verifican el principio de acción crítica de Hamilton que en este

caso da lugar a las ecuaciones de movimiento

∂2L

∂q̇i∂q̇j
q̈j +

∂2L

∂q̇i∂qj
q̇j +

∂2L

∂q̇i∂t
−
∂L

∂qi
= 0

y, por lo tanto, el operador de E-L queda dado por

EL(q, q̇, q̈) =
∂L

∂q
−

d

dt

(

∂L

∂q̇

)

=
∂L

∂qi
−

∂2L

∂q̇i∂q̇j
q̈j −

∂2L

∂q̇i∂qj
q̇j −

∂2L

∂q̇i∂t
.

Si L is hiperregular estas ecuaciones definen explícitamente las aceleraciones en términos de

las posiciones y las velocidades de la siguiente manera

q̈j =

(

∂2L

∂q̇i∂q̇j

)

−1 (
∂L

∂qi
−

∂2L

∂q̇i∂qj
q̇j −

∂2L

∂q̇i∂t

)

.

Ahora bien, es claro que estas las ecuaciones de movimiento pueden no tener soluciones

analíticas y por lo tanto se debe recurrir a integradores que permitan aproximar de manera satis-

factoria las trayectorias del sistema. Lo mismo ocurre cuando el sistema presenta algún tipo de

vínculos o está sometido a distintos tipos de fuerzas. Existen muchos trabajos que se ocupan de

proponer distintos métodos de integración y de estudiar sus propiedades. En particular, cuando

el espacio de configuraciones Q es un grupo de Lie G, explotando la riqueza de esta variedad

y su fibrado tangente, en Arnold et al. (2016) y Brüls et al. (2012) los autores proponen in-

tegradores y analizan su convergencia tratando el caso particularmente interesante de sistemas

multicuerpo. Como dijimos, en este trabajo, proponemos definir integradores a partir de un prin-

cipio variacional discreto (integradores variacionales) que dan lugar a ecuaciones algebraicas

cuyas soluciones aproximan a la solución del sistema en lugar de discretizar ecuaciones.

Finalmente, la organización del trabajo es la siguiente. En la Sección 2 introducimos estos

sistemas sobre grupos de Lie, destacando las herramientas geométricas necesarias y mostrando

ejemplos representativos. En la Sección 3 abordamos la versión discreta, definiendo los sistemas

Lagrangianos no autónomos en el marco variacional. En la Sección 4 presentamos la construc-

ción de integradores variacionales dependientes del tiempo y discutimos su relación con el caso

continuo. Finalmente, en la Sección 5 exponemos las conclusiones y trabajo futuro.
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2. SISTEMAS LAGRANGIANOS DEPENDIENTES DEL TIEMPO SOBRE GRUPOS
DE LIE

Modelar estos sistemas en espacios de configuración con estructura algebraica adicional, co-

mo los grupos de Lie, introduce nuevas posibilidades. Por un lado, la estructura facilita la des-

cripción intrínseca de movimientos complejos, como rotaciones o traslaciones, evitando recurrir

a coordenadas locales. Obliga a adaptar las técnicas clásicas para incorporar adecuadamente las

simetrías y restricciones geométricas del grupo. En esta sección presentamos las ecuaciones de

movimiento de sistemas Lagrangianos dependientes del tiempo sobre grupos de Lie adaptando

las técnicas variacionales usuales que describimos en la Introducción.

Consideremos un sistema Lagrangiano dependiente del tiempo (G,L), donde el espacio de

configuraciones es un grupo de Lie G y Lagrangiano L : R× TG→ R. Como es usual, deno-

tamos el álgebra de Lie del grupo G como g y el difeomorfimo dado por la multiplicación a

izquierda deG sobre sí mismo como lg : G→ G para todo g ∈ G. Es bien sabido que el fibrado

tangente TG se puede identificar con el producto cartesiano G× g mediante la llamada triviali-

zación a izquierda TG→ G×g dada por (g, ġ) 7→ (g, ξ := Tglg−1(ġ)) donde Tglg−1 : TgG→ g

es la aplicación tangente en g de la multiplicación a izquierda lg−1 . Vía esta identificación con-

sideramos que el Lagrangiano del sistema dependientes del tiempo (G,L) está definido como

