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Abstract. Complex systems are characterized by self-organization, where interactions among 
constituent elements give rise to emergent patterns and critical transitions. In geophysics, earthquakes 
can be interpreted within this framework, where the analysis of precursor parameters provides critical 
insights into impending systemic instabilities. Among these, the temporal evolution of the b-value, 
derived from the Gutenberg-Richter frequency-magnitude scaling law, serves as a principal metric, with 
strong parallels drawn to Acoustic Emission (AE) studies in material failure. This work investigates 
critical-state precursors in two complementary case studies. The first employs AE time series generated 
from Fiber Bundle Model (FBM) simulations implemented via a Lattice Discrete Element Method 
(LDEM), enabling the characterization of progressive fracture and failure. The second examines the 
seismic sequence preceding the Mw 8.2 earthquake that struck Mexico in 2017. In both cases, the b-
value and the Method of Critical Fluctuations (MCF-B) are applied to track the evolution of criticality. 
Results demonstrate that b-value variations consistently capture the transition to a critical regime, both 
in simulated and real seismic data. In contrast, MCF-B shows limited applicability in complex tectonic 
settings dominated by large, isolated events. These findings highlight the robustness of b-value analysis 
as a precursor, while also indicating the need for refining complementary approaches. The multiscale 
perspective adopted here contributes to advancing the identification of critical states in both acoustic 
and seismic domains, with implications for earthquake forecasting.  
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1 INTRODUCTION  

Complex systems — whether physical, biological, social, or economic, consist of many 
elements sufficiently similar in nature for interactions to occur. Such systems are inherently 
open, exchanging information with their environment, and continuously reorganizing their 
internal structure through self-organization (Kwapien and Drozdz, 2012; Ladyman, Lambert 
and Wiesner, 2012). Self-organization is the spontaneous emergence of order and complexity 
from system–environment interactions, arising from non-equilibrium processes where external 
perturbations drive a stable system into a new dynamic state. 

The Earth’s crust can be regarded as a self-organizing complex system, where earthquakes 
arise from its deformation through the formation and propagation of faults. One of the 
fundamental relations derived from this assumption is the Gutenberg–Richter law for the 
frequency–magnitude distribution of earthquakes (Turcotte and Malamud, 2002). The constant 
b, or b-value, varies regionally and evolves as a major seismic event approach, making it a 
precursor in earthquake prediction. A parallel can be drawn with Acoustic Emission (AE) 
analysis, where the b-value acts as a precursor that signals imminent material failure, typically 
approaching a value close to one. AE is defined as the release of elastic waves due to the 
redistribution of internal stress caused by structural changes (Huang et al., 1998). 

AE events can be interpreted as microscale earthquakes, since they originate from localized 
energy release during microcrack formation. Both AE and seismicity involve the analysis of 
elastic wave emissions, but they operate at different scales and frequency ranges: AE signals 
typically range from 20 kHz to 1 MHz, whereas seismic data occur around 1 Hz. Despite these 
differences, several precursor parameters have been successfully applied to both AE and 
seismic data (Lei and Ma, 2014). 

Within this framework, the present study investigates critical-state precursors in complex 
systems through two case studies. The first involves AE time series from the fracture process 
of a fiber bundle model (FBM), implemented using a discrete element method variant known 
as the lattice discrete element method (LDEM). The second case study examines seismic data 
from the Mw 8.2 earthquake that occurred in Mexico in 2017. 

2 THEORICAL BACKGROUND 

2.1 The fiber bundle model 

FBM is a framework for studying failure processes in heterogeneous materials, consisting 

of a bundle of parallel brittle, linear elastic fibers subjected to quasi-static stretching between 

rigid supports. As loading progresses, weaker fibers fail and stress redistribution may trigger 

cascades of further failures, or avalanches, analogous to amplitude distributions in AE signals 

or seismic data. As the stretching continues, the system eventually collapses completely 

(Pradhan et al., 2010).    

