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Resumen. Un absorbedor dinámico de vibraciones disipa la energía mecánica del sistema sobre el cual
se adosa (sistema primario). Un recolector de energía convierte las vibraciones desarrolladas por dicho
sistema en energía eléctrica. Un dispositivo recolector-absorbedor (DRA), cumple con el doble propósito
de reducir la respuesta vibratoria del sistema primario y generar energía. En este trabajo se presenta un
modelo continuo de un DRA formado por una placa de material piezoeléctrico bimorfo (modelo Q220-
H4BR-2513YB), una lámina viscoelástica de goma butílica (modelo C1002-01PSA) y una lámina de
acero inoxidable que actúa como capa restrictora. El modelo del compuesto conduce a obtener las ecua-
ciones de movimiento del DRA a partir del principio de Hamilton y utilizando un modelo de derivadas
fraccionarias para el material viscoelástico. Aplicando una descomposición modal y en virtud del aná-
lisis de Fourier, es posible determinar la frecuencia natural del sistema, su desplazamiento y el voltaje
generado, tanto en el dominio temporal como en el de la frecuencia. La validez de estos resultados se
compara con un modelo de parámetros concentrados desarrollado previamente y una simulación por ele-
mentos finitos implementada en un programa comercial.

Keywords: Harvester-absorber, frequency, response, viscoelastic material.

Abstract. A dynamic vibration absorber dissipates the mechanical energy of the system to which it
is attached (primary system). An energy harvester converts the vibrations generated by this system into
electrical energy. A device called a dynamic vibration absorber-harvester (DVAH) serves the dual purpo-
se of reducing the vibratory response of the primary system and generating energy. This work presents a
continuous model of a DVAH composed of a bimorph piezoelectric plate (model Q220-H4BR-2513YB),
a viscoelastic sheet made of butyl rubber (model C1002-01PSA), and a stainless-steel layer that acts as
a constraining layer. The composite model leads to the derivation of the DVAH’s equations of motion
based on Hamilton’s principle, employing a fractional derivative model for the viscoelastic material. By
applying modal decomposition and using Fourier analysis, it is possible to determine the system’s natural
frequency, displacement, and generated voltage, both in the time and frequency domains. The validity
of these results is compared with a previously developed lumped parameter model and a finite element
simulation implemented in commercial software.
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1. INTRODUCCIÓN

La absorción de energía vibratoria mediante absorbedores dinámicos tiene larga data. Desde
los trabajos pioneros teóricos de Den Hartog (1956), a principios de la década del 50, hasta la
actualidad (Febbo (2012)) esta técnica ha conformado el estándar del control pasivo de vibra-
ciones y su estudio y su uso están ampliamente difundidos a nivel académico e industrial.

Un absorbedor dinámico de vibraciones es un sistema que consta, por lo general, de una
masa, un elemento elástico y otro amortiguador que se coloca sobre una estructura denomina-
da sistema primario cuyas vibraciones se quieren “absorber” o amortiguar. Los absorbedores
pueden ser del tipo MK (masa-resorte) o MCK (masa–amortiguador-resorte) (Rao (2004)). El
primero es utilizado para controlar vibraciones en banda estrecha y su frecuencia natural es
igual a la frecuencia a la cual se excita el sistema primario. El segundo tipo puede realizar un
control en banda ancha de frecuencias gracias a su capacidad de amortiguar la energía vibra-
toria sobre un amplio espectro. En este último caso, la frecuencia natural del absorbedor es
ligeramente diferente a la de un modelo de sistema primario de un grado de libertad.

Por otra parte, un recolector de energía de vibraciones es un elemento transductor que con-
vierte las vibraciones en energía eléctrica. Los hay de múltiples tipos: electrostáticos, elec-
tromagnéticos, triboeléctricos y piezoeléctricos. En este trabajo la atención estará centrada en
recolectores de energía piezoeléctricos debido a su fácil implementación, gran densidad de po-
tencia y buena durabilidad sin mantenimiento.