una función L : R×G× g → R y el funcional acción A está dado por

A(t, g, ξ) :=
∫ T

0
L(t, g, ξ)dt.

Sea g(t) una curva suave enG definida para t ∈ [0, T ]. Para considerar variaciones infinitesi-

males δg(t) de esta curva consideremos variaciones del tipo gϵ(t) : [0, T ] → G con ϵ ∈ (−c, c)
y c > 0 tales que g0(t) = g(t), ∀t ∈ [0, T ], gϵ(0) = g(0) y gϵ(T ) = g(T ). Estas variaciones pue-

den expresarse usando la aplicación exponencial e : g → G de manera tal que gϵ(t) = g(t)eϵη(t)

para una curva suave η(t) en g satisfaciendo que η(0) = η(T ) = 0 y por lo tanto sus variaciones

infinitesimales asociadas están dadas por (ver Colombo et al. (2025) para más detalles)

δg(t) =
d

dϵ

∣

∣

∣

∣

ϵ=0

gϵ(t) =
d

dϵ

∣

∣

∣

∣

ϵ=0

g(t)eϵη(t) = g(t)eϵη(t)η(t)

∣

∣

∣

∣

ϵ=0

= g(t)η(t) ∈ Tg(t)G.

Se puede calcular la variación infinitesimal de la curva ξ(t) := Tglg−1(ġ) que está dada por

δξ(t) =
d

dϵ

∣

∣

∣

∣

ϵ=0

(

(gϵ)−1 gd
ϵ

dt

)

= η̇(t) + [ξ, η] = η̇(t) + adξ(t)η(t)

donde, como es usual, ad denota la acción adjunta de g sobre sí misma definida por adξ(t)η(t) :=
[ξ, η] y ad∗ denota la acción co-adjunta de g

∗ sobre sí misma definida por (ad∗ξη)β := η(adξη).
Para calcular la variación de la acción A veamos primero cómo se expresa la variación del

Lagrangiano. Como en el caso autónomo,

δL(t, g, ξ) =
∂L

∂g
(t, g, ξ)δg +

∂L

∂ξ
(t, g, ξ)δξ

donde
∂L

∂g
∈ T ∗G está dado por

∂L

∂g
(t, g, ξ)δg = L(t, gϵ, ξ)

∣

∣

∣

∣

ϵ=0

. Entonces, puede verse que

δL(t, g, ξ) =

〈

T ∗

e lg
∂L

∂g
(t, g, ξ) + ad∗ξ

∂L

∂ξ
(t, g, ξ), η

〉

+

〈

∂L

∂ξ
(t, g, ξ), η̇

〉

.
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Como δA(t, g, ξ) =

∫ T

0

δL(t, g, ξ)dt, aplicando técnicas usuales del cálculo de variaciones se

obtiene que δA(t, g, ξ) =
∫ T

0

〈

T ∗

e lg
∂L
∂g
(t, g, ξ) + ad∗ξ

∂L
∂ξ
(t, g, ξ)− d

dt
∂L
∂ξ
(t, g, ξ), η

〉

dt. Como el

principio de Hamilton establece que δA = 0 para toda η ∈ g con extremos fijos, las ecuaciones

de E-L para un Lagrangiano L : R×G× g → R están dadas por

d

dt

∂L

∂ξ
(t, g, ξ)− ad∗ξ

∂L

∂ξ
(t, g, ξ)− T ∗

e lg
∂L

∂g
(t, g, ξ) = 0, ġ = gξ. (2)

Calculando la derivada temporal, (2) se escribe como

∂2L

∂ξ∂ξ
ξ̇ +

∂2L

∂ξ∂g
ġ +

∂2L

∂ξ∂t
− ad∗ξ

∂L

∂ξ
(t, g, ξ)− T ∗

e lg
∂L

∂g
(t, g, ξ) = 0, ġ = gξ.

Consideremos algunos ejemplos de sistemas Lagrangianos no autónomos sobre grupos de

Lie. Cuando el grupo de Lie G es un espacio euclídeo R
n no necesitamos trivializar su fibrado

tangente sino que identificamos TG con R
n × R

n.

