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Abstract. The knowledge of mechanical properties of materials is based on a precise analysis of their

relaxation spectra. The development of methods to deconvolve spectra from measured data, and the as-

sessment of their reliability, is therefore of paramount importance. We present a novel Bayesian decon-

volution method based on a physically grounded parameterization of the spectra. We use a Metropolis-

Hastings Markov-chain Monte Carlo fitting algorithm, with a full posterior analysis to obtain the best-

fitting spectrum and its uncertainties. We test its performance on simulated data, finding that it is unbi-

ased, reliable, and gives precise results even under strong noise.
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1 INTRODUCTION

An accurate characterization of mechanical properties of solids and liquids is crucial for

pure research and technological applications. In the linear viscoelastic regime probed by small-

amplitude oscillatory shear (SAOS) techniques, these properties can be modelled assuming that

the behaviour of materials is well described by a set of relaxation processes (RPs), known as

its relaxation spectrum (RS). Each RP is completely defined by its characteristic timescale and

strength, which reveal information about the molecular architecture of the substance (Stadler,

2013). RSa of viscoelastic materials often show a continuous distribution of RPs, represented

by a viscosity density H in relaxation time τ (Martinetti et al., 2018). It is usually inferred from

measurements of material functions such as the storage G′ and loss G′′ moduli as a function of

the SAOS strain frequency ω (Winter, 1997). These are related to H through a convolution,

G∗(ω) = Geq +
∫ ∞

0
H(τ)K∗(ω,τ)

dτ

τ
, (1)

where G∗=G′+ iG′′ is the complex modulus, K∗ is a kernel function describing the contribution

of an individual RP to G∗, i is the imaginary unit, and the equilibrium modulus Geq is a positive

real constant for viscoelastic solids (null for liquids).

Different techniques have been devised to deconvolve H from measured data of G∗; the

assessment of their reliability and their general improvement are therefore key issues to address.

The frequently used “discretization method” (DM, e.g. McDougall et al., 2014, and references

therein) samples H at a set of NDM abscissas {τi}, to replace Eq. 1 with

G∗(ω)≈ Geq +
NDM

∑
i=1

giK
∗(ω,τi). (2)

where gi = H(τi) ln(τi+1/τi). This reduces the problem to a linear regression with free parame-

ters Geq and {gi}. This problem is ill-posed, mainly because the convolution in Eq. 1 acts as a

low-pass filter dampening rapid variations in H. Conversely, its inversion amplifies the uncer-

tainties present in experimental data, leading to strong high-frequency noise in the deconvolved

RS. The DM worsens the problem because the accuracy of the approximation in Eq. 2 increases

with NDM. An accurate model requires therefore the introduction of high-frequency compo-

nents in H, whose dampening leads to parameter degeneracies. Indeed, there is a maximum

NDM ∼ 1.5−2 RPs per decade above which the fit cannot be further improved, called parsimo-
nious spectrum (e.g. Winter, 1997). Note that this small value does not a priori guarantee that

the right-hand side of Eq. 2 is a precise estimate of its left-hand side.

To overcome these problems, a lot of effort has been devoted to develop regularization meth-

ods that impose mathematical constraints to the fit to keep the solution smooth enough. These

methods succeed in reproducing simulated spectra, and give reasonable fits to experimental

data, but they provide only an empirical description of the data with little physical insight.

An important step forward has been taken by Freund and Ewoldt (2015), who use physically

grounded parametric models to describe material moduli, and apply Bayesian techniques to de-

termine the best-fitting parameter set (see Ciocci Brazzano et al., 2016, for a similar technique

regarding electrical spectra).