Los recolectores de energía piezoeléctricos han probado ser una alternativa económica y
eficiente en la captación de energía del ambiente. En los últimos años, una gran cantidad de
investigadores propusieron diferentes dispositivos variando la geometría, los grados de libertad,
la no-linealidad y los esfuerzos mecánicos, entre varias alternativas (Gatti et al. (2018)). El
material más utilizado como transductor piezoeléctrico es el PZT (basado en plomo, circonio y
titanio), se encuentran comercialmente en forma de fibras (MFC), cerámicos (MIDE) o buzzers.

La propuesta de un recolector-absorbedor desarrollado a partir de un material compuesto
piezoeléctrico-viscoelástico pretende satisfacer un doble objetivo, combinando las funciones
de un recolector de energía y un absorbedor dinámico de vibraciones. Las bondades de esta
doble función permiten, la recolección de energía y su uso, por ejemplo, en la alimentación de
un sensor adosado al sistema primario y simultáneamente la absorción de energía del sistema
primario evitando una vibración excesiva en un rango de frecuencias. Como ventaja adicional,
el uso de material viscoelástico posibilita una extensión de la vida útil de la viga piezoeléctrica.

En este trabajo se modela y analiza un dispositivo recolector-absorbedor tipo placa compues-
ta piezoeléctrica-viscoelástica valiéndose de métodos analíticos y computacionales a partir de
la teoría del continuo. Respecto a trabajos similares, Gelves et al. (2024) presentan un modelo
de parámetros concentrados del sistema mencionado. Park y Baz (2001) consideran un sistema
similar en el que la placa de restricción se cambia por un actuador piezoeléctrico y el com-
portamiento viscoelástico se modela con un polinomio. Posteriormente, el trabajo de Khalfi y
Ross (2013) supone que el mismo sistema no tiene ninguna propiedad piezoeléctrica y modela
al viscoelástico usando la serie de Prony. Algunos artículos como Fogang (2025) y Hadji et al.
(2024) analizan las vibraciones de sistemas formados por tres placas, y particularmente Gao
et al. (2023) estudia el caso en el cual la lámina media es viscoelástica.
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2. MODELO MATEMÁTICO

2.1. Composición del DRA y condiciones de borde

El DRA considerado consiste en una placa de material piezoeléctrico bimorfo (modelo
Q220-H4BR-2513YB), el cual se compone de una lámina de latón entre dos láminas de PZT
5H, sobre el que se adhiere una lámina viscoelástica de goma butílica (modelo C1002-01PSA)
y una lámina de acero inoxidable que actúa como capa restrictora. El sistema puede observarse
en la Figura 1, donde se observan también las condiciones de borde: todos los bordes libres
excepto por x = 0, que está elásticamente restringido contra rotación a través de resortes de
constante kr. Como en un caso genérico el viscoelástico no necesariamente debe cubrir toda la
placa piezoeléctrica, se define la longitud av, que indica la distancia desde el contorno x = 0
hasta donde comienza la placa viscoelástica.

𝑏
ܽܽ௩ݕ

ݔ
ݖ

Capa de restricciónPiezoeléctrico

Viscoelástico0
Figura 1: Dispositivo recolector-absorbedor (DRA).

2.2. Consideraciones del modelo del DRA

2.2.1. Aproximaciones

Para la deducción de las ecuaciones de movimiento se consideran las siguientes aproximacio-
nes: las placas son delgadas, por lo que se aplica la teoría de Kirchhoff-Love; existe adherencia
perfecta entre las distintas placas y continuidad del desplazamiento en las interfases, conside-
rando en el caso del piezoeléctrico bimorfo una única placa equivalente formada por las láminas
de PZT y el latón; las tres placas que conforman el DRA (piezoeléctrico equivalente, viscoelás-
tica y restrictora) presentan el mismo desplazamiento transversal; la deformación por corte y la
inercia rotacional en la placa piezoeléctrica equivalente y en la de restricción son despreciables;
y la placa viscoelástica está sometida únicamente a deformación por corte sin tensiones norma-
les. En adelante, los subíndices p, v y c se referirán a la lámina piezoeléctrica equivalente, la
viscoelástica y la de restricción, respectivamente.

