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Abstract. The knowledge of mechanical properties of materials is based on a precise analysis of their
relaxation spectra. The development of methods to deconvolve spectra from measured data, and the as-
sessment of their reliability, is therefore of paramount importance. We present a novel Bayesian decon-
volution method based on a physically grounded parameterization of the spectra. We use a Metropolis-
Hastings Markov-chain Monte Carlo fitting algorithm, with a full posterior analysis to obtain the best-
fitting spectrum and its uncertainties. We test its performance on simulated data, finding that it is unbi-
ased, reliable, and gives precise results even under strong noise.
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1 INTRODUCTION

An accurate characterization of mechanical properties of solids and liquids is crucial for
pure research and technological applications. In the linear viscoelastic regime probed by small-
amplitude oscillatory shear (SAOS) techniques, these properties can be modelled assuming that
the behaviour of materials is well described by a set of relaxation processes (RPs), known as
its relaxation spectrum (RS). Each RP is completely defined by its characteristic timescale and
strength, which reveal information about the molecular architecture of the substance (Stadler,
2013). RSa of viscoelastic materials often show a continuous distribution of RPs, represented
by a viscosity density H in relaxation time T (Martinetti et al., 2018). It is usually inferred from
measurements of material functions such as the storage G’ and loss G’ moduli as a function of
the SAOS strain frequency @ (Winter, 1997). These are related to H through a convolution,

* d
G'(0) = Geg+ | HDK (0,5, (1)

where G* = G/ +iG” is the complex modulus, K* is a kernel function describing the contribution
of an individual RP to G*, i is the imaginary unit, and the equilibrium modulus Geq is a positive
real constant for viscoelastic solids (null for liquids).

Different techniques have been devised to deconvolve H from measured data of G*; the
assessment of their reliability and their general improvement are therefore key issues to address.
The frequently used “discretization method” (DM, e.g. McDougall et al., 2014, and references
therein) samples H at a set of Npy; abscissas {7;}, to replace Eq. 1 with

Npm
G'(0) ~ Geg+ ) &K (0,T). 2)
i=1
where g; = H(7;) In(7;11/7;). This reduces the problem to a linear regression with free parame-
ters Geq and {g;}. This problem is ill-posed, mainly because the convolution in Eq. 1 acts as a
low-pass filter dampening rapid variations in H. Conversely, its inversion amplifies the uncer-
tainties present in experimental data, leading to strong high-frequency noise in the deconvolved
RS. The DM worsens the problem because the accuracy of the approximation in Eq. 2 increases
with Npy. An accurate model requires therefore the introduction of high-frequency compo-
nents in H, whose dampening leads to parameter degeneracies. Indeed, there is a maximum
Npm ~ 1.5 —2 RPs per decade above which the fit cannot be further improved, called parsimo-
nious spectrum (e.g. Winter, 1997). Note that this small value does not a priori guarantee that
the right-hand side of Eq. 2 is a precise estimate of its left-hand side.

To overcome these problems, a lot of effort has been devoted to develop regularization meth-
ods that impose mathematical constraints to the fit to keep the solution smooth enough. These
methods succeed in reproducing simulated spectra, and give reasonable fits to experimental
data, but they provide only an empirical description of the data with little physical insight.
An important step forward has been taken by Freund and Ewoldt (2015), who use physically
grounded parametric models to describe material moduli, and apply Bayesian techniques to de-
termine the best-fitting parameter set (see Ciocci Brazzano et al., 2016, for a similar technique
regarding electrical spectra).