Our aim is to build upon the work of Freund and Ewoldt (2015) by devising a Bayesian

method to deconvolve continuous spectra, overcoming the limitations of the DM without the

need to resort to regularization techniques. Sects. 2 and 3 describe our method and results,

respectively, whereas Sect. 4 presents our conclusions.
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2 THE METHOD

2.1 Model RS and material moduli prediction

Our method assumes that the continuous RS can be modelled by a physically-motivated

function H(τ; θ⃗) depending on a small set of parameters θ⃗ . We adopt as an example a sum of

log-normal density functions for H(τ)/τ ,

H(τ) =
N

∑
i=1

Ai√
2πσi

exp

[

−1

2

(

lnτ − lnτ0,i

σi

)2
]

, (3)

where the parameters θ⃗ = {τ0,i,σi,Ai} are the mean relaxation time, width, and strength of each

RP, respectively. This RS represents a distribution with equal probability for all relaxation states

(Tschoegl, 1989). For the kernel describing individual RPs we adopt Maxwell modes,

K∗(ω,τ) =
(ωτ)2 + iωτ

1+(ωτ)2
. (4)

We stress that our method is not limited to these choices.

The model prediction for G∗ at any frequency ω can be computed to an arbitrary precision

level using any algorithm that performs the numerical integration of the right-hand side of Eq. 1.

We adopt the standard trapezoidal rule,

G∗(ω |⃗θ)≈ ∆λ
NS

∑
j=1

a jH(τS
j |⃗θ)K∗(ω,τS

j ), (5)

where all a j = 1 except a1 = aNS
= 1/2, and we use a large number NS of sampling points τS

j
defined in an interval [τmin,τmax] where the RS has significant values. These points are taken

evenly spaced by ∆λ in lnτ for simplicity.

It may be argued that this is almost the same approximation of the DM. The subtle but crucial

difference is that sampling parameters in Eq. 5 (NS,{τS
j ,H(τS

j |⃗θ)}) are auxiliary numerical

quantities, and not fitting parameters like their counterparts in Eq. 2 (NDM,{τ j,g j}). Decoupling

sampling from data fitting allows the former to be dense enough to accurately approximate the

integral in Eq. 1, while avoiding overfitting problems (parameter degeneracies, high-frequency

fluctuations). Indeed, NDM is limited to 1.5–2 RPs per decade, whereas NS may be as large

as computational power allows. We adopt NS ≳ 100 to ensure that numerical errors in the

computation of G∗ do not affect the fit.

2.2 Data fitting

To estimate the best-fitting RS parameters for some data set D = {ωk,G∗
k}, we maximize

the posterior probability density function (PDF) of the parameters given D and any previously

available information I, fpost(⃗θ |D, I). Using Bayes theorem,

fpost(⃗θ |D, I) =
L (D|⃗θ , I) fpri(⃗θ |I)

∫

Θ L (D|⃗θ , I) fpri(⃗θ |I)dθ⃗
, (6)

where the likelihood L (D|⃗θ , I) is the PDF of D given θ⃗ and I, and fpri(⃗θ |I) is the prior PDF

of θ⃗ given I, representing the degree of belief in θ⃗ before measuring D.
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Our algorithm computes L using physical assumptions about the nature of the deviation of

measured data G∗
k from the model G∗(ωk), G∗

k −G∗(ωk) = ∆G∗
exp,k −∆G∗

mod,k, with ∆G∗
exp,mod

the deviation of the measured value and the model prediction from the true (unknown) value

of the material modulus, respectively. The first term depends on the measurement technique,

and is usually assumed to be normally distributed with null mean and dispersion σexp,k defined

by the experimental uncertainty. The dispersion may be different at each frequency ωk, but can

be estimated by calibration procedures. The second term arises from the existence of physical

effects that are not modelled, for any reason, but are assumed to be small. The distribution of

the sum of these effects can be generally described by a Gaussian with null mean and dispersion

σmod,k. With these hypotheses,1 lnL (D|θ , I) =−χ2/2, where

χ2 =
ND

∑
k=1

(

G∗
k −G∗(ωk)

)2

σ2
exp,k +σ2

mod,k

(7)

is the usual goodness-of-fit statistic. Note that the method is not restricted to ∆G∗
exp,mod follow-

ing these assumptions; any hypotheses that give a distribution for them can be used as far as the

likelihood can be computed, either analytically or numerically, as in Douna et al. (2015). We

also assume a complete lack of previous knowledge, and therefore select a uniform prior fpri

for all parameters.