2.2.2. Geometría y desplazamientos

El desplazamiento transversal global se denota con w y los desplazamientos en x e y se
denotan con u y v, correspondientemente. Con esto en cuenta, se consideran las siguientes
definiciones:

ui es el desplazamiento dentro del plano y en la superficie media de la placa i.

vi es el desplazamiento dentro del plano y en la superficie media de la placa i.

w es el desplazamiento común de los planos medios de cada placa.
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v es el voltaje generado por el piezoeléctrico.

En consecuencia se define al vector desplazamiento como r⃗i(x, y) = [ui(x, y), vi(x, y), w(x, y)],
cuyos componentes son

ui = uj − z
∂w

∂x
y vi = vj − z

∂w

∂y
(1)

en donde i = p, c representan el piezoeléctrico y la capa de restricción respectivamente, para
los cuales se corresponden j = 1, 3, que denotan el desplazamiento en x del origen al plano
medio de la placa piezoeléctrica equivalente y la viscoelástica.

Como la deformación del viscoelástico ocurre en los planos xz e yz, los desplazamientos
longitudinales del mismo se calculan según (Gao y Shen (1999))

u2 =

(

u3 + u1

2

)

+
∂w

∂x

(

hp − hc

4

)

y v2 =

(

v3 + v1

2

)

+
∂w

∂y

(

hp − hc

4

)

(2)

en donde los hi son los espesores de las láminas. Análogas son las definiciones para v1 y v3
pero a lo largo de la coordenada y.

2.3. Modelo del viscoelástico

El modelo que será utilizado para la placa viscoelástica es un modelo de derivadas fraccio-
narias en el cual el módulo de cizallamiento depende de la temperatura y de la frecuencia de
excitación (Bronkhorst et al. (2018)), que viene dado por

Gv(Ω, T ) =
G0 +G∞b1(iΩα(T ))

β

1 + b1(iΩα(T ))β
, con log(α(T )) = −

θ1(T − T0)

θ2 + T − T0

(3)

donde G0 y G∞ son las asíntotas inferior y superior, respectivamente, β es el orden fracciona-
rio de la derivada que aparece en la ecuación constitutiva del material viscoelástico y b1 es la
constante de tiempo del material. De ahora en adelante, la temperatura T (considerada fija) se
omitirá en Gv(Ω, T ) por simplicidad.

2.4. Relaciones constitutivas

Para las placas piezoeléctrica equivalente y restrictora, la ecuación constitutiva de la tensión
σ como función de la deformación ε es:





σ1

σ2

σ6





i

=







Ei

1−ν2
i

νiEi

1−ν2
i

0
νiEi

1−ν2
i

Ei

1−ν2
i

0

0 0 Ei

1−ν2
i















ε1
ε2
ε6





i

−





VaΛ
hp

d31
VaΛ
hp

d32

0







 (4)

en donde Λ es la distribución espacial del piezoeléctrico en la placa, Va es el voltaje a través
del espesor de la lámina piezoeléctrica y los dij son las constantes piezoeléctricas, Ei y νi son
el módulo de Young y el coeficiente de Poisson respectivamente. Esta expresión considera que
el material es piezoeléctrico, pero en caso de que no lo sea, como ocurre con i = c, entonces
d31 = d32 = 0. Cabe mencionar que en la expresión anterior y en las siguientes se utiliza la
notación de Voigt: σ1 = σxx, σ2 = σyy y σ6 = σxy.

