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Resumen. Un absorbedor dindmico de vibraciones disipa la energia mecénica del sistema sobre el cual
se adosa (sistema primario). Un recolector de energia convierte las vibraciones desarrolladas por dicho
sistema en energia eléctrica. Un dispositivo recolector-absorbedor (DRA), cumple con el doble propdsito
de reducir la respuesta vibratoria del sistema primario y generar energia. En este trabajo se presenta un
modelo continuo de un DRA formado por una placa de material piezoeléctrico bimorfo (modelo Q220-
H4BR-2513YB), una ldmina viscoelastica de goma butilica (modelo C1002-01PSA) y una lamina de
acero inoxidable que actia como capa restrictora. El modelo del compuesto conduce a obtener las ecua-
ciones de movimiento del DRA a partir del principio de Hamilton y utilizando un modelo de derivadas
fraccionarias para el material viscoeldstico. Aplicando una descomposicién modal y en virtud del an4-
lisis de Fourier, es posible determinar la frecuencia natural del sistema, su desplazamiento y el voltaje
generado, tanto en el dominio temporal como en el de la frecuencia. La validez de estos resultados se
compara con un modelo de pardmetros concentrados desarrollado previamente y una simulacién por ele-
mentos finitos implementada en un programa comercial.

Keywords: Harvester-absorber, frequency, response, viscoelastic material.

Abstract. A dynamic vibration absorber dissipates the mechanical energy of the system to which it
is attached (primary system). An energy harvester converts the vibrations generated by this system into
electrical energy. A device called a dynamic vibration absorber-harvester (DVAH) serves the dual purpo-
se of reducing the vibratory response of the primary system and generating energy. This work presents a
continuous model of a DVAH composed of a bimorph piezoelectric plate (model Q220-H4BR-2513YB),
a viscoelastic sheet made of butyl rubber (model C1002-01PSA), and a stainless-steel layer that acts as
a constraining layer. The composite model leads to the derivation of the DVAH’s equations of motion
based on Hamilton’s principle, employing a fractional derivative model for the viscoelastic material. By
applying modal decomposition and using Fourier analysis, it is possible to determine the system’s natural
frequency, displacement, and generated voltage, both in the time and frequency domains. The validity
of these results is compared with a previously developed lumped parameter model and a finite element
simulation implemented in commercial software.
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1. INTRODUCCION

La absorcién de energia vibratoria mediante absorbedores dindmicos tiene larga data. Desde
los trabajos pioneros tedricos de Den Hartog (1956), a principios de la década del 50, hasta la
actualidad (Febbo (2012)) esta técnica ha conformado el estindar del control pasivo de vibra-
ciones y su estudio y su uso estan ampliamente difundidos a nivel académico e industrial.

Un absorbedor dindmico de vibraciones es un sistema que consta, por lo general, de una
masa, un elemento eldstico y otro amortiguador que se coloca sobre una estructura denomina-
da sistema primario cuyas vibraciones se quieren “absorber” o amortiguar. Los absorbedores
pueden ser del tipo MK (masa-resorte) o MCK (masa—amortiguador-resorte) (Rao (2004)). El
primero es utilizado para controlar vibraciones en banda estrecha y su frecuencia natural es
igual a la frecuencia a la cual se excita el sistema primario. El segundo tipo puede realizar un
control en banda ancha de frecuencias gracias a su capacidad de amortiguar la energia vibra-
toria sobre un amplio espectro. En este ultimo caso, la frecuencia natural del absorbedor es
ligeramente diferente a la de un modelo de sistema primario de un grado de libertad.

Por otra parte, un recolector de energia de vibraciones es un elemento transductor que con-
vierte las vibraciones en energia eléctrica. Los hay de multiples tipos: electrostéticos, elec-
tromagnéticos, triboeléctricos y piezoeléctricos. En este trabajo la atencidn estard centrada en
recolectores de energia piezoeléctricos debido a su facil implementacidn, gran densidad de po-
tencia y buena durabilidad sin mantenimiento.