We use an Markov-chain Monte Carlo technique with a Metropolis-Hastings (MH, e.g., Gre-

gory, 2005) algorithm to perform the maximization. After a short burn-in period required to

reach the high-probability region of the parameter space Θ, the Markov chain produced by the

MH algorithm is by construction a sample distributed as fpost. To infer the best-fitting set of

parameters θ⃗bf, their uncertainties and correlations, we exploit the information contained in this

sample. As a first estimate of θ⃗bf we use the maximum a posteriori (MAP), obtained directly

from the element in the chain with the higher fpost value. Alternative estimates of θ⃗bf are the

sets of marginal posterior means (MPM) ⟨⃗θ⟩, modes θ⃗mode, and medians θ⃗med of the parameters.

Marginalizing a Markov chain is done by simply taking one parameter at a time, disregarding

the others. Therefore to obtain the MPM of the j-th parameter2 ⟨θ j⟩ we compute its sample

mean over the chain. To get θmode, j we obtain a histogram of θ j, smooth it, and find the value

of θ j at which it attains its maximum. Finally, to determine θmed, j we arrange the chain by θ j

in ascending order, and select the value that leaves half of the chain above it.

To assess the uncertainty of the fit for a parameter θ j, we compute its sample standard de-

viation over the chain θstd, j. We also calculate marginal 100α% credible regions (CRs) as

the intervals [θ−
j ,θ

+
j ] that leave a fraction (1−α)/2 of the chain above and below them. To

quantify correlations among two parameters θ j and θk we use the standard Pearson correlation

coefficient, and to visualize them we determine two-parameter joint CRs. To this aim we com-

pute a smoothed density of chain points in the plane θ j-θk, using a Gaussian kernel. The density

contour line that encloses a fraction α of the points defines the 100α% CR.

Finally, we propagate the uncertainty estimates to the deconvolved RS and the best-fitting

moduli. We compute H(τ) and G∗(ω) for each set of parameters in the Markov chain, and for

a large set of values of τ and ω . Using these samples, we determine CRs for H(τ) and G∗(ω)
in the same way as we computed the corresponding CRs for the spectral parameters.

1A full derivation under similar hypotheses is given by Freund and Ewoldt (2015).
2Note that θ j denotes the j-th free parameter of the model, whereas θ⃗ j is the j-th set of parameters in the

Markov chain.
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3 APPLICATION TO SIMULATED AND REAL DATA

To assess the reliability and limitations of our method, we use it in the first place to decon-

volve different simulated RSa. We simulate a measured, noiseless data set by using Eq. 5 to

convolve H(τ) with the RP kernel, and obtain G∗
k at ND data points with frequencies ωk loga-

rithmically spaced in [ωmin,ωmax]. We choose the values of ωmin, ωmax, and the number of data

points per decade n = ND/ log(ωmax / ωmin) to reproduce different experimental data sets. After

that, we add Gaussian noise to our simulated data set, with fixed dispersions σ ′,′′ for the storage

and loss modulus, respectively. We parameterize noise by its peak signal-to-noise ratio,

Σ′,′′ =
max(G′,′′)

σ ′,′′ . (8)

Notice that this means that the typical signal-to-noise ratio of the data is lower than this value.

3.1 Simulated spectra

As a simple first test, we deconvolved a well sampled RS with very low noise. Left panel of

Fig. 1 displays the simulated RS and material moduli, together with different estimates of the

best-fitting H(τ) and G∗(ω). One of the characteristics of our method is that it gives uncertainty

estimates, not only for the parameters but also for the best-fitting H and G∗, which allows a

better assessment of the quality of the fit. The method works very well in this case, rendering

an extremely tight fit to the data, and recovering the simulated RS within the 68% CR. However,

the relative errors of the fit are comparatively greater for H than for G∗. This shows that the

RS can deviate from the best-fitting one without significantly changing the material moduli

prediction, which is a direct consequence of the convolution that defines the latter, and the root

of the ill-posedness of the problem. We note that all estimates of the best-fitting parameters

(namely MAP and marginal posterior mean, median and mode) give a good description of the

simulated RS to within errors. The deterioration of the precision of the fit in spectral regions far

from the peak is a consequence of the smallness of their contribution to G∗.