The relation between the number of fibers breaking and the statistical distribution of events 

follows power-law behavior when the system is driven up to the critical threshold 𝑥௘ = 𝑥௖, a 

characteristic of critical phenomena, whereas premature interrupting of loading (𝑥௘ < 𝑥௖) 

yields incomplete avalanches and a normalized distribution ܰ(ܣ)/ܰ  that deviates from a pure 

power law, incorporating exponential components represented by the correction function G(ܻ), 

defined as: ܻ = ఎ(𝑥௖ܣ − 𝑥௘)                                                          (1) 

when 𝑥௘ is far from 𝑥௖, it results in ܻ ≫ 0, and ܩ(ܻ) = ݁−௒, then a power and exponential 

function govern the behavior of the statistical distribution of event sizes ܰ(ܣ)/ܰ. When 𝑥௘ 
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approaches 𝑥௖, ܩ(ܻ) tends to unity, and a power law takes place. Pradhan et al. (2005) identified 

this deviation as a crossover phenomenon, indicating that the system is nearing a critical state 

where failure becomes unstable. Detecting this behavior provides an early warning signal for 

structural failure, making it crucial for predictive modeling in materials science and seismology.  

2.2 The Lattice Discrete Element Method (LDEM) 

The LDEM represents the continuum medium as elements that bear only axial loads. The 

discretization utilizes a cubic module, comprising twenty-six bars and nine nodes, with the total 

mass concentrated at the nodes. Each node possesses three degrees of freedom. The lengths of 

the longitudinal and diagonal elements are shown in equations 2 and 3, respectively, with L as 

the module length.  ܮ௡ = ݀ܮ (2)                                                                  ܮ =  (3)                                                           ܮ (3/2√)

The correlation between bar properties and the elastic constants of an isotropic medium is 

given by explicit relations (see Kosteski et al., 2012), which define the equivalent cross-

sectional areas of longitudinal and diagonal bars. Using this approach, the following equation 

of motion can be derived: ܯ௜௝𝑥ఫ̈ + ௜௝𝑥ఫ̇ܥ + (ݐ)௜ܨ − ௜ܲ(ݐ) = 0                                             (4) 

where the vectors 𝑥ఫ̈ and 𝑥ఫ̇ represent the nodal acceleration and velocity, respectively. ܯ௜௝ 

represents the mass matrix, whereas ܥ௜௝ denotes the damping matrix. The vectors ܨ௜(ݐ) and ௜ܲ(ݐ) are the internal and external nodal forces, respectively. Since the matrices ܯ௜௝ and ܥ௜௝ are 

diagonal, Eq. (4) is not coupled and can be integrated in the time domain by using an explicit 

integration scheme, such as the Central Difference Method.  

For fracture analysis, a bilinear constitutive law of Hillerborg (1978) is used, defining a 

triangular force-strain relation for the bars to capture crack nucleation and propagation under 

tension. The material is assumed to behave as linear elastic in compression, with failure induced 

by indirect tension. The key parameters of this law — the critical strain at damage initiation ߝ௣ 

and the ultimate strain at failure ߝ௨ — are derived from the material’s fracture energy ܩ௙ and 

characteristic length ݀௘௤, and can be computed by means of the following equations:  ߝ௣ = √ ீ೑ாௗ೐೜                                                                (5) ߝ௨ =  ௣                                                                (6)ߝ௥ܭ

 

where: ܭ௥ = ݀௘௤ (஺೔∗஺೔) ( 2௅೔)                                                         (7) 

being the parameters 
஺೔∗஺೔ = 0.134 and ܮ௜ is the bar length, the subscript i is equal to n for 

longitudinal bar, and equal to d for a diagonal bar. A notable feature of the LDEM is the 

capability to implement three-dimensional stochastic fields for material properties such as 

fracture energy (ܩ௙)  and elastic modulus (ܧ). This allows for the incorporation of the 

material’s intrinsic inhomogeneity into the model, which is crucial for simulating realistic 

fracture processes. 
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3 PRECURSOR PARAMETER 

3.1 b-value 

Gutenberg and Richter (1949) described the frequency-magnitude relation of earthquakes by 

the Gutenberg-Richter (G-R) law, ܰ(≥ (ܣ =  ௕                                                        (8)−ܣܿ

where A is the amplitude of AE signals, ܰ(≥  the cumulative number of signals with (ܣ

amplitudes ≥A, and c and b are region-dependent constants. This formulation has been 

successfully applied to acoustic emission (Carpinteri, 2008), highlighting the analogy between 

structural damage and seismicity. In this context, the b-value, defined as the slope linking 

amplitude and cumulative events, reflects the damage evolution: in early loading stages, when 

microcracks nucleate uniformly, b ≈ 1.5-2; near collapse, as cracks concentrate around the 

failure surface, b decreases towards 1.   

