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Resumen. Los materiales funcionalmente graduados (FGM) son materiales compuestos no homogé-

neos en los que la composición del material y/o la microestructura cambian gradualmente a lo largo de

una o más direcciones, lo que conduce a una variación continua en las propiedades mecánicas, eléc-

tricas y térmicas del material. Este cambio gradual en las propiedades, tales como las características

termo-mecánicas, o termo-eléctricas, se diseñan en términos de lograr un mayor rendimiento del mate-

rial en aplicaciones específicas. En el presente trabajo se modela la conducción del calor en materiales

funcionalmente graduados teniendo en cuenta las propiedades anteriormente enunciadas, y se propo-

nen generalizaciones de los clásicos sistemas de G. Chen y G. Lebon (G. Lebon et al., Proc R Soc A,

467(2135):3241–3256, (2011); G. Chen, J. Heat Transfer, 124(2):320–328, (2001)) Se formulan los pro-

blemas no locales de Cauchy de condiciones de borde, obteniéndose luego soluciones semi-analíticas

generalizadas.

Keywords: Functionally Graduated Materials, Generalized Heat Conduction Models

Abstract. Functionally graded materials (FGMs) are non-homogeneous composite materials in which

the material composition and/or microstructure gradually change along one or more directions, leading

to continuous variation in the mechanical, electrical, and thermal properties of the material. This gradual

change in properties, such as thermo-mechanical, or thermo-electrical, characteristics are designed in

terms of achieving higher material performance in specific applications. In the present work, heat con-

duction in functionally graded materials is modeled taking into account the properties mentioned above,

and generalizations of the classic systems of G. Chen and G. Lebon (G. Lebon et al., Proc R Soc A,

467(2135):3241–3256, (2011); G. Chen, J. Heat Transfer, 124(2):320–328, (2001)) Cauchy’s non-local

problems of edge conditions are formulated, and generalized semi-analytical solutions are then obtained.
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1. INTRODUCCIÓN

Los materiales funcionalmente graduados (FGMs), constituyen un tipo de material com-

puesto, en los cuales los gradientes de composición, porosidad, y los inducidos por la microes-

tructura, se distribuyen de manera monótona continua, respecto de la variedad geométrica que

ocupen, de modo que, es posible generar esta respuesta, diseñando un arreglo material que pue-

de ser cuasi-continuo o discreto. El primer caso se refiere a mezclas continuas de sólidos, por

ejemplo, mezclas de óxidos metálicos, los cuales serán débilmente inhomogéneas, la fabrica-

ción aditiva (AM) es un método experimental, con el cual se logran los propósitos enunciados

anteriormente, la segunda situación se refiere a materiales multicapa o materiales compuestos

(Composites). Se espera que, la combinación de materiales avanzados (FGMs) y métodos de fa-

bricación avanzados, facilite el desarrollo de estos materiales de gran importancia en ingeniería

estructural.

Los materiales homogéneos funcionalmente graduados, se obtienen utilizando un substrato

material denominado de relleno (polvo o alambre) y ajustando los parámetros del proceso o del

diseño estructural, durante el proceso llamado de Fabricación Aditiva (AM), como resultado

se obtiene un material de fase única con una distribución gradiental de características micro-

estructurales, que se puede dividir en cuatro tipos: mejora de solución sólida, tamaño de grano,

orientación de grano y estructura de red. Los FGMs de mejora de solución sólida (Figura 3a)

tienen la misma fase básica de sustancia, y la distribución gradiente de gases de solución sólida

se crea mediante el ajuste de la composición del gas de protección durante el proceso de AM.

Los FGMs de tamaño de grano y orientación de grano (Figura 2b, c) se obtienen ajustando los

parámetros del proceso durante el AM, como la del flujo de calor.