Para ilustrar las ideas desarrolladas presentamos algunos ejemplos representativos. Estos

muestran cómo la dependencia del tiempo y la estructura geométrica del espacio de configura-

ciones influyen en las ecuaciones de movimiento. Primero, consideramos un Lagrangiano con

decaimiento exponencial definido en un espacio euclídeo, que sirve como caso base. El mismo

es un ejemplo físico que está dado por una disipación lineal en las velocidades del sistema.

Ejemplo 1: Consideremos un Lagrangiano dependiente del tiempo dado por el decaimiento

exponencial con tasa constante k > 0 para un Lagrangiano mecánico (esto es, energía cinética

menos energía potencial) sobre el grupo de Lie G = R
n. Esto es,

L : R× R
n × R

n → R dado por L(t, q, q̇) = e−kt

(

1

2
∥q̇∥2 − V (q)

)

donde q = (q1, . . . , qn) ∈ R
n, q̇ = (q̇1, . . . , q̇n) ∈ R

n y V : Rn → R una función potencial.

Como
∂L

∂q
= −e−kt∇qiV ,

∂L

∂q̇
= e−ktq̇ y

d

dt

(

∂L

∂q̇

)

= e−ktq̈ − ke−ktq̇ las ecuaciones de E-L

del sistema se escriben como

e−ktq̈ − ke−ktq̇ + e−kt∇qiV = 0

donde ∇qi representa la derivada parcial de L con respecto a qi. Equivalentemente, eliminando

el factor e−kt se tiene q̈ = kq̇ −∇qiV.
Para el segundo ejemplo analizamos un sistema con interacción magnética en R

3, que intro-

duce efectos adicionales derivados de un potencial vectorial. El mismo es un ejemplo físico de

partículas magnéticas en el espacio.

Ejemplo 2: Consideremos el sistema dado por una partícula en G = R
3 con un campo

magnético cuyo Lagrangiano se descuenta con tasa constante k > 0. Este está dado por

LA(q, q̇) = e−κt

(

A(q)q̇ +
1

2
q̇2
)

.

Dado que
∂L

∂q
= e−κt(∇qAq̇),

∂L

∂q̇
= e−κt(A(q) + q̇) y

d

dt

(

∂L

∂q̇

)

= −κe−κt(A(q) + q̇) +

e−κtq̈+ e−κt∇qAq̇, las ecuaciones de E-L son e−κt (−κ(A(q) + q̇) + q̈ +∇qAq̇ −∇qAq̇) = 0.
Dividiendo por e−κt obtenemos que q̈ = κ(A(q) + q̇).
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Finalmente, estudiamos el caso de un cuerpo rígido con pivote fijo en el grupo SO(3), ejem-

plo que pone de manifiesto la riqueza de trabajar en un grupo de Lie no euclídeo. El mismo es

un ejemplo relacionado con la robótica que representa la dinámica de un satélite.

Ejemplo 3: Consideremos el sistema dado por un cuerpo rígido con un pivote fijo que evo-

luciona sobre G = SO(3). El Lagrangiano L : R× TSO(3) → R está dado por

L(t, R, Ṙ) =
e−κt

2
⟨⟨Ṙ, Ṙ⟩⟩,

donde κ ∈ R
+ y ⟨⟨Ṙ, Ṙ⟩⟩ =

∫

B

ρ(X)∥ṘX∥2 d3X siendo ρ la distribuión de masa del cuerpo.

La acción de G sobre si mismo es la multiplicación de matrices lR1
: SO(3) → SO(3); esto

es, lR1
(R) = R1R y TRlR1

(Y ) = R1Y para Y ∈ TRSO(3). El álgebra de Lie del grupo SO(3),
denotada como so(3), consiste en las matrices anti-simétricas de dimensiones 3 × 3 y puede

identificarse con R
3 vía un isomorfismo. La acción adjunta está dada por el conmutador de las

matrices. Esto es, adξη = ξη − ηξ con ξ, η ∈ so(3).
Identificando TG con G× g el Lagrangiano L : R× SO(3)× so(3) → R se escribe como