Our aim is to build upon the work of Freund and Ewoldt (2015) by devising a Bayesian
method to deconvolve continuous spectra, overcoming the limitations of the DM without the
need to resort to regularization techniques. Sects. 2 and 3 describe our method and results,
respectively, whereas Sect. 4 presents our conclusions.
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2 THE METHOD
2.1 Model RS and material moduli prediction

Our method assumes that the continuous RS can be modelled by a physically-motivated
function H(t;0) depending on a small set of parameters 8. We adopt as an example a sum of
log-normal density functions for H(7)/7,

1 (InT—InTy,;\?
ch, ["( o )] ®

where the parameters 6= {70,i,0:,A;} are the mean relaxation time, width, and strength of each
RP, respectively. This RS represents a distribution with equal probability for all relaxation states
(Tschoegl, 1989). For the kernel describing individual RPs we adopt Maxwell modes,

(07)? +iwT
1+ (w7)2
We stress that our method is not limited to these choices.
The model prediction for G* at any frequency @ can be computed to an arbitrary precision
level using any algorithm that performs the numerical integration of the right-hand side of Eq. 1.
We adopt the standard trapezoidal rule,

K*(0,7) = 4)

Ns
G*(|0) ~ ALY a;H(7}|0)K*(0,7}), (5)
Jj=1
where all a; = 1 except a; = ayg = 1/2, and we use a large number Ng of sampling points TJS'
defined in an interval [Ty, Tmax] Where the RS has significant values. These points are taken
evenly spaced by AA in In7 for simplicity.

It may be argued that this is almost the same approximation of the DM. The subtle but crucial
difference is that sampling parameters in Eq. 5 (Ns,{’c;‘,H (Tf‘]é)}) are auxiliary numerical
quantities, and not fitting parameters like their counterparts in Eq. 2 (Npm, {7}, & }). Decoupling
sampling from data fitting allows the former to be dense enough to accurately approximate the
integral in Eq. 1, while avoiding overfitting problems (parameter degeneracies, high-frequency
fluctuations). Indeed, Npy is limited to 1.5-2 RPs per decade, whereas Ng may be as large
as computational power allows. We adopt Ns = 100 to ensure that numerical errors in the
computation of G* do not affect the fit.

2.2 Data fitting

To estimate the best-fitting RS parameters for some data set D = {ay, G} }, we maximize
the posterior probability density function (PDF) of the parameters given D and any previously
available information /1, fpost(0|D, 7). Using Bayes theorem,

Z(D|6,1) fyri(6]1)
JoZ(DI8.1) fyi(6]1)d6

where the likelihood £ (D|6,1) is the PDF of D given 6 and I, and fi(6|1) is the prior PDF
of 6 given I, representing the degree of belief in 6 before measuring D.

fpost(é‘Dvl) = (6)
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Our algorithm computes . using physical assumptions about the nature of the deviation of
measured data Gy from the model G* (@), G; — G* (@) = AGL, , — AGy 4 4> With AGL 1o
the deviation of the measured value and the model prediction from the true (unknown) value
of the material modulus, respectively. The first term depends on the measurement technique,
and is usually assumed to be normally distributed with null mean and dispersion Oy, x defined
by the experimental uncertainty. The dispersion may be different at each frequency g, but can
be estimated by calibration procedures. The second term arises from the existence of physical
effects that are not modelled, for any reason, but are assumed to be small. The distribution of
the sum of these effects can be generally described by a Gaussian with null mean and dispersion

Omod k- With these hypotheses,! In.#(D|0,1) = —x? /2, where

X = (7)

2 2
k=1 Gexp,k + Gmod,k

is the usual goodness-of-fit statistic. Note that the method is not restricted to AGpr mod Tollow-

ing these assumptions; any hypotheses that give a distribution for them can be used as far as the
likelihood can be computed, either analytically or numerically, as in Douna et al. (2015). We
also assume a complete lack of previous knowledge, and therefore select a uniform prior fy
for all parameters.