En todos los otros casos, los materiales obtenidos siempre muestran el mismo comporta-

miento, el cual consiste en extinguir el estímulo que lo atraviesa, de modo que siempre pueden

distinguirse por lo menos dos regímenes de comportamiento, uno inicial rápido y una fase lenta

de apagado, quenching o extinción, se trata de un fenómeno de auto-organización y posterior

emergencia de orden, los estados intermedios, metaestables, pueden extenderse desde el orden

de los 500 milisegundos hasta varios minutos, dependiendo del diseño micro-estructural y de la

naturaleza de los sólidos

Figura 1:
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Figura 2:

2. HIPÓTESIS Y MODELADO

La primera cuestión que debe observarse, es la que se vincula con la distribución de micro-

estructuras, las cuales definen una geometría específica, para los MFG, esta a su vez, establece

el patrón general de respuesta del material a distintos estímulos, por ejemplo, un gradiente de

temperaturas, en segundo lugar, se considera un material levemente in-homogéneo como en la

figura 3a. El efecto de extinción del estímulo, puede asociarse con el fenómeno de Quenching,

o apagado, como se observa en las figuras 3c, y 3 f

Figura 3:

Si interesara solo la amplitud temporal del campo de temperaturas es posible proponer una

ecuación diferencial estocástica, que se construye sobre dos métricas ambas de naturaleza esto-

cástica, aunque de diferente estructura formal una es de tipo no diferenciable (Procesos Wiener)

y la otra estrictamente continua (proceso de Markov continuo), se introducen dos amplitudes

promediadas según el formalismo de Matsubara, indicando la prevalencia en la escala micro y

nano, de correcciones cuánticas, el proceso, se asume que es inducido por un browniano geo-
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métrico.

εdT (t) = a(t, θ)T (t)dt+
m
∑

j=1

[σj(t, θ)T (t)]dŴ
a
j (s)−

−

m
∑

j=1

[dŴ b
j (s)σ

(1)
j (t, θ)⟨F1[t, T (s− τaj )]⟩][T (t)]

−α−

−
m
∑

j=1

[dpj(t)σ
(2)
j (t, θ)⟨F2[t, T (t− τ bj )]⟩][T (t)]

−β en Rk (1)

T (0) = T0/T0 ∈ Rk; a, σj, σ
(1)
j , σ

(2)
j ∈ L2(Rk) ∀j ∈ N ; F1,2–lip; pj–Markov

T (t) = T1(t)∀t ∈ ∪m
j [[−τaj , 0) ∩ [−τaj , 0)] / T1 ∈ C1(R∪

m
j [[−τaj ,0)∩[−τaj ,0)]

); τaj , τ
a
j ∈ R

+
0

Ŵ a
j , Ŵ

b
j – Wiener; cov[Ŵ b

j (t), Ŵ
b
j (t

′)] = cov[Ŵ a
j (t), Ŵ

a
j (t

′)] = cov[Ŵ a
j (t), Ŵ

b
j (t

′)] = 0

en lo anterior α ≫ β > 1; θ ∈ R+
0 ; ε ∈ (0, 1). Representación integral de la solución:

T (t) =

{

g(t− 0)[T (0)]1+α − ξ1

m
∑

j=1

{
ˆ m

0

dŴ b
j (s)σ

(1)
j (s, θ)g(t− s)⟨F1[s, T (s− τaj )]⟩

}

−

− ξ1

m
∑

j=1

{
ˆ t

0

dpj(s)σ
(2)
j (s, θ)g(t− s)F2[s, T (s− τ bj )][u(s)]

−β−α

}}
1

1+α

(2)

Función de Green

g(t− s) = exp

{

−ξ1

ˆ t

s

ds′
{

a(s′, θ)−
1

2

{ m
∑

j=1

σ2
j (s

′)

}}

+ ξ1

m
∑

j=1

{
ˆ t

s

dŴ a
j (s

′)σj(s
′)

}}

(3)

ξ1 =
1 + α

ε

La condición de extinción o quenching (respuesta medible del MFG) es:

m
∑

j=1

q1j

{
ˆ t

0

dŴ b
j (s)σ

(1)
j (s, θ)g(t− s)⟨F1[s, T (s− τaj )]⟩

}

+

+
m
∑

j=1

q̄2j

{
ˆ t

0

dpj(s)σ
(2)
j (s, θ)g(t− s)F2[s, T (s− τaj )][u(s)]

−β−α

}

=

=
g(t− 0)[T (0)]1+α

ξ1
(4)

⟨F1,2[t, T (t− τ bj )]⟩ – Operadores de Matsubara

Esta última condición, permitirá calcular numéricamente, los sucesivos tiempos de extinción

del estimulo.