L(t, R, ξ) =
e−κt

2
⟨ξ, ξ⟩ =

1

2
tr (ξT Iξ)

siendo I el tensor de inercia del cuerpo rígido. Considerando todas estas identificaciones se

llega a que las ecuaciones de E-L están dadas por Iξ̇ − ξ × Iξ − κIξ = 0. Estas ecuaciones

describen el caso equilibrado de los sistemas de actitud de cuerpo rígido. Estos sistemas se

definieron en Shen et al. (2003) como una abstracción para el banco de pruebas de control de

actitud triaxial presentado en Bernstein et al. (2001). Es decir, un cuerpo rígido, soportado por

un punto de pivote fijo, que puede rotar libremente en tres dimensiones. En el caso equilibrado,

las ecuaciones de E-L describen la dinámica de un cuerpo rígido libre, incluyendo los efectos

de disipación lineal. La dinámica de este sistema se ha estudiado desde el punto de vista de la

reducción por simetrías en la geometría de contacto en Anahory et al. (2024).

3. SISTEMAS LAGRANGIANOS DISCRETOS DEPENDIENTES DEL TIEMPO

Una idea básica de la formulación estándar de la mecánica discreta consiste en reemplazar el

fibrado tangente TQ por Q × Q. Es decir, si se considera un sistema mecánico con espacio de

configuración Q, en el contexto continuo el espacio de velocidades es TQ y el Lagrangiano es

una aplicación L : TQ→ R. En el contexto discreto se reemplaza TQ por Q×Q considerando

que dos puntos cercanos en Q son el análogo discreto de un vector velocidad y el Lagrangiano

discreto es una aplicación Ld : Q×Q→ R. Un sistema mecánico discreto se define, entonces,

como un par (Q,Ld). La evolución de estos sistemas está determinada por un principio varia-

cional discreto que da lugar a un sistema de ecuaciones algebraicas en recurrencia; a diferencia

de lo que ocurre en el contexto continuo, donde la trayectoria del sistema se obtiene a partir de

un sistema de ecuaciones diferenciales (ver por ejemplo Marsden y West (2001)).

La idea es construir una sucesión de tiempos discreta {tk = k : k = 0, . . . , N} ⊂ R, de-

finir el espacio de curvas discretas como Cd(Q) := {qd : {tk}
N
k=0 → Q} e identificar las cur-

vas discretas qd ∈ Cd(Q) con su imagen en Q, es decir, una curva discreta está dada por

qd = {qk : k = 0, . . . , N} donde qk := qd(tk). Asociada al Lagrangiano discreto Ld se de-

fine la acción discreta Ad : Cd(Q) → R como

Ad(qd) :=
N−1
∑

k=0

Ld(qk, qk+1).
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Así que este espacio de curvas discretas resulta, como en el caso continuo, una variedad di-

ferenciable de dimensión infinita y el espacio tangente Tqd(Cd(Q)) a Cd(Q) es el conjunto de

aplicaciones vqd : {tk : k = 0, . . . , N} → TQ tales que πTQ ◦ vqd = qd y que se denotan por

vqd = {(qk, vk) : k = 0, . . . , N}.

El principio de E-L discreto establece que las trayectorias del sistema discreto son puntos

críticos de esta acción considerando curvas discretas con extremos fijos q0, qN . Es decir, qd es

una trayectoria del sistema mecánico discreto (Q,Ld) si dAd(qd) · δqd = 0 para toda variación

δqd = {δqk}
N
k=0 tal que δq0 = δqN = 0.

El cálculo de la derivada de la acción discreta da lugar a las ecuaciones de E-L discretas:

dAd(qd) · δqd =
N−1
∑

k=1

D1Ld(qk, qk+1) +D2Ld(qk−1, qk)

donde D1 y D2 representan las derivadas parciales de Ld respecto de la primera y segunda

variable, respectivamente. Entonces, las ecuaciones de E-L discretas están dadas por

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0 para k = 1, . . . , N − 1.

Como en el caso de variable temporal continua, bajo las condiciones de regularidad sobre el

Lagrangiano discreto Ld, estas ecuaciones se resuelven de manera explícita y se encuentra el

valor de qk+2 en función de qk y qk+1. Cuando la variable temporal es discreta se definen dos

transformaciones de Legrende discretas

F−Ld : Q×Q→ T ∗Q dada por F−Ld(q0, q1) = (q0,−D1Ld(q0, q1)),

F+Ld : Q×Q→ T ∗Q dada por F+Ld(q0, q1) = (q1, D2Ld(q0, q1)).