We use an Markov-chain Monte Carlo technique with a Metropolis-Hastings (MH, e.g., Gre-
gory, 2005) algorithm to perform the maximization. After a short burn-in period required to
reach the high-probability region of the parameter space ®, the Markov chain produced by the
MH algorithm is by construction a sample distributed as fyos. To infer the best-fitting set of

parameters ébf, their uncertainties and correlations, we exploit the information contained in this
sample. As a first estimate of Gy we use the maximum a posteriori (MAP), obtained directly
from the element in the chain with the higher f,os value. Alternative estimates of Gy are the

sets of marginal posterior means (MPM) (é ), modes Binode, and medians 6,4 Of the parameters.
Marginalizing a Markov chain is done by simply taking one parameter at a time, disregarding
the others. Therefore to obtain the MPM of the j-th parameter’ (@ ;) we compute its sample
mean over the chain. To get Opode,; We Obtain a histogram of 6;, smooth it, and find the value
of 6; at which it attains its maximum. Finally, to determine 6,4 ; We arrange the chain by 6;
in ascending order, and select the value that leaves half of the chain above it.

To assess the uncertainty of the fit for a parameter 6;, we compute its sample standard de-
viation over the chain 64 ;. We also calculate marginal 100 % credible regions (CRs) as
the intervals [6", Gjr] that leave a fraction (1 — «)/2 of the chain above and below them. To
quantify correlations among two parameters 6; and 6, we use the standard Pearson correlation
coefficient, and to visualize them we determine two-parameter joint CRs. To this aim we com-
pute a smoothed density of chain points in the plane 6;-6;, using a Gaussian kernel. The density
contour line that encloses a fraction & of the points defines the 100 % CR.

Finally, we propagate the uncertainty estimates to the deconvolved RS and the best-fitting
moduli. We compute H(7) and G*(w) for each set of parameters in the Markov chain, and for
a large set of values of 7 and m. Using these samples, we determine CRs for H(7) and G*(®)
in the same way as we computed the corresponding CRs for the spectral parameters.

'A full derivation under similar hypotheses is given by Freund and Ewoldt (2015).

~Note that 0; denotes the j-th free parameter of the model, whereas éj is the j-th set of parameters in the
Markov chain.
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3 APPLICATION TO SIMULATED AND REAL DATA

To assess the reliability and limitations of our method, we use it in the first place to decon-
volve different simulated RSa. We simulate a measured, noiseless data set by using Eq. 5 to
convolve H(7) with the RP kernel, and obtain G} at Np data points with frequencies @y loga-
rithmically spaced in [@pin, Omax]- We choose the values of Wyin, Bmax, and the number of data
points per decade n = Np / 10g( ®max / @min) to reproduce different experimental data sets. After
that, we add Gaussian noise to our simulated data set, with fixed dispersions ¢’ for the storage
and loss modulus, respectively. We parameterize noise by its peak signal-to-noise ratio,

8)

Notice that this means that the typical signal-to-noise ratio of the data is lower than this value.

3.1 Simulated spectra

As a simple first test, we deconvolved a well sampled RS with very low noise. Left panel of
Fig. 1 displays the simulated RS and material moduli, together with different estimates of the
best-fitting H(7) and G*(w). One of the characteristics of our method is that it gives uncertainty
estimates, not only for the parameters but also for the best-fitting H and G*, which allows a
better assessment of the quality of the fit. The method works very well in this case, rendering
an extremely tight fit to the data, and recovering the simulated RS within the 68% CR. However,
the relative errors of the fit are comparatively greater for H than for G*. This shows that the
RS can deviate from the best-fitting one without significantly changing the material moduli
prediction, which is a direct consequence of the convolution that defines the latter, and the root
of the ill-posedness of the problem. We note that all estimates of the best-fitting parameters
(namely MAP and marginal posterior mean, median and mode) give a good description of the
simulated RS to within errors. The deterioration of the precision of the fit in spectral regions far
from the peak is a consequence of the smallness of their contribution to G*.