En cuanto al viscoelástico se define a la deformación por corte como (Gao y Shen (1999))
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[γxz]v =
d

h2

[(

u3 − u1

d

)

−
∂w

∂x

]

y [γyz]v =
d

h2

[(

v3 − v1

d

)

−
∂w

∂y

]

(5)

en donde d = hv +
hp+hc

2
. De este modo la ecuación constitutiva que relaciona la tensión de

corte con la deformación por corte es lineal:

[τxz]v = Gv[γxz]v y [τyz]v = Gv[γyz]v

2.5. Energías

Llamando V al volumen de una lámina, entonces la energía potencial se calcula según

U =
1

2

{∫∫∫

Vi

∑

i=p, c

[ϵ]Ti [σ]i dVi +

∫∫∫

Vv

([γxz]v[τxz]v + [γyz]v[τyz]v) dVv

}

(6)

mientras que la energía cinética viene dada por

T =
1

2

∫∫∫

Vv

ρv

[

(

∂α2

∂t

)2

+

(

∂β2

∂t

)2

+

(

∂w

∂t

)2

+

(

∂u2

∂t

)2

+

(

∂v2

∂t

)2
]

dVv +
1

2

∫∫∫

Vi

∑

i=p, c

ρv|ṙi|
2 dVi

(7)

con

α2 =
u3 − u1

hv

−
1

2hv

(

hc
∂w

∂x
+ hp

∂w

∂x

)

y β2 =
v3 − v1

hv

−
1

2hv

(

hp
∂w

∂y
+ hc

∂w

∂y

)

(8)

que contemplan la energía de rotación del viscoelástico. ρi son las densidades de las láminas.

2.6. Ecuaciones de movimiento

A partir de la aplicación del principio de Hamilton se obtienen las seis ecuaciones de movi-
miento para ui, vi, w y el voltaje v = ΛVa:

(A11)p
∂2u1

∂x2
+ [(A12)p + (A66)p]

∂2v1

∂x∂y
+ (A66)p

∂2u1

∂y2
+

Gv

hv

(

u3 − u1 − d
∂w

∂x

)

= ρphp
∂2u1

∂t2
+

∂Λ

∂x
(C11d31 + C12d32) +

∂Λ

∂y
(C61d31 + C62d32) (9a)

(A11)p
∂2v1

∂y2
+ [(A12)p + (A66)p]

∂2u1

∂x∂y
+ (A66)c

∂2v1

∂x2
+

Gv

hv

(

v3 − v1 − d
∂w

∂y

)
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= ρphp
∂2v1

∂t2
+

∂Λ

∂x
(C61d31 + C62d32) +

∂Λ

∂y
(C21d31 + C22d32) (9b)

(A11)c
∂2u3

∂x2
+ [(A12)c + (A66)c]

∂2v3

∂x∂y
+ (A66)p

∂2u3

∂y2
−

Gv

hv

(

u3 − u1 − d
∂w

∂x

)

= ρchc
∂2u3

∂t2
(9c)

(A11)c
∂2v3

∂y2
+ [(A12)c + (A66)c]

∂2u3

∂x∂y
+ (A66)c

∂2v3

∂x2
−

Gv

hv

(

v3 − v1 − d
∂w

∂y

)

= ρchc
∂2v3

∂t2
(9d)

[(D11)p + (D11)c]

(

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)

+
Gv

hv

[(

∂u3

∂x
−

∂u1

∂x

)

+

(

∂v3

∂y
−

∂v1

∂y

)

−d

(

∂2w

∂x2
+

∂2w

∂y2

)]

+ (ρphp + ρvhv + ρchc)
∂2w

∂t2

= −
∂2Λ

∂x2
(H11d31 +H12d32)− 2

∂2Λ

∂x∂y
(H61d31 +H62d32)−

∂2Λ

∂y2
(H21d31 +H22d32) + q(x, y, t)

(9e)

v

RL

= −Cp
∂v

∂t
+

∂

∂t

{∫ a

0

∫ b

0

d31
E1

1− ν2
1

[(

∂u1

∂x
+ ν1

∂v1

∂y

)

− z

(

∂2w

∂x2
+ ν1

∂2w

∂y2

)]

dy dx

+

∫ a

0

∫ b

0

d32
E1

1− ν2
1

[(

∂v1

∂y
+ ν1

∂u1

∂x

)

− z

(

∂2w

∂y2
+ ν1

∂2w

∂x2

)]

dy dx

}

(9f)

en donde (Akl)i y (Dkl)i son los elementos (k, l) de las matrices de rigidez en el plano y flexural
para la placa i, respectivamente. En el caso i = p, expresan el equivalente de las 3 láminas del
piezoeléctrico. Los valores de Ckl y Hkl se encuentran en la refs (Park y Baz (2001)).