Si ambas transformadas discretas son isomorfismos locales se dice que Ld es regular y si

son isomorfimos globales se dice que Ld es hiperregular y en este caso Ld determina el flujo

discreto que define la evolución del sistema (Q,Ld) como ψd := (F+Ld)
−1 ◦F+Ld : Q×Q→

Q × Q dada por ψ(qk, qk+1) = (qk+1, qk+2) donde qk+2 = qk+2(qk, qk+1) está definido por las

ecuaciones de E-L discretas.

Consideremos ahora un sistema Lagrangiano discreto dependientes del tiempo. Entonces,

consideramos un sistema con espacio de configuraciones descrito por una variedad diferenciable

Q y una familia de Lagrangianos discretos Lk
d : Q×Q→ R para k = 0, . . . , N − 1.

Considerando el espacio de curvas discretas como en el caso autónomo se define la acción

discreta asociada a esta familia de Lagrangianos discretos como

Ad(qd) :=
N−1
∑

k=0

Lk
d(qk, qk+1).

El cálculo de la derivada de la acción discreta da lugar a las ecuaciones de E-L discretas:

dAd(qd) · δqd =
N−1
∑

k=1

dLk
d(qk, qk+1(δqk, δqk+1))

y con las técnicas usuales se llega a que las ecuaciones de E-L discretas para este caso:

D1L
k+1
d (qk+1, qk+2) +D2L

k
d(qk, qk+1) = 0 con k = 0, . . . , N − 2.
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Así como en el caso de sistemas Lagrangianos con variable temporal continua tanto autóno-

mos como no autónomos, pudimos ver que las ecuaciones de E-L discretas correspondientes a

un sistema Lagrangiano discreto dependiente del tiempo pueden escribirse a partir de un opera-

dor asociado a la siguiente función Lagrangiana de segundo orden L̂d : Q̈d → R dada por

L̂d(qk, qk+1, qk+2) = Lk
d(qk, qk+1) + Lk+1

d (qk+1, qk+2)

donde Q̈ := {wd ∈ (Q×Q)×(Q×Q)/π1◦σ(wd) = π2◦π(wd)} siendo π y σ las proyecciones

de (Q×Q)× (Q×Q) sobre Q×Q en el primer y segundo factor respectivamente y, como es

usual, π1 y π2 las proyecciones en el primer y segundo factor deQ×Q enQ. Luego, el operador

de E-L de L̂d estará definido tal que EL̂d : Q̈d → T ∗Q como

EL̂d(qk, qk+1, qk+2) := D1L
k+1
d (qk+1, qk+2) +D2L

k
d(qk, qk+1)

pertenece a T ∗

qk+1
Q. Definiendo esto de esta manera, las ecuaciones de E-L discretas dependien-

tes del tiempo son exactamente aquellas que cumplen que EL̂d = 0.
Notemos que al considerar un sistema Lagrangiano discreto dependientes del tiempo sobre

un grupo de Lie G no aparece el fibrado TG y por lo tanto no es necesario utilizar ninguna

trivialización sino que solamente se trabaja en la variedad diferencial producto G×G como en

cualquier variedad producto. Al considerar las variaciones infinitesimales con extremos fijos de

una curva g(t) ⊂ G se tiene, como es usual, que

δg(t) =
d

dϵ

∣

∣

∣

∣

ϵ=0

gϵ(t) =
d

dϵ

∣

∣

∣

∣

ϵ=0

g(t)eϵη(t) = g(t)eϵη(t)η(t)

∣

∣

∣

∣

ϵ=0

= g(t)η(t) ∈ Tg(t)G

donde η(t) es una curva en g tal que satisface que η(0) = η(T ) = 0 y se obtienen las ecuaciones

de E-L discretas sobre G

D1L
k+1
d (gk+1, gk+2) +D2L

k
d(gk, gk+1) = 0, con k = 0, . . . , N − 2.