To investigate the precision and accuracy with which our method recovers the spectral pa-
rameters 6, we show the posterior distribution of their values obtained from the Markov chain,
together with the different estimates of the best-fitting values bej (Fig. 2). All distributions are
unimodal and nearly symmetric, and the standard deviations s; almost coincide with the 68%
CRs. Once again, all estimates of 6y, ; are close to each other, their differences being lower
than s;. The precision (€; = s;/6s ;) is in the range 0.5 — 3.5%, which is of the same order of
the best signal-to-noise ratio in the data (2.5%). Repeating the same simulation several times,
we find that the true (simulated) values of the parameters fall at random within the credible
regions according roughly to the confidence levels, suggesting that the method is unbiased and
therefore its results are good estimates of the true values of the spectral parameters. Notice that
the method recovers 7) and A with a very high precision (S 1%), whereas for Geq and ¢ the
precision decreases (to ~ 3 —4%). This is expected for Gegq, as it defines the lower limit of the
storage modulus, where noise dominates data. The behaviour of ¢ deserves further exploration,
as it suggests that the fit is not as sensitive to changes in this parameter as for the rest.

We explore the effects of noise on the results of our method, using simulations with different
values of the signal-to-noise ratios. For simplicity, we keep £’ = X" = X. Right panel of Fig. 1
shows the results of deconvolution of a very noisy spectrum. The fit to G* is still tight, and the
RS is recovered to within uncertainties, indicating that our method performs very well under
high noise conditions. As in the high signal-to-noise case, relative errors are higher for the RS
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Figure 1: Left panels: Deconvolution of a well sampled, very low noise RS. We show the simulated and best-fitting
values (large panels) and goodness-of-fit estimates (small panels) for G’ (top), G” (middle), and H (bottom). The
goodness-of-fit for H is estimated by the relative deviation of the fit from the simulated values, whereas for G’ and
G” it is represented by the ratio of fit residuals to ¢’ and ¢”, respectively. Green shaded regions mark residuals
within &=16"" (dark) and 426" (light). Solid black lines are simulated values, whereas dashed lines are different
best-fit estimates: MAP (red), marginal posterior mean (green), mode (blue), and median (magenta). Some lines
overlap almost completely due to the smallness of the differences between the estimates. Shaded blue zones are
68% (dark) and 95% (light) CRs. Right panel: Same as left panels, but for a noisy data set (X' = X" =5).

than for the moduli, reflecting the ill-posedness of deconvolution. The only difference with the
high signal-to-noise case is that the uncertainties in the best-fitting moduli and spectrum are
larger. This is a direct consequence of the larger errors in the data, that make fpo5 shallower
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Figure 2: Posterior distribution of parameter values (shaded grey histograms), together with best-fit estimates and
uncertainties, for a well sampled, very low noise RS. Dotted black lines are simulated values, whereas dashed lines
are different best-fit estimates: MAP (red), marginal posterior mean (green), mode (blue), and median (magenta).
Some lines overlap almost completely due to the smallness of the differences between the estimates. Dash-dotted
lines indicate +1 standard deviations from the median. Shaded blue zones are 68% (dark) and 95% (light) CRs.

and thus enlarge the parameter-space region that provides a good fit. Therefore, the best-fitting
spectral parameters are less constrained. Correlations between parameters, on the other hand,
are preserved within the signal-to-noise range explored.

3.2 Deconvolution of measured data

Finally, we assess the ability of our method to deconvolve real experimental data. To this
aim we use the material moduli data (G’ and G” for 74 frequencies) of the polymer HA12B40
taken from Li et al. (2011). These authors do not present data uncertainties, which gives us
also the opportunity to demonstrate that our method is useful even under these conditions. We
assume that the relative measurement errors are constant, and adopted a typical value of 4% for
them. By visually inspecting the data, we have chosen to try a spectral model with four log-
normal components for the fit (13 fitting parameters). These choices show also that our method
is versatile enough to use different uncertainty and spectral models (for simulated data we have
used constant absolute errors and single-component spectra instead). We performed several fits
from random initial guesses and analyzed the distribution of the minimum j? value (Frodesen
et al., 1979). The mean value <X§1in> obtained was 167. As the expected mean of this statistic
(assuming that the spectral and error models are correct) is the number of degrees of freedom
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(135 1n this case), we deduce that the uncertainties are underestimated by \/z 167/135) — 1 ~
10%, and corrected the relative error estimate to 4.4%. We performed a final fit with this error
value, which we show in Fig. 3.