3.2 A precursor approach based on method of critical fluctuations 

The Method of Critical Fluctuations Based (MCF-B) is based on the original MCF employed 

by Contoyiannis and Diakonos (2000) for analyzing critical fluctuations near equilibrium phase 

transitions. It employs a function with power-law and exponential term to capture deviations 

from linearity in the AE frequency-magnitude distribution, expressed as:  ܰ(ܣ) = 1݌ ∙ ௣2−ܣ ∙ ݁−஺௣3                                                  (9) 

being 1݌ a constant, 2݌ a power-law decay exponent and 3݌ an exponential decay exponent. 

Both 2݌ and 3݌ can consider deviations from data linearity in the same way as in the original 

MCF and therefore this proposed approach is called “based”.  
Monitoring the exponents 2݌ and 3݌  reveals the loss of linearity in the AE data and its 

relation to imminent collapse. Criticality emerges from their evolution in the amplitude 

distribution: near failure, the system shows a perfect power law with 2݌ > 1 and 3݌ ≈ 0, 

followed by the decrease of 2݌ and the monotonic increase of 3݌, analogous to the crossover 

phenomenon discussed in Section 2.   

4 CASE STUDY I: FBM IN THE LDEM FRAMEWORK  

4.1 Model description 

The LDEM consists of a cubic module with length L assumed to be equal to 1 m, represented 

in Fig. 1. There are 15,000 modules in horizontal direction (x-axis), 4 modules in the vertical 

direction (y-axis), and 1 module in the thickness direction (z-axis).  

A displacement in in y-direction, ݑ௬, is applied increasing with a velocity of 1(10)−7݉/ݏ 

at the upper nodes of the model. The support is modelled as isotropic and homogeneous 

material; therefore, damage is not allowed in such region. The properties assumed for the 

LDEM support region are: ܧ = 1.0 ܰ/݉², ߥ = 0.25, ߩ ݀݊ܽ = 1.0 ݇݃/݉³, representing a 

stiffer region compared to the fibers.  

Some bars of the lower module are deactivated to ensure that only a single bar is loaded, to 

simulate a faithful FBM. The stiffness is equal to ݇ = 0.4 ܰ/݉ for the active bars. To consider 

the material heterogeneity, the rupture displacement of such bars, ݑ௥, is considered as random 

parameter characterized with a Weibull distribution with a mean value, ߤ (ݑ௥) = 0.066 ݉, and 

Coefficient of Variation, ݑܸܥ௥  = 50 %. It is important to note that the rupture of the bars is 

assumed to be perfectly brittle. It is important to emphasize that the purpose of this model is 
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not to replicate specific materials or structures, but rather to provide a simplified representation 

of the behavior of the precursors under investigation. 

 

Figure 1. (a) The FBM — parallel fibers are placed between two rigid supports and are stretched by applying 

a force at the upper support and fixed at the lower one. (b) The FBM in the LDEM framework — bars are 

vertically stretched using a prescribed displacement. Detail of the LDEM cubic module.  

This work introduces a novel approach by embedding the FBM within the LDEM 

framework, allowing for a dynamic representation of failure processes. Unlike traditional FBM 

applications, which analyze avalanches in a quasi-static manner, the present study incorporates 

time integration of the equations of motion. 