Cabe señalar que en el caso discreto cuando el espacio de configuraciones es una variedad

diferenciable general, el fibrado tangente se reemplaza por el producto Q × Q. Sin embargo,

al trabajar con grupos de Lie, la estructura algebraica adicional permite utilizar herramientas

específicas como la multiplicación a izquierda y la aplicación exponencial, que resultan útiles

para definir variaciones y discretizaciones sin abandonar la geometría del grupo. En particular,

en los ejemplos que analizamos más adelante, donde es necesario emplear retracciones debido

a que no se trata de grupos euclídeos, estas construcciones facilitan el tratamiento discreto de

los sistemas, igual que ya se había hecho en el marco de la variable temporal continua.

4. INTEGRADORES VARIACIONALES DEPENDIENTES DEL TIEMPO

Como es bien sabido, muchas veces ciertos sistemas mecánicos discretos aproximan a sis-

temas mecánicos continuos. Una manera de hacer esto es considerar un sistema mecánico con

Lagrangiano L : TQ→ R y un difeomorfismo ψ : TQ→ Q×Q que permita identificar los

vectores del espacio tangente TQ con elementos del espacio producto Q × Q. Esta aplicación

ψ es conocida como discretización y es por medio de su inversa que se define un Lagrangiano

discreto Ld := L ◦ ψ−1 a partir de un Lagrangiano L que usualmente llamamos Lagrangiano

discretizado y se llama sistema discretizado a un sistema discreto definido a partir de una dis-

cretización de un sistema continuo.
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Muchas veces es conveniente discretizar un sistema continuo para encontrar un integrador de

sus ecuaciones de movimiento. Esta idea consiste en definir integradores de un sistema Lagran-

giano continuo a partir de un principio variacional discreto y por eso se suele llamar integra-

dores variacionales a estos integradores. Es bien sabido que ellos gozan de buenas propiedades

geométricas tales como la conservación del momento y la simplecticidad, y presentan un buen

comportamiento de la energía (ver Marsden y West (2001); Hairer et al. (2006)).

Para analizar la relación entre un sistema Lagrangiano con variable temporal continua y un

sistema Lagrangiano discreto y, en particular, entre un sistema Lagrangiano y alguna versión

discreta de él, se debe introducir la noción de Lagrangiano discreto exacto.

Dado un Lagrangiano hiperregular L : TQ→ R consideremos la función llamada Lagran-

giana discreta exacta LE
d : R×Q×Q→ R dada por

LE
d (h, q0, q1) :=

∫ h

0

L(q0,h(t), q̇0,h(t)) dt,

donde q0,h(t) es la única solución de las ecuaciones de E-L para L con las condiciones de

borde q(0) = q0, q(h) = q1. Se puede demostrar que a partir de dos posiciones iniciales el flujo

asociado a este Lagrangiano discreto exacto determina una curva discreta que coincide con la

evaluación de la curva solución del sistema continuo en los puntos correspondientes.

La idea es definir Lagrangianos discretos que aproximen al Lagrangiano discreto exacto y

así determinen un integrador de las ecuaciones de E-L. Es decir, Ld(h, q0, q1) ∼ LE
d (h, q0, q1).

Para construir integradores variacionales para sistemas Lagrangianos dependientes del tiem-

po sobre grupos de Lie se deben definir Lagrangianos discretizados Lk
d : G×G→ R con k =

0, ..., N − 1 a partir del Lagrangiano L : R× TG→ R del sistema. Siguiendo lo desarrollado

en Colombo et al. (2023) para un espacio arbitrario, contruimos integradores variacionales para

casos particulares que son de interés tanto en el área de la robótica como en tantas otras.

Cada una de las aplicaciones Lk
d : G × G → R con k = 0, ..., N − 1 es suave y se puede

usar el Teorema de la función implícita y despejar gk+2 en función de gk y gk+1 de la siguiente

manera: dados (gk, gk+1, gk+2) solución de las ecuaciones de E-L discretas dependientes del

tiempo, es decir que hay una curva solución y además D2D1L
k
d(gk, gk+1) es invertible, se tiene

que existen un entorno Vk ⊂ G × G de (gk, gk+1), un entorno Uk ⊂ G × G de (gk+1, gk+2) y

una aplicación ψk : Uk → Vk tal que ψk(gk, gk+1) = (gk+1, gk+2) y ∀(g, g̃) ∈ Uk se tiene que

D1L
k
d(g̃, ψk(g, g̃)) +D2L

k−1
d (g, g̃) = 0.

