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Resumen. Los materiales funcionalmente graduados (FGM) son materiales compuestos no homogé-
neos en los que la composicién del material y/o la microestructura cambian gradualmente a lo largo de
una o mds direcciones, lo que conduce a una variacién continua en las propiedades mecdanicas, eléc-
tricas y térmicas del material. Este cambio gradual en las propiedades, tales como las caracteristicas
termo-mecdnicas, o termo-eléctricas, se disefian en términos de lograr un mayor rendimiento del mate-
rial en aplicaciones especificas. En el presente trabajo se modela la conduccién del calor en materiales
funcionalmente graduados teniendo en cuenta las propiedades anteriormente enunciadas, y se propo-
nen generalizaciones de los clésicos sistemas de G. Chen y G. Lebon (G. Lebon et al., Proc R Soc A,
467(2135):3241-3256, (2011); G. Chen, J. Heat Transfer, 124(2):320-328, (2001)) Se formulan los pro-
blemas no locales de Cauchy de condiciones de borde, obteniéndose luego soluciones semi-analiticas
generalizadas.

Keywords: Functionally Graduated Materials, Generalized Heat Conduction Models

Abstract. Functionally graded materials (FGMs) are non-homogeneous composite materials in which
the material composition and/or microstructure gradually change along one or more directions, leading
to continuous variation in the mechanical, electrical, and thermal properties of the material. This gradual
change in properties, such as thermo-mechanical, or thermo-electrical, characteristics are designed in
terms of achieving higher material performance in specific applications. In the present work, heat con-
duction in functionally graded materials is modeled taking into account the properties mentioned above,
and generalizations of the classic systems of G. Chen and G. Lebon (G. Lebon et al., Proc R Soc A,
467(2135):3241-3256, (2011); G. Chen, J. Heat Transfer, 124(2):320-328, (2001)) Cauchy’s non-local
problems of edge conditions are formulated, and generalized semi-analytical solutions are then obtained.
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1. INTRODUCCION

Los materiales funcionalmente graduados (FGMs), constituyen un tipo de material com-
puesto, en los cuales los gradientes de composicion, porosidad, y los inducidos por la microes-
tructura, se distribuyen de manera mondtona continua, respecto de la variedad geométrica que
ocupen, de modo que, es posible generar esta respuesta, disefiando un arreglo material que pue-
de ser cuasi-continuo o discreto. El primer caso se refiere a mezclas continuas de sélidos, por
ejemplo, mezclas de 6xidos metélicos, los cuales seran débilmente inhomogéneas, la fabrica-
cion aditiva (AM) es un método experimental, con el cual se logran los propdsitos enunciados
anteriormente, la segunda situacion se refiere a materiales multicapa o materiales compuestos
(Composites). Se espera que, la combinacion de materiales avanzados (FGMs) y métodos de fa-
bricacién avanzados, facilite el desarrollo de estos materiales de gran importancia en ingenieria
estructural.

Los materiales homogéneos funcionalmente graduados, se obtienen utilizando un substrato
material denominado de relleno (polvo o alambre) y ajustando los pardmetros del proceso o del
disefio estructural, durante el proceso llamado de Fabricacion Aditiva (AM), como resultado
se obtiene un material de fase tnica con una distribucién gradiental de caracteristicas micro-
estructurales, que se puede dividir en cuatro tipos: mejora de solucidn sélida, tamafio de grano,
orientacion de grano y estructura de red. Los FGMs de mejora de solucion sélida (Figura 3a)
tienen la misma fase bésica de sustancia, y la distribucién gradiente de gases de solucion sélida
se crea mediante el ajuste de la composicion del gas de proteccion durante el proceso de AM.
Los FGMs de tamaiio de grano y orientacion de grano (Figura 2b, ¢) se obtienen ajustando los
parametros del proceso durante el AM, como la del flujo de calor.

En todos los otros casos, los materiales obtenidos siempre muestran el mismo comporta-
miento, el cual consiste en extinguir el estimulo que lo atraviesa, de modo que siempre pueden
distinguirse por lo menos dos regimenes de comportamiento, uno inicial rapido y una fase lenta
de apagado, quenching o extincidn, se trata de un fenémeno de auto-organizacién y posterior
emergencia de orden, los estados intermedios, metaestables, pueden extenderse desde el orden
de los 500 milisegundos hasta varios minutos, dependiendo del disefio micro-estructural y de la
naturaleza de los s6lidos

Tipo de MFG
|
[ T 1
Gradiente de Gradiente de Gradiente de
composicion microestructura porosidad

Figura 1:
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(a) Gradiente de (b) Gradiente de (c) Gradiente de (c) Gradiente de
fraccion forma tamaiio orientacion

Figura 2:

2. HIPOTESIS Y MODELADO

La primera cuestion que debe observarse, es la que se vincula con la distribucién de micro-
estructuras, las cuales definen una geometria especifica, para los MFG, esta a su vez, establece
el patron general de respuesta del material a distintos estimulos, por ejemplo, un gradiente de
temperaturas, en segundo lugar, se considera un material levemente in-homogéneo como en la
figura 3a. El efecto de extincién del estimulo, puede asociarse con el fendmeno de Quenching,
o apagado, como se observa en las figuras 3c,y 3 f