This feature detects avalanches through AE events. Two strategies for monitoring AE in 

LDEM are considered: the derivative of the system's kinetic energy and the acceleration of a 

node acting as a virtual sensor. The kinetic energy approach provides a global perspective, 

capturing the total energy released during major failure events and supporting the monitoring 

of damage propagation and large-scale rupture. Node acceleration offers a localized indicator 

of abrupt changes, making it particularly sensitive to micro-failure dynamics. In this study, AE 

time series are extracted from the temporal derivative of the kinetic energy, computed in 

equation (10), where ܧ௞ is the kinetic energy evaluated at discrete time steps during the 

simulation.  ∆ܧ௞ = (௜ݐ)௞ܧ −  (10)                                                 (௜−1ݐ)௞ܧ

4.2 Results and discussion 

The accumulated number of AE events (822 have been recorded) against the normalized 

time (t/ݐ௠௔௫, being ݐ௠௔௫ the time of the peak load) are presented in Fig. 2(a) together with the 

normalized (right-hand scale) AE amplitude and the load (the peak load, ܨ௠௔௫, is equal to 

182.28 N). A quantitative analysis of the accumulated number of events was conducted. It has 

been observed that the number of events increases at a nearly uniform rate to the point of 

imminent collapse.  

As shown in Fig. 2(b), the energy balance calculated during the simulation is represented by 

the multiplication of the kinetic energy by a factor of 104, a technique employed to enhance the 

clarity of the visualization. The amplitude of the AE events, obtained from the derivative of 

kinetic energy, represents a spasmodic process with large amplitude AE events distributed 

throughout the failure process of the model. The following are typical characteristics that have 

been observed during experimental monitoring of real materials.  

Figure 2(c) illustrates the temporal evolution of the b-value during the LDEM simulation, 

evaluated throughout the FBM simulation. At the early stages of loading, when nucleation of 

cracks dominates, b-values are between 1.5 and 2. When collapse is imminent, b-value 
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decreases towards 1. This behavior is consistent with the study by Carpinteri et al. (2008). 

 

Figure 2. (a) Accumulated number of AE signals with the normalized (on the right-hand scale) load and AE-

signal amplitudes; (b) Energy balance presented during the simulation; (c) b-value analysis; (d) exponents 2݌ and 3݌ from the MCF-B approach. The horizontal axis is the normalized time and equal for (a)-(d). 

The results of applying the MCF-B approach to the AE time series from the LDEM 

simulation are shown in Fig. 2(d). The exponents 2݌ and 3݌ are calculated starting with an initial 

dataset of 50 AE signals and then updated event by event throughout the normalized test period. 

It should be recalled that the characteristic signature of the MCF-B approach, indicating that 

the system has reached a critical stage, is the presence of a “perfect” power law together with a 
simultaneous decrease of 2݌ and a continuous increase of 3݌. Following this definition, one 

critical region is identified and highlighted with a grey background in Fig. 2(d), suggesting 

imminent instability, with criticality reported from 0.78 up to just before the maximum load is 

reached. This finding is consistent with the classical FBM and its critical signature of the 

crossover phenomenon in avalanches.  

5 CASE STUDY 2: MEXICO MW8.2 EARTHQUAKE ON 7 SEPTEMBER 2017 

5.1 Study area and seismic data  

This case study applies the precursor parameters from Section 3 to the seismicity preceding 

the Chiapas earthquake Mw8.2 of 7 September 2017, which struck at 04:49 UTC on the Cocos 

plate subducting beneath the North American and Caribbean plates. According to the National 

Seismological Service (SSN), the epicenter was in Gulf of Tehuantepec, 133 km southwest of 

Pijijiapan (14.761º N, -94.103º W; depth 45.9 km), associated with a normal fault. Seismic data 
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from the SSN catalog (www.ssn.unam.mx) from January 1, 1988 to September 7, 2017, were 

used, with a completeness magnitude of 3.5. The analyzed region includes Baja California, 

Chiapas, Colima, Guerrero, Jalisco, Michoacán and Oaxaca, comprising 55,723 events.   

 

Figure 3. Spatial distribution of seismic events with magnitude ≥6 in Mexico. The analyzed region 
includes the states of Baja California, Colima, Jalisco, Michoacán, Guerrero, Oaxaca, and Chiapas.   

5.2 Results and discussion 

Fig. 4(a) illustrates the seismic activity and the cumulative number of earthquakes. Along 

the Pacific coast of Mexico, seismicity is characterized by frequent large-magnitude events 

(Mw 5–7). The sole occurrence of an Mw 8 event, apart from the primary shock, transpired on 

October 9, 1995. 