Se puede observar que ésto vale para cada terna de puntos solución de las ecuaciones de

E-L, necesitando además que Uk ∩ Uk+1 ̸= ∅. Así, las ecuaciones de E-L discretas definen

implícitamente una familia de flujos discretos {ψk,k+1
d }N−2

k=0 como ψk,k+1
d : G × G → G × G

dada por ψ(gk, gk+1) = (gk+1, gk+2), donde gk+2 = gk+2(gk, gk+1) y está localmente definido

por las ecuaciones de E-L.

Ahora bien, esta construcción de un integrador para aproximar la solución de un sistema

contínuo implica la definición y el uso de una discretización de TG. En el caso general de un

grupo de Lie G cualquiera se pueden considerar retracciones para identificar TG on G× g (ver

Vivek et al. (2025)). Nosotros, por simplicidad, vamos a considerar el caso de un grupo abeliano

Euclídeo para integrar las ecuaciones del sistema (ver Colombo et al. (2023)).

Ejemplo 4: Analicemos ahora la discretización del Ejemplo 1, siendo el Lagrangiano dis-

creto Ld : R
n × R

n → R dado por la discretización trapezoidal. Tomando q̇i =
qik+1 − qik

h
con
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t ∈ [tk, tk+1], el Lagrangiano discreto dependientes del tiempo está dado por

Lk
d,h(qk, qk+1) =

h

2
L

(

kh, qk,
qk+1 − qk

h

)

+
h

2
L

(

(k + 1)h, qk+1,
qk+1 − qk

h

)

.

Entonces las ecuaciones de E-L discretas dependientes del tiempo son

e−κ(kh) (qk+1 − qk)− e−κ(k+2)h (qk+2 − qk+1)− e−κ(k+1)h
(

2h2∇qk+1
V (qk+1)− 2qk+1 + qk + qk+2

)

= 0

Ejemplo 5: Consideramos ahora la discretización del Ejemplo 2, siendo el Lagrangiano

discreto Ld : Rn × R
n → R dado por la discretización trapezoidal. Tomando q̇i =

qik+1 − qik
h

con t ∈ [tk, tk+1], el Lagrangiano discreto dependientes del tiempo está dado por

Lk
d,h(qk, qk+1) =

h

2
L

(

kh, qk,
qk+1 − qk

h

)

+
h

2
L

(

(k + 1)h, qk+1,
qk+1 − qk

h

)

Entonces las ecuaciones de E-L discretas dependientes del tiempo son

e−κ(kh)

(

A(qk) +
qk+1 − qk

h

)

− e−κ(k+2)h

(

A(qk+2) +
qk+2 − qk+1

h

)

+ e−κ(k+1)h

(

∇qk+1
A(qk+1)(qk+2 − qk) +

(

2qk+1 − qk − qk+2

h

))

= 0.

5. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo consideramos la dinámica de sistemas mecánicos Lagrangianos dependientes

del tiempo sobre grupos de Lie tanto para el caso de variable temporal continua como discreta.

En el marco de variable temporal continua, consideramos ejemplos en grupos de Lie euclídeos

y no euclídeos y para el primero de estos casos consideramos su versión discreta para definir

integradores variacionales de las ecuaciones de E-L. En particular se construyen integradores

variacionales para abordar el problema de aproximar las trayectorias de este tipo de sistemas.

Si bien en este trabajo no hacemos ningún análisis de error de los integradores variacionales

propuestos, sería muy interesante hacerlo y poder comparar con los integradores presentados en

Arnold et al. (2016) y Brüls et al. (2012).

Estamos trabajando sobre la construcción de integradores variacionales sobre grupos de Lie

para sistemas Lagrangianos dependientes del tiempo para un grupo arbitrario G. Esto es, nos

proponemos generalizar lo obtenido en Vivek et al. (2025). También, motivados por sus diversas

aplicaciones que involucran sistemas formados por vehículos aéreos no tripulados realizando ta-

reas de manera conjunta, estamos considerando sistemas Lagrangianos dependientes del tiempo

sobre fibrados principales triviales; esto es, sistemas cuyo espacio de configuraciones está dado

por el producto cartesiano M ×G de una variedad suave arbitraria M y un grupo de Lie G.
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