Los recolectores de energia piezoeléctricos han probado ser una alternativa econémica y
eficiente en la captacion de energia del ambiente. En los dltimos afios, una gran cantidad de
investigadores propusieron diferentes dispositivos variando la geometria, los grados de libertad,
la no-linealidad y los esfuerzos mecénicos, entre varias alternativas (Gatti et al. (2018)). El
material mds utilizado como transductor piezoeléctrico es el PZT (basado en plomo, circonio y
titanio), se encuentran comercialmente en forma de fibras (MFC), ceramicos (MIDE) o buzzers.

La propuesta de un recolector-absorbedor desarrollado a partir de un material compuesto
piezoeléctrico-viscoelastico pretende satisfacer un doble objetivo, combinando las funciones
de un recolector de energia y un absorbedor dindmico de vibraciones. Las bondades de esta
doble funcién permiten, la recoleccién de energia y su uso, por ejemplo, en la alimentacién de
un sensor adosado al sistema primario y simultineamente la absorcién de energia del sistema
primario evitando una vibracién excesiva en un rango de frecuencias. Como ventaja adicional,
el uso de material viscoeldstico posibilita una extension de la vida util de la viga piezoeléctrica.

En este trabajo se modela y analiza un dispositivo recolector-absorbedor tipo placa compues-
ta piezoeléctrica-viscoeléstica valiéndose de métodos analiticos y computacionales a partir de
la teoria del continuo. Respecto a trabajos similares, Gelves et al. (2024) presentan un modelo
de pardmetros concentrados del sistema mencionado. Park y Baz (2001) consideran un sistema
similar en el que la placa de restriccion se cambia por un actuador piezoeléctrico y el com-
portamiento viscoeldstico se modela con un polinomio. Posteriormente, el trabajo de Khalfi y
Ross (2013) supone que el mismo sistema no tiene ninguna propiedad piezoeléctrica y modela
al viscoeldstico usando la serie de Prony. Algunos articulos como Fogang (2025) y Hadji et al.
(2024) analizan las vibraciones de sistemas formados por tres placas, y particularmente Gao
et al. (2023) estudia el caso en el cual la lamina media es viscoelastica.
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2. MODELO MATEMATICO
2.1. Composicion del DRA y condiciones de borde

El DRA considerado consiste en una placa de material piezoeléctrico bimorfo (modelo
Q220-H4BR-2513YB), el cual se compone de una ldmina de latén entre dos ldminas de PZT
5H, sobre el que se adhiere una ldmina viscoeldstica de goma butilica (modelo C1002-01PSA)
y una ldmina de acero inoxidable que actia como capa restrictora. El sistema puede observarse
en la Figura 1, donde se observan también las condiciones de borde: todos los bordes libres
excepto por x = 0, que esta eldsticamente restringido contra rotacién a través de resortes de
constante k.. Como en un caso genérico el viscoeldstico no necesariamente debe cubrir toda la
placa piezoeléctrica, se define la longitud a,, que indica la distancia desde el contorno x = 0
hasta donde comienza la placa viscoeldstica.

a

a4y

Viscoelastico

0 I X

Piezoeléctrico Capa de restriccion

Figura 1: Dispositivo recolector-absorbedor (DRA).

2.2. Consideraciones del modelo del DRA

2.2.1. Aproximaciones

Para la deduccion de las ecuaciones de movimiento se consideran las siguientes aproximacio-
nes: las placas son delgadas, por lo que se aplica la teoria de Kirchhoff-Love; existe adherencia
perfecta entre las distintas placas y continuidad del desplazamiento en las interfases, conside-
rando en el caso del piezoeléctrico bimorfo una tnica placa equivalente formada por las 1dminas
de PZT y el latdn; las tres placas que conforman el DRA (piezoeléctrico equivalente, viscoelds-
tica y restrictora) presentan el mismo desplazamiento transversal; la deformacion por corte y la
inercia rotacional en la placa piezoeléctrica equivalente y en la de restriccion son despreciables;
y la placa viscoeldstica estd sometida tinicamente a deformacion por corte sin tensiones norma-
les. En adelante, los subindices p, v y ¢ se referirdn a la lamina piezoeléctrica equivalente, la
viscoeldstica y la de restriccion, respectivamente.