Noise is not especially high in this data set, but we expect edge effects to be present, as
storage and loss moduli still grow at the high-frequency end of the data. However, our method
manages to obtain an extremely good fit to the data, as it is clearly seen in the upper and middle
panels of Fig. 3. Residuals are consistent with a stochastic behaviour of the data around the
model for all the estimates of the best-fitting functions. The lower panel shows that also the
best-fitting spectrum is very well defined, all estimates differing by less than 10% along the
whole relaxation time domain. Fitting uncertainties also remain well under this value except at
the large relaxation time end, where they grow beyond this limit. We also show a comparison
with the spectrum obtained from the same data by a different method (NLREG, McDougall
et al., 2014); the agreement between both methods is fairly good. Small discrepancies are ob-
served near log T = 0, where the different estimates made by our method also have the largest
disagreement. This could be due to the fact that log-normal components are not the best de-
scription for HA12B40 in this relaxation time region, or just an indication that the limit in the
description of the spectrum imposed by the ill-posedness of the problem has been reached. An-
other possibility is that the model requires a fifth component to render a proper description of
the spectrum. The fact that the moduli residuals show some evidence of systematic behaviour
in the region around log ® = 0 suggests that the latter is the most probable explanation. It is
interesting to note that Bayesian methods such as ours provide a way of treating model com-
parison problems that is consistent with the Occam razor rule. This would allow our method to
assess the model (in this case the number of components) that best describes HA12B40 data.
However, the development and testing of such a tool is out of the scope of the present work.

Finally, Fig. 3 shows one of the 78 two-parameter plots describing the covariance of the fitted
parameters. As it is clearly seen, the relative uncertainties in these parameters are of the same
order of magnitude of the relative experimental errors. This suggests that the method is able
to overcome the ill-posedness of the problem and give results limited only by the experimental
precision.

4 CONCLUSIONS

We have developed a novel method to deconvolve mechanical RS from storage and loss
moduli data as a function of SAOS strain frequency. Our method is based on the concept put
forward by Freund and Ewoldt (2015) of using physically motivated, parametric functions to fit
material properties. The main difference is that these authors parameterize the storage and loss
moduli, whereas we do it with the continuous RS itself. To determine the material moduli that
actually fit the data we resort to numerical convolution, computed to an arbitrary precision with
standard quadrature methods.

We have tested our method against simulated data representing experimental measurements
under different conditions. The method provides a good fit to material moduli regardless of
the noise, sampling frequency, or completeness of the data. We have shown that it is unbiased
and reliable, in the sense that it recovers always the correct spectral parameters to within fitting
uncertainties. Its simplicity and performance make therefore our method an attractive choice
for research in material science.’ Moreover, our method may be improved by adding a Bayesian
model comparison module, which would allow to discriminate between models with different

3The code is available from the authors upon request.
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Figure 3: Deconvolution of real data of HA12B40. We show the best-fitting models (large panels) and uncertainty
estimates (small panels) for G’ (top left), G” (top right), and H (bottom left). For material moduli we plot also the
data (grey circles and squares), whereas for the spectrum we superimpose a fit by McDougall et al. (2014) using
the NLREG method, digitized from its Fig. 10 (crosses). The uncertainties for H are estimated by the relative
deviation of the fitted spectra from the median estimate, whereas for G’ and G” it is represented by the ratio of
fit residuals to ¢’ and o”, respectively. Green shaded regions mark residuals within +1¢"" (dark) and +2¢""
(light). Shaded blue zones are 68% (dark) and 95% (light) CRs. Right bottom panel: Example of a two-parameter
marginal posterior PDF computed from the Markov chain (blue shades) for the fit to experimental HA12B40 data.

number of parameters and thus assess the reality of individual RPs. We are currently developing
such a module, and intend to publish it in a follow-up paper.