Nótese que Ec. (9f) surge de la aplicación de la ley de las corrientes de Kirchhoff al equiva-
lente eléctrico del piezoeléctrico, considerando que lo que está entre llaves es la carga eléctrica
qe, RL es la resistencia y Cp es la capacitancia.

2.7. Cálculo de las frecuencias naturales

Para obtener las frecuencias naturales del DRA a partir de las Ecs. (9), los desplazamientos se
expresan utilizando una descomposición modal, que se compone del producto entre la coordena-
da generalizada dependiente del tiempo y las formas modales dependientes de las coordenadas
espaciales, como sigue:
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ui(x, y, t) =
∞
∑

m=0

∞
∑

n=0

Uimne
iωtX ′

im(x)Yin(y), vi(x, y, t) =
∞
∑

m=0

∞
∑

n=0

Vimne
iωtXim(x)Y

′

in(y)

w(x, y, t) =
∞
∑

m=0

∞
∑

n=0

Wmne
iωtX1m(x)Y1n(y), v(x, y, t) =

∞
∑

m=0

∞
∑

n=0

Vmne
iωtX1m(x)Y1n(y)

(10)
donde Uimn, Vimn, Wmn y Vmn son las amplitudes de las coordenadas modales (i = 1 denota
piezoeléctrico, i = 3 la placa restrictora y m,n el modo ). Las formas modales Xm e Ym

satisfacen las siguientes condiciones de borde: X1m(x) y X3m(x) son funciones viga en la
dirección x (que satisfacen la condición de borde elástico contra rotación-libre) e Y1m(y) =
Y3m(y) son funciones viga en la dirección y (libre-libre) (Rao (2004)). Éstas resultan de resolver
un problema de autovalores sin tener en cuenta el piezoeléctrico. Por razones de espacio, solo
se considera el primer modo (m,n) = (1, 0) del desplazamiento vertical w.

Las Ecs. (10) son reemplazadas en las Ecs. (9) y multiplicando a las ecuaciones de w y v

por X1m(x)Y1n(y), a u1 por X ′

1m(x)Y1n(y), a u3 por X ′

3m(x)Y3n(y), a v1 por X1m(x)Y
′

1n(y)
y a v3 por X3m(x)Y

′

3n(y) e integrando en x ∈ [0; a] (o en la longitud del viscoelástico, según
corresponda) y en y ∈ [0; b] se obtiene el siguiente sistema de ecuaciones en forma matricial:

[M ]{ẍ}+ [R]{ẋ}+ ([K]− [P ]){x} = {Q(t)} (11)

Para obtener las frecuencias naturales, se resuelve la siguiente ecuación secular:

det(−ω2[M ] + [K]− [P ] + iω[R]) = 0 (12)

Es importante mencionar que la constante elástica contra rotación kr en el borde x = 0 se
determinó ajustando su valor haciendo coincidir la frecuencia natural de la placa piezoeléctrica
sola con el valor reportado por Gelves et al. (2024) (76,45 Hz).