To investigate the precision and accuracy with which our method recovers the spectral pa-

rameters θ j, we show the posterior distribution of their values obtained from the Markov chain,

together with the different estimates of the best-fitting values θbf j (Fig. 2). All distributions are

unimodal and nearly symmetric, and the standard deviations s j almost coincide with the 68%

CRs. Once again, all estimates of θbf, j are close to each other, their differences being lower

than s j. The precision (ε j = s j/θbf, j) is in the range 0.5−3.5%, which is of the same order of

the best signal-to-noise ratio in the data (2.5%). Repeating the same simulation several times,

we find that the true (simulated) values of the parameters fall at random within the credible

regions according roughly to the confidence levels, suggesting that the method is unbiased and

therefore its results are good estimates of the true values of the spectral parameters. Notice that

the method recovers τ0 and A with a very high precision (≲ 1%), whereas for Geq and σ the

precision decreases (to ∼ 3−4%). This is expected for Geq, as it defines the lower limit of the

storage modulus, where noise dominates data. The behaviour of σ deserves further exploration,

as it suggests that the fit is not as sensitive to changes in this parameter as for the rest.

We explore the effects of noise on the results of our method, using simulations with different

values of the signal-to-noise ratios. For simplicity, we keep Σ′ = Σ′′ = Σ. Right panel of Fig. 1

shows the results of deconvolution of a very noisy spectrum. The fit to G∗ is still tight, and the

RS is recovered to within uncertainties, indicating that our method performs very well under

high noise conditions. As in the high signal-to-noise case, relative errors are higher for the RS
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Figure 1: Left panels: Deconvolution of a well sampled, very low noise RS. We show the simulated and best-fitting

values (large panels) and goodness-of-fit estimates (small panels) for G′ (top), G′′ (middle), and H (bottom). The

goodness-of-fit for H is estimated by the relative deviation of the fit from the simulated values, whereas for G′ and

G′′ it is represented by the ratio of fit residuals to σ ′ and σ ′′, respectively. Green shaded regions mark residuals

within ±1σ ′,′′ (dark) and ±2σ ′,′′ (light). Solid black lines are simulated values, whereas dashed lines are different

best-fit estimates: MAP (red), marginal posterior mean (green), mode (blue), and median (magenta). Some lines

overlap almost completely due to the smallness of the differences between the estimates. Shaded blue zones are

68% (dark) and 95% (light) CRs. Right panel: Same as left panels, but for a noisy data set (Σ′ = Σ′′ = 5).

than for the moduli, reflecting the ill-posedness of deconvolution. The only difference with the

high signal-to-noise case is that the uncertainties in the best-fitting moduli and spectrum are

larger. This is a direct consequence of the larger errors in the data, that make fpost shallower
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Figure 2: Posterior distribution of parameter values (shaded grey histograms), together with best-fit estimates and

uncertainties, for a well sampled, very low noise RS. Dotted black lines are simulated values, whereas dashed lines

are different best-fit estimates: MAP (red), marginal posterior mean (green), mode (blue), and median (magenta).

Some lines overlap almost completely due to the smallness of the differences between the estimates. Dash-dotted

lines indicate ±1 standard deviations from the median. Shaded blue zones are 68% (dark) and 95% (light) CRs.

and thus enlarge the parameter-space region that provides a good fit. Therefore, the best-fitting

spectral parameters are less constrained. Correlations between parameters, on the other hand,

are preserved within the signal-to-noise range explored.

3.2 Deconvolution of measured data

Finally, we assess the ability of our method to deconvolve real experimental data. To this

aim we use the material moduli data (G′ and G′′ for 74 frequencies) of the polymer HA12B40

taken from Li et al. (2011). These authors do not present data uncertainties, which gives us

also the opportunity to demonstrate that our method is useful even under these conditions. We

assume that the relative measurement errors are constant, and adopted a typical value of 4% for

them. By visually inspecting the data, we have chosen to try a spectral model with four log-

normal components for the fit (13 fitting parameters). These choices show also that our method

is versatile enough to use different uncertainty and spectral models (for simulated data we have

used constant absolute errors and single-component spectra instead). We performed several fits

from random initial guesses and analyzed the distribution of the minimum χ2 value (Frodesen

et al., 1979). The mean value ⟨χ2
min⟩ obtained was 167. As the expected mean of this statistic

(assuming that the spectral and error models are correct) is the number of degrees of freedom
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(135 in this case), we deduce that the uncertainties are underestimated by
√

(167/135)− 1 ≈
10%, and corrected the relative error estimate to 4.4%. We performed a final fit with this error

value, which we show in Fig. 3.