2.2.2. Geometria y desplazamientos

El desplazamiento transversal global se denota con w y los desplazamientos en x € y se
denotan con u y v, correspondientemente. Con esto en cuenta, se consideran las siguientes
definiciones:

= u; es el desplazamiento dentro del plano y en la superficie media de la placa 7.
= 9; es el desplazamiento dentro del plano y en la superficie media de la placa .

= w es el desplazamiento comin de los planos medios de cada placa.
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= 7 es el voltaje generado por el piezoeléctrico.

En consecuencia se define al vector desplazamiento como 7;(z, y) = [u;(x,y), vi(z,y), w(x, y)],
cuyos componentes son

ow ow

UZ‘:UJ'—Z% y Ui:Uj—Za—y

en donde ¢ = p, c representan el piezoeléctrico y la capa de restriccion respectivamente, para

los cuales se corresponden ;7 = 1, 3, que denotan el desplazamiento en x del origen al plano
medio de la placa piezoeléctrica equivalente y la viscoeléstica.

Como la deformacién del viscoeldstico ocurre en los planos zz e yz, los desplazamientos

longitudinales del mismo se calculan segin (Gao y Shen (1999))

 (uztuy ow (hy, — he _ (vstu ow (hy,— he
we(B50) g () v om= (M) 45 (M) @

en donde los h; son los espesores de las laminas. Andlogas son las definiciones para vy y vs
pero a lo largo de la coordenada y.

(1

2.3. Modelo del viscoelastico

El modelo que seré utilizado para la placa viscoeldstica es un modelo de derivadas fraccio-
narias en el cual el médulo de cizallamiento depende de la temperatura y de la frecuencia de
excitacion (Bronkhorst et al. (2018)), que viene dado por

1+ b1(iQa(T))8 0, + T — Ty
donde Gy y G son las asintotas inferior y superior, respectivamente, 3 es el orden fracciona-
rio de la derivada que aparece en la ecuacion constitutiva del material viscoeldstico y b; es la

constante de tiempo del material. De ahora en adelante, la temperatura 7' (considerada fija) se
omitird en G,,(£2, T') por simplicidad.

G,(Q,T) =

,con log(a(T)) = 3)

2.4. Relaciones constitutivas

Para las placas piezoeléctrica equivalente y restrictora, la ecuacidon constitutiva de la tension
o como funcién de la deformacion ¢ es:

01 1—1/1.2 1—1/1.2 0 &1 }fp d31

wE,  E v
02 = 11—1/1.2 1_;_1_2 0 E9 — ]:p d32 (4)
06| . 0 0 Ei, €6 ; 0

[ 1—-v3 )

en donde A es la distribucion espacial del piezoeléctrico en la placa, V, es el voltaje a través
del espesor de la lamina piezoeléctrica y los d;; son las constantes piezoeléctricas, F; y v; son
el médulo de Young y el coeficiente de Poisson respectivamente. Esta expresion considera que
el material es piezoeléctrico, pero en caso de que no lo sea, como ocurre con i = ¢, entonces
ds; = ds» = 0. Cabe mencionar que en la expresién anterior y en las siguientes se utiliza la
notacion de Voigt: o1 = 0,4, 02 = 0yy Y 06 = Oy

En cuanto al viscoeléstico se define a la deformacion por corte como (Gao y Shen (1999))
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_d ug — Uy ow _i V3 — U1 _8_w
i[5 ¢ 5%

hp+he
en donde d = h, + 25— + . De este modo la ecuacién constitutiva que relaciona la tension de
corte con la deformamon por corte es lineal:

[TxZ]v =G, [%:Z]v y [Tyz]v =G, [Vyz]v

2.5. Energias

Llamando V' al volumen de una ldmina, entonces la energia potencial se calcula segin

{/// Z Ji dVi + /// Volo[Tazlo + [Vyz)o[Tyz]w) dVv} 6)

mientras que la energia cinética viene dada por

=2/ (5 G = Gy + 5y Gy

av, + = ///valm dv;

1=p, C

con

L uz— U 1 ow ow U3 = 1 ow ow
T T o, (hca_ﬂh”%) y b=y Tm(ha +hf)y> ®

que contemplan la energia de rotacion del viscoeldstico. p; son las densidades de las laminas.

2.6. Ecuaciones de movimiento

A partir de la aplicacion del principio de Hamilton se obtienen las seis ecuaciones de movi-
miento para u;, v;, w 'y el voltaje v = AV,:

0? 0? 0? G, 0
(All)pgugl + [(A12)p + (As6)p] 8:6(1;; + (A66)qu; + ™, (U3 — U — da—z:)
0? oA OA
Pphyp a;;l o = (Crids + Cradsg) + 8—(0616131 + Cpadso) (9a)
0%vq 0%uy vy G, ow
(All)pa_yg + [(Ar2)p + (As6)p)] 895—33; + <A66)CW + o vz — U1 — da—y
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0% oA oA
pphyp 81521 o — (Ce1ds1 + Ceadsz) + 8_(021d31 + Caodso) (9b)
0%us 0%v4 Pus G, ow
(All)cﬁ + [(A12)c + (Ags)c] D20y + (A66>pa_y2 — h_v Uz — Uy — dﬁ_x
82U3
- pchcw (9C)
0%v4 0%us Pvs G, ow
(All)ca_y2 + [(A12)e + (Ass)c] 020y + (AGG)CW — h_v Vg — U1 — da—y
821)3
*w *w *w G, [[(Ous Ouy Ovs Oy
(Pr)p+ (D). (ax4 25t ay4) o Ka— - a_) * (a—y - a—y>
Pw 0w 82w
—d (w + W)] + (Pphp + thv + pchc)ﬁ
9’A 82A 9’A
= —W(Hnd:n + Hiadzs) — 8 ay - (Herdz1 + Headzz) — B = (Haidz1 + Haodso) + q(x,y,1)

(%e)

R, - O 8t 8t dar—7 [\ ax Ty 8x2 Vo2 )| Y
v du 0w 0w
B 1 1
— | —z| == — || dyd 9
// ST Kay”lax) (o + e )| e} o
en donde (Ay;); y (Dg); son los elementos (&, [) de las matrices de rigidez en el plano y flexural
para la placa 7, respectivamente. En el caso ¢ = p, expresan el equivalente de las 3 [dminas del
piezoeléctrico. Los valores de Cy; y Hy,; se encuentran en la refs (Park y Baz (2001)).
Nétese que Ec. (9f) surge de la aplicacion de la ley de las corrientes de Kirchhoff al equiva-

lente eléctrico del piezoeléctrico, considerando que lo que estd entre llaves es la carga eléctrica
¢e, Ry, es laresistencia y C), es la capacitancia.