Fig. 4(b) presents the b-value confidence interval. The analysis used a 150-event sliding 

window with a 250-event step size. This methodological decision ensures statistical robustness, 

as a single day may include 50-100 events, thereby proving representative samples and a clear 

temporal evolution. In the early stages (Mw 6-8) exhibit constrained confidence intervals and 

mean b-values of ~0.8-1.9 (normalized time 0.3-0.5), reflecting system stability. Approaching 

the mainshock (normalized time 0.7-1.0), larger fluctuations and wider intervals indicate 

anomalous magnitude dispersion, consistent with a critical regime preceding the Mw8.2 

earthquake.  

The MCF-B approach was applied to the Mw8.2 Mexico EQ in Fig. 4(c). The exponents 2݌ 

and 3݌, obtained as in Case Study 1, reveal no clear critical signature: 3݌ fluctuates toward 

negative values for most of the analyzed period, reflecting an upward tail in the N(A)–A 

relationship. This tail arises from large, isolated events that were recorded and are associated 

with intense seismic activity. Therefore, the b-value and its fluctuation prior to the main 

earthquake appear to be effective indicators of system instability. 

 

Mecánica Computacional Vol XLII, págs. 765-774 (2025) 771

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.ssn.unam.mx/
http://www.amcaonline.org.ar


 

Figure 4. (a) The EQ magnitude’s reported by SSN, accumulated number of EQs on the right-hand scale, (b) 

Confidence Interval of b-value analysis, (c) exponents 2݌ and 3݌ from the MCF-B approach. The horizontal 

axis is the normalized time and equal for (a)-(c). 

As previously indicated, the region exhibits a high vulnerability to large-scale seismic 

events. Consequently, the MCF-B model appears to be somewhat inaccurate. In previous work, 

Friedrich et al. (2025) analyzed seismic data from the Kahramanmaras-Gazientep region in 

Turkey, from 2014 to 2023 (Figure 5(a)), and identified a clear critical signature prior to the 

mainshock, as shown in Fig. 5(b). The behavior of the 2݌ and 3݌ exponents can be illustrated 

in Fig. 5(c), with the N(A)–A distribution at different points throughout the analyzed period. 

Further investigation is necessary to determine the effectiveness of MCF-B. In subsequent 

studies, the data from the Chiapas region could be examined independently to discern the effects 

of the three tectonic plates present there. Additional seismic data could be incorporated for a 

more comprehensive investigation, using predictors from this study and new ones.   
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Figure 5. (a) The EQ magnitude’s reported by AFAD, accumulated number of EQs on the right-hand scale, 

(b) exponents 2݌ and 3݌ from the MCF-B approach, the horizontal axis is in days up to the main shock and 

equal for (a) and (b); (c) evolution of exponents 2݌ and 3݌, together with the coefficient of determination R², 

for points 1, 2 and 3 indicated by black arrows in Fig. 5(b). The dotted blue line is the linear approximation.  

 5 CONCLUSIONS 

 This paper examines two approaches to identifying critical states in complex systems: 

the b-value and the MCF-B. The first case study is a fracture process monitored by AE derived 

from FBM simulations within the LDEM framework. The second case study is the time series 

of earthquakes preceding the devastating Mw8.2 event in Mexico (2017). In the simulation, the 

accumulated number of events and AE amplitudes indicate progressive damage leading to 

catastrophic failure. The b-value evolution and MCF-B exponents provide consistent critical 

signatures. The seismic case shows that b-value fluctuations effectively capture the transition 

to a critical regime, while the MCF-B approach failed to yield a robust signature due to the 

predominance of large, isolated events. This underscores the efficacy of b-value analysis as a 

reliable indicator of impeding instability. In contrast, the applicability of MCF-B may be 

context-dependent, requiring refinement for complex tectonic environments, such as the 

Mexico Pacific Coast. Future work should expand the dataset, incorporate regional differences, 

and test combined predictors to improve the reliability of seismic precursor identification.   
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