Noise is not especially high in this data set, but we expect edge effects to be present, as

storage and loss moduli still grow at the high-frequency end of the data. However, our method

manages to obtain an extremely good fit to the data, as it is clearly seen in the upper and middle

panels of Fig. 3. Residuals are consistent with a stochastic behaviour of the data around the

model for all the estimates of the best-fitting functions. The lower panel shows that also the

best-fitting spectrum is very well defined, all estimates differing by less than 10% along the

whole relaxation time domain. Fitting uncertainties also remain well under this value except at

the large relaxation time end, where they grow beyond this limit. We also show a comparison

with the spectrum obtained from the same data by a different method (NLREG, McDougall

et al., 2014); the agreement between both methods is fairly good. Small discrepancies are ob-

served near logτ = 0, where the different estimates made by our method also have the largest

disagreement. This could be due to the fact that log-normal components are not the best de-

scription for HA12B40 in this relaxation time region, or just an indication that the limit in the

description of the spectrum imposed by the ill-posedness of the problem has been reached. An-

other possibility is that the model requires a fifth component to render a proper description of

the spectrum. The fact that the moduli residuals show some evidence of systematic behaviour

in the region around logω = 0 suggests that the latter is the most probable explanation. It is

interesting to note that Bayesian methods such as ours provide a way of treating model com-

parison problems that is consistent with the Occam razor rule. This would allow our method to

assess the model (in this case the number of components) that best describes HA12B40 data.

However, the development and testing of such a tool is out of the scope of the present work.

Finally, Fig. 3 shows one of the 78 two-parameter plots describing the covariance of the fitted

parameters. As it is clearly seen, the relative uncertainties in these parameters are of the same

order of magnitude of the relative experimental errors. This suggests that the method is able

to overcome the ill-posedness of the problem and give results limited only by the experimental

precision.

4 CONCLUSIONS

We have developed a novel method to deconvolve mechanical RS from storage and loss

moduli data as a function of SAOS strain frequency. Our method is based on the concept put

forward by Freund and Ewoldt (2015) of using physically motivated, parametric functions to fit

material properties. The main difference is that these authors parameterize the storage and loss

moduli, whereas we do it with the continuous RS itself. To determine the material moduli that

actually fit the data we resort to numerical convolution, computed to an arbitrary precision with

standard quadrature methods.

We have tested our method against simulated data representing experimental measurements

under different conditions. The method provides a good fit to material moduli regardless of

the noise, sampling frequency, or completeness of the data. We have shown that it is unbiased

and reliable, in the sense that it recovers always the correct spectral parameters to within fitting

uncertainties. Its simplicity and performance make therefore our method an attractive choice

for research in material science.3 Moreover, our method may be improved by adding a Bayesian

model comparison module, which would allow to discriminate between models with different

3The code is available from the authors upon request.
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Figure 3: Deconvolution of real data of HA12B40. We show the best-fitting models (large panels) and uncertainty

estimates (small panels) for G′ (top left), G′′ (top right), and H (bottom left). For material moduli we plot also the

data (grey circles and squares), whereas for the spectrum we superimpose a fit by McDougall et al. (2014) using

the NLREG method, digitized from its Fig. 10 (crosses). The uncertainties for H are estimated by the relative

deviation of the fitted spectra from the median estimate, whereas for G′ and G′′ it is represented by the ratio of

fit residuals to σ ′ and σ ′′, respectively. Green shaded regions mark residuals within ±1σ ′,′′ (dark) and ±2σ ′,′′

(light). Shaded blue zones are 68% (dark) and 95% (light) CRs. Right bottom panel: Example of a two-parameter

marginal posterior PDF computed from the Markov chain (blue shades) for the fit to experimental HA12B40 data.

number of parameters and thus assess the reality of individual RPs. We are currently developing

such a module, and intend to publish it in a follow-up paper.
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