2.7. Calculo de las frecuencias naturales

Para obtener las frecuencias naturales del DRA a partir de las Ecs. (9), los desplazamientos se
expresan utilizando una descomposicién modal, que se compone del producto entre la coordena-
da generalizada dependiente del tiempo y las formas modales dependientes de las coordenadas
espaciales, como sigue:
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(x,y,t) Z ZUlmneMX’ z)Yin(y), (x,y,t Z Z%mnethlm (2)Y (y)

m=0 n=0 m=0 n=0
l‘ y7 Z)E%Wmnezthlm )Yin(y)v ZL’ yv z:gz%vmneZWtle )Yln(y)

(10)
donde U;pns Vimns Winn ¥ Vinn son las amplitudes de las coordenadas modales (z = 1 denota
piezoeléctrico, ¢ = 3 la placa restrictora y m,n el modo ). Las formas modales X,, e Y,,
satisfacen las siguientes condiciones de borde: X,,(z) y Xs,,(x) son funciones viga en la
direccion = (que satisfacen la condicion de borde eldstico contra rotacion-libre) e Yi,,(y) =
Y3 (y) son funciones viga en la direccién y (libre-libre) (Rao (2004)). Estas resultan de resolver
un problema de autovalores sin tener en cuenta el piezoeléctrico. Por razones de espacio, solo
se considera el primer modo (m,n) = (1,0) del desplazamiento vertical w.

Las Ecs. (10) son reemplazadas en las Ecs. (9) y multiplicando a las ecuaciones de w y v
POF X11n(2)Yin(y)s @ 1y POF X4y, (2)Vin(y): a us por X4, (2)Ysn(y), @ v1 por Xim(2)Y], ()
y a v3 por X3, (2)Y3, (y) e integrando en = € [0; a] (o en la longitud del viscoeldstico, segin
corresponda) y en y € [0; b] se obtiene el siguiente sistema de ecuaciones en forma matricial:

[M{#} + [RI{} + ([K] = [PD{x} = {Q(1)} (11)

Para obtener las frecuencias naturales, se resuelve la siguiente ecuacion secular:

det(—w?[M] + [K] — [P] + iw[R]) = 0 (12)

Es importante mencionar que la constante eldstica contra rotacién k, en el borde z = 0 se
determiné ajustando su valor haciendo coincidir la frecuencia natural de la placa piezoeléctrica
sola con el valor reportado por Gelves et al. (2024) (76,45 Hz).

2.8. Calculo de la respuesta en frecuencia

Para describir el comportamiento dindmico del sistema se calcula la funcién respuesta en

. . e eqe W, a/2, b/2
frecuencia conocida como flexibilidad: F; = |<1_0)(Q/# ,

fuerza impulsiva sobre el grado de libertad asociado al desplazamiento vertical: {Q(¢)}T =
{0,0,0,0, Fyd(t),0} en donde §(t) es la delta de Dirac y Fy = 1 N. Siguiendo el procedimiento
descrito por Khalfi y Ross (2013) se obtiene

(13)
que es la respuesta en frecuencia. La barra indica la transformada de Fourier de la variable
asociada. Aplicando la transformada inversa de Fourier se obtienen las respuestas temporales
de cada una de las variables. Con v(¢) puede calcularse la energia eléctrica disipada sobre la

resistencia hasta el tiempo tjm: Egis = J'”“ ng dt

3. METODOLOGIA

Se resolvid la Ec. (12) para dos configuraciones del DRA: completo e incompleto. La primera
se baso en considerar el DRA con la placa piezoeléctrica equivalente, y el material viscoeldstico
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y capa restrictora ocupando todo el piezoeléctrico (a, = 0). La segunda consisti6 en la placa
piezoeléctrica equivalente sola. Los resultados obtenidos fueron comparados con los reportados
por Gelves et al. (2024), que estudiaron el mismo sistema utilizando la aproximacién de pard-
metros concentrados. Los valores de la geometria del DRA, son a = 63,5 mmy b = 31,8 mm.
(ver Figura 1). Los demds parametros eléctricos y mecénicos se presentan en la Tabla 1. El valor
de la constante elastica contra rotacion es k, = 2, 212 Nm/rad.

Asimismo, se resolvi6 la Ec. (13), con lo que se obtuvo la respuesta en frecuencia del sistema,
asi como también el desplazamiento vertical y el voltaje en funcién del tiempo. Con la expresion
Eyis = g”m % dt se calculé la potencia disipada con R;, = 326 k).