(a) Solucién sélida mejorada  (b) Tamaiio de grano (c) Orientacién de granos (d) Estructura de malla

'y & ié
(e) componentes continuos (f) componentes de gradientes (g) particulas insolubles (h) particulas fusibles

Figura 3:

Si interesara solo la amplitud temporal del campo de temperaturas es posible proponer una
ecuacion diferencial estocdstica, que se construye sobre dos métricas ambas de naturaleza esto-
castica, aunque de diferente estructura formal una es de tipo no diferenciable (Procesos Wiener)
y la otra estrictamente continua (proceso de Markov continuo), se introducen dos amplitudes
promediadas segtin el formalismo de Matsubara, indicando la prevalencia en la escala micro y
nano, de correcciones cudnticas, el proceso, se asume que es inducido por un browniano geo-
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métrico.
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La condicién de extincion o quenching (respuesta medible del MFG) es:

3 o [ 26108000 = )l T(s — )+

j=1 0

+ 2%{ /0 tdpj( )o'? (s,0)g(t — 5)Fa[s, T(s _T]@)Hu(s)]—ﬁ—a} _

_ge-or@r

(Frolt, T(t — T]l-’)]) — Operadores de Matsubara

Esta dltima condicién, permitird calcular numéricamente, los sucesivos tiempos de extincion
del estimulo.

2.1. Modelo balistico-difusivo con termino potencial singular

A escalas micro y nanoscépica, y para rangos de tiempo del mismo orden, en los MFG, se
propone la existencia de dos tipos de fonones responsables del transporte de calor en la red
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cristalina, unos de tipo balistico y otro de tipo difusivo, asi entonces, se tienen dos regimenes
los fonones difusivos siguen una ley tipo Cattaneo-Vernotte, y los balisticos obedecen al modelo

tipo Guyer Krumhansl (Lebon et al., 2011)

140 ug(T,t) — adVQud(a: t) + Oyua(Z, t) = Flup, Opuy)
02Uy (T, 1) — V2ub(x t) — alb 2[ b(Z, )] 4+ 20pup (2, 1) + E(t) [up(Z,6)] =0
ua(T,0) = ug / deHl(Dk) ua(T,0) = wy [ wy € L*(Dy)
uy(Z,0) =y / u) € Hy(D )78tub(* 0) = wy / wy € L*(Dy) &)
wa(Z, t)‘m e t)‘arl —0
=0

2 - 2 - 29 - (=
— a505u x,t‘ = [—a50pup(Z,t) — a7, 0aup (X, t
uualT )], = [~a30n(7, 1) — A Duin(7, )|

2

Condiciones sobre las constantes y otras funciones
F[ub, 8tub] = (Td/rb)ﬁtub(f, t) + (1/7‘b)ub(f, t)
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1 ad =32 byl ce R £ € LARY)

az = (Na/ca) i az = (\o/c)
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Representacion integral de las soluciones

w7, 1) = /0 tds{ /// P2 ga(x — 2.t — $)Flun, 8tub]}+
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Una posible generalizacién del modelo anterior podra escribirse en la forma

2.2. Modelo balistico difusivo con términos viscoso-disipativos no lineales

Tdﬁfud(f, t) adVQUd( t) + )\d[atud(x t)] F[ub,ﬁtub]
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Condiciones sobre las constantes y otras funciones

Tds Tos Ads N, A, ag € RY 5 Flug, Opup) = (7a/7)Opun(Z, ) + (1/7)up(Z, t)
g = ()\d/cd) ) ag = (Ab/cb) + (3[2/7’1,) ) )\d = (1/3)01}37}[ 3 )\b = (1/3)6’057’1)
= ld/Td ; Up = lb/Tb ca> —1; afb = 3[2 ; lb,ld,c < 9{8_ ; 56 LQ(%Z_)

Representacion integral de las soluciones
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Los aproximantes de Picard seran:
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290l (@ ,SM}} (12)
K,?[@tud(f, 0), uq(Z,0)] =
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Generalizando el modelo de Nika (2023), en el sentido de considerar una extensién del mode-
lo de Cattaneo-Vernotte de segundo gradiente, es decir introduciendo la influencia de la micro-

estructura tendriamos:

2.3. Modelo balistico difusivo en la formulacion de segundo gradiente
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Representacion integral de las soluciones
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up(Z,t) =

/t {///d?’x/gb r —x,t — s){—E(s)[un(, 5)] " +agw[[asub(ffjs)]_m}Jr
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Los aproximantes de Picard son:
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Vi

Distribucion de temperaturas en una aleacién Ti-Zr, utilizando el modelo Primer Modelo
balistico difusivo con términos viscoso-disipativos no lineales
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2000pm

Figura 5: Dimensiones del espécimen

3. CONCLUSIONES

En el presente trabajo se formularon y resolvieron semi-analiticamente tres modelos de con-
duccidn del calor en materiales funcionalmente graduados, en todos ellos se asume la hip6tesis
de la relacion entre el fendmeno de extincidon o quenching y la respuesta de este tipo de mate-
riales, ante el estimulo de un pulso de calor, la distribucién suave de temperaturas obedece a la
presencia de microestructuras distribuidas de manera homogénea en el material, suponemos la
mezcla continua de dos sélidos, en general metales de transicion, sobre todo los de los grupos
6,7y 8, periodos 4,5y 6.
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