S ACKNOWLEDGEMENTS

This work was supported by Universidad de Buenos Aires (UBACyT grants 20020190100275BA,
20020190200255BA, and 20020190100032BA), by ANPCyT (PICT grants 2020-0582, and
2022-03741) and by CONICET (PIP grants 11220200102112CO, and 11220200101826CO).

REFERENCES

Ciocci Brazzano L., Pellizza L.J., Matteo C.L., and Sorichetti P.A. A Bayesian method
for analysing relaxation spectra. Computer Physics Communications, 198:22-30, 2016.
http://doi.org/https://doi.org/10.1016/j.cpc.2015.08.033.

Douna V.M., Pellizza L.J., Mirabel LF., and Pedrosa S.E. Metallicity dependence
of high-mass X-ray binary populations. Astronomy <& Astrophysics, 579:A44, 2015.

Copyright © 2025 Asociacion Argentina de Mecanica Computacional


http://doi.org/https://doi.org/10.1016/j.cpc.2015.08.033
http://www.amcaonline.org.ar

748 L. CIOCCI BRAZZANO et.al.

http://doi.org/10.1051/0004-6361/201525617.

Freund J.B. and Ewoldt R.H. Quantitative rheological model selection: Good fits versus
credible models using Bayesian inference. Journal of Rheology, 59(3):667-701, 2015.
http://doi.org/10.1122/1.4915299.

Frodesen A.G., Skjeggestad O., and Tofte H. Probability and Statistics in Particle Physics.
Universitetsforlaget, Bergen, Norway, 1979.

Gregory P.C. Bayesian logical data analysis for the physical sciences: a com-
parative approach with Mathematica support.  Cambridge University Press, 2005.
http://doi.org/https://doi.org/10.1017/CBO9780511791277.

Li S.W., Park H.E., and Dealy J.M. Evaluation of molecular linear viscoelastic models for
polydisperse h polybutadienes. Journal of Rheology, 55(6):1341-1373, 2011.

Martinetti L., Soulages J.M., and Ewoldt R.H. Continuous relaxation spectra for constitu-
tive models in medium-amplitude oscillatory shear. Journal of Rheology, 62(5):1271-1298,
2018. http://doi.org/10.1122/1.5025080.

McDougall 1., Orbey N., and Dealy J.M. Inferring meaningful relaxation spectra from experi-
mental data. Journal of Rheology, 58(3):779-797, 2014. http://doi.org/10.1122/1.4870967.

Stadler F.J. On the usefulness of rheological spectra — a critical discussion. Rheologica Acta,
1(52):85-89, 2013.

Tschoegl N.W. The phenomenological theory of linear viscoelastic behavior. Springer Verlag,
1989. http://doi.org/10.1007/978-3-642-73602-5.

Winter H.  Analysis of dynamic mechanical data: Inversion into a relaxation time spec-
trum and consistency check. J. Non-Newtonian Fluid Mech., 68(2-3):225-239, 1997.
http://doi.org/https://doi.org/10.1016/S0377-0257(96)01512-1.

Copyright © 2025 Asociacion Argentina de Mecénica Computacional


http://doi.org/10.1051/0004-6361/201525617
http://doi.org/10.1122/1.4915299
http://doi.org/https://doi.org/10.1017/CBO9780511791277
http://doi.org/10.1122/1.5025080
http://doi.org/10.1122/1.4870967
http://doi.org/10.1007/978-3-642-73602-5
http://doi.org/https://doi.org/10.1016/S0377-0257(96)01512-1
http://www.amcaonline.org.ar

	INTRODUCTION
	The method
	Model RS and material moduli prediction
	Data fitting

	Application to simulated and real data
	Simulated spectra
	Deconvolution of measured data

	Conclusions
	Acknowledgements