Para el estudio con el método de elementos finitos (MEF) se utiliz6 ANSYS 2017.2. Se
emplearon elementos tetraédricos de orden cuadratico para mejorar la precision del campo de
desplazamientos y el acoplamiento electromecdnico. La capa piezoeléctrica se model6 con ele-
mentos SOLID226 (con grados de libertad mecdanicos y eléctricos) y el sustrato con elementos
SOLID186. Se aplicaron condiciones de contorno que simulan la fijacién con tornillos, y la ma-
l1a fue refinada hasta lograr una variacion menor al 1 % entre frecuencias naturales consecutivas.
El modelo final cont6 con 21 274 elementos.

| Parametro | Viscoelastico |

p [kg/m?] 1087
| Parametro | PZT-5H | Latén | Placa restrictora | A [mm] 0.254
p [kg/m?] 7800 8300 7850 v 0,30
h [mm] 0,19 0,13 0,5 Gy [kPa] 606
FE [GPa] 50 100 210 G [MPa] 970
v 0,31 0,32 0,30 16 0,5465
dsy [pC/N] -320 - - b [s] 0,00069
dso [pC/N] -190 - - T [K] 293
C, [nF] 350 - - Ty [K] 293
0, [K] 17,8052
0, [K] 177.119

Tabla 1: Pardmetros mecdnicos y eléctricos de los materiales de las placas.

4. RESULTADOS

En la Tabla 2 se comparan las frecuencias de las configuraciones completa e incompleta
obtenidas con el método propuesto y MEF junto con las reportadas por Gelves et al. (2024).

En la Figura 2a se aprecia la flexibilidad del DRA con un médximo en 86 Hz para el caso
completo y 76 Hz para el incompleto. Estos valores corresponden a las frecuencias obteni-
das mediante la resolucién de la Ec. (12), como se observa en la Tabla 2. En la Figura 2b se
muestra la potencia disipada en la resistencia R, para los dos casos. Se puede apreciar la rapi-
da disipacién de la energia disponible para el caso con material viscoeldstico y capa restrictora
comparado con la ausencia de ellos. Por otro lado, en las Figuras 3a y 3b se muestra el desplaza-
miento vertical (w(t)) y el voltaje (v(t)) para los casos completo e incompleto respectivamente.
Se observa el gran amortiguamiento causado por la placa viscoeldstica en comparacién con el
caso en que no esta.
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’ DRA \ Gelves et al. (2024) \ MEF \ Propuesta ‘
Completo 85,4 [Hz] 83,16 [Hz] | 86,36 [Hz]
Incompleto 76,45[Hz] 78,34 [Hz] | 76,45 [Hz]

815

Tabla 2: Comparacién entre las frecuencias naturales de las dos configuraciones mencionadas
segtn tres métodos distintos: modelo de pardmetros concentrados, numérico y modelo de con-

tinuo.
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Figura 2: Flexibilidad y potencia disipada por el DRA.
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Figura 3: Respuestas temporales del DRA.
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Se desarroll6 un modelado analitico de un sistema compuesto por una placa piezoeléctrica
equivalente, una ldmina viscoeldstica y una placa restrictora. Las ecuaciones de movimiento pa-
ra los desplazamientos vertical, en el plano y el voltaje fueron obtenidas a partir del principio de
Hamilton. De la resolucion de la ecuacion secular se obtuvieron las frecuencias naturales del sis-
tema. A partir de la aplicacion de un método basado en la transformada de Fourier se obtuvieron
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las respuestas temporales y en frecuencia. Los resultados arrojan una muy buena comparacion
con estudios basados en elementos finitos y aproximaciones de parametros concentrados. En
cuanto a la disipacion agregada por la inclusion del material viscoeldstico, esta demuestra ser
contundente a la hora de compararla con un piezoeléctrico sin material viscoeldstico, afectando
la generacion de energia de la placa piezoeléctrica.
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