2.1. Modelo balístico-difusivo con termino potencial singular

A escalas micro y nanoscópica, y para rangos de tiempo del mismo orden, en los MFG, se

propone la existencia de dos tipos de fonones responsables del transporte de calor en la red
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cristalina, unos de tipo balístico y otro de tipo difusivo, así entonces, se tienen dos regímenes,

los fonones difusivos siguen una ley tipo Cattaneo-Vernotte, y los balísticos obedecen al modelo

tipo Guyer Krumhansl (Lebon et al., 2011)

τd∂
2
t ud(x⃗, t)− a2d∇̂

2ud(x⃗, t) + ∂tud(x⃗, t) = F[ub, ∂tub]

τb∂
2
t ub(x⃗, t)− a2b∇̂

2ub(x⃗, t)− a21b∇̂
2[∂tub(x⃗, t)] + 2∂tub(x⃗, t) + ξ(t)[ub(x⃗, t)]

−α = 0

ud(x⃗, 0) = u0
d / u0

d ∈ H1
0 (Dk) ; ∂tud(x⃗, 0) = w0

d / w0
d ∈ L2(Dk)

ub(x⃗, 0) = u0
b / u0

b ∈ H1
0 (Dk) ; ∂tub(x⃗, 0) = w0

b / w0
b ∈ L2(Dk)

ud(x⃗, t)
∣

∣

∣

∂Γ1

= ub(x⃗, t)
∣

∣

∣

∂Γ1

= 0

− a2d∂n̂ud(x⃗, t)
∣

∣

∣

∂Γ2

= [−a2d∂n̂ub(x⃗, t)− a21b∂n̂u̇b(x⃗, t)]
∣

∣

∣

∂Γ2

= 0

(5)

Condiciones sobre las constantes y otras funciones

τd, τb, λd, λb, ab, ad ∈ R
+
0 ; F[ub, ∂tub] = (τd/τb)∂tub(x⃗, t) + (1/τb)ub(x⃗, t)

a2d = (λd/cd) ; a
2
b = (λb/cb) + (3l2b/τb) ; λd = (1/3)cv2dτd ; λb = (1/3)cv2b τb

vd = ld/τd ; vb = lb/τb ; α ≥ −1 ; a21b = 3l2b ; lb, la, c ∈ R
+
0 ; ξ ∈ L2(R+

k )

Representación integral de las soluciones

ud(x⃗, t) =

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)F[ub, ∂tub]

}

+

+

˚

R3

d3x′{gd(x⃗− x⃗′, t− 0)∂tud(x⃗
′, 0)− ud(x⃗

′, 0)∂tgd(x⃗− x⃗′, t− 0)} (6)

ub(x⃗, t) =

ˆ t

0

ds

{
˚

R3

d3x′gb(x− x, t− s)ξ(s)[ub(x⃗
′, s)]−α

}

+

+

˚

R3

d3x′{gb(x⃗− x⃗′, t− 0)∂tub(x⃗
′, 0)− ub(x⃗

′, 0)∂tgb(x⃗− x⃗′, t− 0)} (7)

Una posible generalización del modelo anterior podrá escribirse en la forma:

2.2. Modelo balístico difusivo con términos viscoso-disipativos no lineales

τd∂
2
t ud(x⃗, t)− a2d∇̂

2ud(x⃗, t) + λd[∂tud(x⃗, t)]
−β = F[ub, ∂tub]

τb∂
2
t ub(x⃗, t)− a2b∇̂

2ub(x⃗, t)− a21b∇̂
2[[∂tub(x⃗, t)]

−β] + λb∂tud(x⃗, t)+

+ ξ(t)[ud(x⃗, t)]
−α = 0

ud(x⃗, 0) = u0
d / u0

d ∈ H1
0 (Dk) ; ∂tud(x⃗, 0) = w0

d / w0
d ∈ L2(Dk)

ub(x⃗, 0) = u0
b / u0

b ∈ H1
0 (Dk) ; ∂tub(x⃗, 0) = w0

b / w0
b ∈ L2(Dk)

ud(x⃗, t)
∣

∣

∣

∂Γ1

= ub(x⃗, t)
∣

∣

∣

∂Γ1

= 0

− a2d∂n̂ud(x⃗, t)
∣

∣

∣

∂Γ2

= [−a2d∂n̂ub(x⃗, t)− a21b∂n̂[∂tub(x⃗, t)]
−β]

∣

∣

∣

∂Γ2

= 0

(8)
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Condiciones sobre las constantes y otras funciones

τd, τb, λd, λb, ab, ad ∈ R
+
0 ; F[ub, ∂tub] = (τd/τb)∂tub(x⃗, t) + (1/τb)ub(x⃗, t)

a2d = (λd/cd) ; a
2
b = (λb/cb) + (3l2b/τb) ; λd = (1/3)cv2dτd ; λb = (1/3)cv2b τb

vd = ld/τd ; vb = lb/τb ; α ≥ −1 ; a21b = 3l2b ; lb, ld, c ∈ R
+
0 ; ξ ∈ L2(R+

k )

Representación integral de las soluciones

ud(x⃗, t) =

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)F[ub, ∂tub]

}

−

− λd

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)[∂tud(x⃗
′, s− τ)]−β

}

+

+

˚

R3

d3x′{gd(x⃗− x⃗′, t− 0)∂tud(x⃗
′, 0)− ud(x⃗

′, 0)∂tgd(x⃗− x⃗′, t− 0)} (9)

ub(x⃗, t) =

=

ˆ t

0

ds

{
˚

R3

d3x′gb(x− x, t− s){−ξ(s)[ub(x⃗
′, s)]−α + a2b∇̂

′2[[∂sub(x⃗
′, s)]−β]}

}

+

+

˚

R3

d3x′{gb(x⃗− x⃗′, t− 0)∂tub(x⃗
′, 0)− ub(x⃗

′, 0)∂tgb(x⃗− x⃗′, t− 0)} (10)

Los aproximantes de Picard serán:

u
(j+1)
d (x⃗, t) ∼= K0

d [∂tud(x⃗, 0), ud(x⃗, 0)]+

+

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)F[u
(j)
b , ∂tu

(j)
b ]

}

−

− λd

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)[∂tu
(j)
d (x⃗′, s− τ)]−β

}

(11)

K0
d [∂tud(x⃗, 0), ud(x⃗, 0)] =

=

˚

R3

d3x′{gd(x⃗− x⃗′, t− 0)∂tud(x⃗
′, 0)− ud(x⃗

′, 0)∂tgd(x⃗− x⃗′, t− 0)}

u
(j+1)
b (x⃗, t) ∼= K0

b [∂tub(x⃗, 0), ub(x⃗, 0)]+

+

ˆ t

0

ds

{
˚

R3

d3x′gb(x− x, t− s){−ξ(s)[u
(j)
b (x⃗′, s)]−α+

+ a2b∇̂
′2[[∂su

(j)
b (x⃗′, s)]−β]}

}

(12)

K0
b [∂tud(x⃗, 0), ud(x⃗, 0)] =

=

˚

R3

d3x′{gb(x⃗− x⃗′, t− 0)∂tub(x⃗
′, 0)− ub(x⃗

′, 0)∂tgb(x⃗− x⃗′, t− 0)}
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Generalizando el modelo de Nika (2023), en el sentido de considerar una extensión del mode-

lo de Cattaneo-Vernotte de segundo gradiente, es decir introduciendo la influencia de la micro-

estructura tendríamos:

2.3. Modelo balístico difusivo en la formulación de segundo gradiente

τd∂
2
t ud(x⃗, t)− τ 2d l

2
1∇̂

2[∂2
t ud(x⃗, t)]− a2d(1− l21∇̂

2)∇̂2ud(x⃗, t)+

+ λd(1− l21∇̂
2)∂tud(x⃗, t) = [1− l21∇̂

2]F[ub, ∂tub]

τb∂
2
t ub(x⃗, t)− τ 2b l

2
2∇̂

2[∂2
t ub(x⃗, t)]− a2b(1− l22∇̂

2)∇̂2ub(x⃗, t)−

− a2b(1− l22∇̂
2)∇̂2[∂tub(x⃗, t)]+

+ λb(1− l22∇̂
2)∂tud(x⃗, t) + ξ(t)(1− l22∇̂

2)[ud(x⃗, t)]
−α = 0

ud(x⃗, 0) = u0
d / u0

d ∈ H1
0 (Dk) ; ∂tud(x⃗, 0) = w0

d / w0
d ∈ L2(Dk)

ub(x⃗, 0) = u0
b / u0

b ∈ H1
0 (Dk) ; ∂tub(x⃗, 0) = w0

b / w0
b ∈ L2(Dk)

ud(x⃗, 0)
∣

∣

∣

∂Dk

= u0
d

∣

∣

∣

∂Dk

/ u0
d

∣

∣

∣

∂Dk

∈ H1
0 (∂Dk) ; n̂ · ∇̂(∂tud(x, z, 0))

∣

∣

∣

∂Dk

= w0
d

∣

∣

∣

∂Dk

ub(x⃗, 0)
∣

∣

∣

∂Dk

= u0
b

∣

∣

∣

∂Dk

/ u0
b

∣

∣

∣

∂Dk

∈ H1
0 (∂Dk) ; n̂ · ∇̂(∂tub(x, z, 0))

∣

∣

∣

∂Dk

= w0
b

∣

∣

∣

∂Dk

w0
d

∣

∣

∣

∂Dk

∈ L2(∂Dk) ; w
0
b

∣

∣

∣

∂Dk

∈ L2(∂Dk) ; ud(x⃗, t)
∣

∣

∣

∂Γ1

= ub(x⃗, t)
∣

∣

∣

∂Γ1

= 0

− a2d∂n̂ud(x⃗, t)
∣

∣

∣

∂Γ2

= [−a2d∂n̂ub(x⃗, t)− a21b∂n̂[∂tub(x⃗, t)]
−β]

∣

∣

∣

∂Γ2

= 0

(13)

Condiciones sobre las constantes y otras funciones

τd, τb, λd, λb, ab, ad ∈ R
+
0 ; F[ub, ∂tub] = (τd/τb)∂tub(x⃗, t) + (1/τb)ub(x⃗, t)

a2d = (λd/cd) ; a
2
b = (λb/cb) + (3l2b/τb) ; λd = (1/3)cv2dτd ; λb = (1/3)cv2b τb

vd = ld/τd ; vb = lb/τb ; α ≥ −1 ; a21b = 3l2b ; lb, ld, l1, c ∈ R
+
0 ; ξ ∈ L2(R+

k )

Representación integral de las soluciones

ud(x⃗, t) =

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)F[ub, ∂tub]

}

−

− λd

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)[∂tud(x⃗
′, s− τ)]−β

}

+

+

˚

R3

d3x′{gd(x⃗− x⃗′, t− 0)∂tud(x⃗
′, 0)− ud(x⃗

′, 0)∂tgd(x⃗− x⃗′, t− 0)}+

+

‹

∂Vk

da{[nk · ∇̂]∂tgd(x⃗− x⃗′, t− 0)ud(x⃗
′, 0)− [nk · ∇̂]∂tud(x⃗

′, 0)gd(x⃗− x⃗′, t− 0)} (14)
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ub(x⃗, t) =

=

ˆ t

0

ds

{
˚

R3

d3x′gb(x− x, t− s){−ξ(s)[ub(x⃗
′, s)]−α + a2b∇̂

′2[[∂sub(x⃗
′, s)]−β]}

}

+

+

˚

R3

d3x′{gb(x⃗− x⃗′, t− 0)∂tub(x⃗
′, 0)− ub(x⃗

′, 0)∂tgb(x⃗− x⃗′, t− 0)}+

+

‹

∂Vk

da{gd(x⃗− x⃗′, t− 0)∂tud(x⃗
′, 0)− ud(x⃗

′, 0)∂tgd(x⃗− x⃗′, t− 0)}+

+

‹

∂Vk

da{[nk · ∇̂]∂tgb(x⃗− x⃗′, t− 0)ub(x⃗
′, 0)− [nk · ∇̂]∂tub(x⃗

′, 0)gb(x⃗− x⃗′, t− 0)} (15)

Los aproximantes de Picard son:

u
(j+1)
d (x⃗, t) ∼= K0(∂tud(x⃗, 0), ud(x⃗, 0), ud(x⃗, 0)

∣

∣

∂Vk
, [nk · ∇̂]∂tud(x⃗, 0)

∣

∣

∂Vk
)+

+

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)F[u
(j)
b , ∂tu

(j)
b ]

}

−

− λd

ˆ t

0

ds

{
˚

R3

d3x′gd(x− x, t− s)[∂tu
(j)
d (x⃗′, s− τ)]−β

}

(16)

K0(∂tud(x⃗, 0), ud(x⃗, 0), ud(x⃗, 0)
∣

∣

∂Vk
, [nk · ∇̂]∂tud(x⃗, 0)

∣

∣

∂Vk
) =

=

˚

R3

d3x′{gd(x⃗− x⃗′, t− 0)∂tud(x⃗
′, 0)− ud(x⃗

′, 0)∂tgd(x⃗− x⃗′, t− 0)}+

+

‹

∂Vk

da

{

[nk · ∇̂]∂tgd(x⃗− x⃗′, t− 0)ud(x⃗
′, 0)

∣

∣

∣

∂Vk

−

− [nk · ∇̂]∂tud(x⃗
′, 0)

∣

∣

∣

∂Vk

gd(x⃗− x⃗′, t− 0)

}

u
(j+1)
b (x⃗, t) ∼=

∼= K̄0(∂tub(x⃗, 0), ub(x⃗, 0), ub(x⃗, 0)
∣

∣

∂Vk
, [nk · ∇̂]∂tub(x⃗, 0)

∣

∣

∂Vk
)+

+

ˆ t

0

ds

{
˚

R3

d3x′gb(x− x, t− s){−ξ(s)[u
(j)
b (x⃗′, s)]−α + a2b∇̂

′2[[∂su
(j)
b (x⃗′, s)]−β]}

}

(17)

K̄0(∂tub(x⃗, 0), ub(x⃗, 0), ub(x⃗, 0)
∣

∣

∂Vk
, [nk · ∇̂]∂tub(x⃗, 0)

∣

∣

∂Vk
) =

=

˚

R3

d3x′{gb(x⃗− x⃗′, t− 0)∂tub(x⃗
′, 0)− ub(x⃗

′, 0)∂tgb(x⃗− x⃗′, t− 0)}+

+

‹

∂Vk

da{[nk · ∇̂]∂tgb(x⃗− x⃗′, t− 0)ub(x⃗
′, 0)− [nk · ∇̂]∂tub(x⃗

′, 0)gb(x⃗− x⃗′, t− 0)}
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Figura 4:

Figura 5: Dimensiones del espécimen

3. CONCLUSIONES

En el presente trabajo se formularon y resolvieron semi-analíticamente tres modelos de con-

ducción del calor en materiales funcionalmente graduados, en todos ellos se asume la hipótesis

de la relación entre el fenómeno de extinción o quenching y la respuesta de este tipo de mate-

riales, ante el estímulo de un pulso de calor, la distribución suave de temperaturas obedece a la

presencia de microestructuras distribuidas de manera homogénea en el material, suponemos la

mezcla continua de dos sólidos, en general metales de transición, sobre todo los de los grupos

6, 7 y 8, periodos 4, 5 y 6.
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