2.8. Cálculo de la respuesta en frecuencia

Para describir el comportamiento dinámico del sistema se calcula la función respuesta en

frecuencia conocida como flexibilidad: FL = |
W̄(1,0)(a/2, b/2)

Q̄
|, con Q̄ la transformada de una

fuerza impulsiva sobre el grado de libertad asociado al desplazamiento vertical: {Q(t)}T =
{0, 0, 0, 0, F0δ(t), 0} en donde δ(t) es la delta de Dirac y F0 = 1 N. Siguiendo el procedimiento
descrito por Khalfi y Ross (2013) se obtiene

[

U1mn V1mn U3mn V3mn Wmn Vmn

]

=
[

0 0 0 0 Q 0
] (

−ω2[M ] + [K]− [P ] + iω[R]
)

−1

(13)
que es la respuesta en frecuencia. La barra indica la transformada de Fourier de la variable
asociada. Aplicando la transformada inversa de Fourier se obtienen las respuestas temporales
de cada una de las variables. Con v(t) puede calcularse la energía eléctrica disipada sobre la
resistencia hasta el tiempo tlim: Edis =

∫ tlim

0
v(t)2

RL
dt

3. METODOLOGÍA

Se resolvió la Ec. (12) para dos configuraciones del DRA: completo e incompleto. La primera
se basó en considerar el DRA con la placa piezoeléctrica equivalente, y el material viscoelástico
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y capa restrictora ocupando todo el piezoeléctrico (av = 0). La segunda consistió en la placa
piezoeléctrica equivalente sola. Los resultados obtenidos fueron comparados con los reportados
por Gelves et al. (2024), que estudiaron el mismo sistema utilizando la aproximación de pará-
metros concentrados. Los valores de la geometría del DRA, son a = 63, 5 mm y b = 31, 8 mm.
(ver Figura 1). Los demás parámetros eléctricos y mecánicos se presentan en la Tabla 1. El valor
de la constante elástica contra rotación es kr = 2, 212 Nm/rad.

Asimismo, se resolvió la Ec. (13), con lo que se obtuvo la respuesta en frecuencia del sistema,
así como también el desplazamiento vertical y el voltaje en función del tiempo. Con la expresión
Edis =

∫ tlim

0
v(t)2

RL
dt se calculó la potencia disipada con RL = 326 kΩ.

Para el estudio con el método de elementos finitos (MEF) se utilizó ANSYS 2017.2. Se
emplearon elementos tetraédricos de orden cuadrático para mejorar la precisión del campo de
desplazamientos y el acoplamiento electromecánico. La capa piezoeléctrica se modeló con ele-
mentos SOLID226 (con grados de libertad mecánicos y eléctricos) y el sustrato con elementos
SOLID186. Se aplicaron condiciones de contorno que simulan la fijación con tornillos, y la ma-
lla fue refinada hasta lograr una variación menor al 1 % entre frecuencias naturales consecutivas.
El modelo final contó con 21 274 elementos.

Parámetro PZT-5H Latón Placa restrictora
ρ [kg/m3] 7800 8300 7850
h [mm] 0,19 0,13 0,5
E [GPa] 50 100 210

ν 0,31 0,32 0,30
d31 [pC/N] -320 – –
d32 [pC/N] -190 – –
Cp [nF] 350 – –

Parámetro Viscoelástico
ρ [kg/m3] 1087
h [mm] 0,254

ν 0,30
G0 [kPa] 606
G∞ [MPa] 970

β 0,5465
b [s] 0,00069
T [K] 293
T0 [K] 293
θ1 [K] 17,8052
θ2 [K] 177,119

Tabla 1: Parámetros mecánicos y eléctricos de los materiales de las placas.

4. RESULTADOS

En la Tabla 2 se comparan las frecuencias de las configuraciones completa e incompleta
obtenidas con el método propuesto y MEF junto con las reportadas por Gelves et al. (2024).

En la Figura 2a se aprecia la flexibilidad del DRA con un máximo en 86 Hz para el caso
completo y 76 Hz para el incompleto. Estos valores corresponden a las frecuencias obteni-
das mediante la resolución de la Ec. (12), como se observa en la Tabla 2. En la Figura 2b se
muestra la potencia disipada en la resistencia RL para los dos casos. Se puede apreciar la rápi-
da disipación de la energía disponible para el caso con material viscoelástico y capa restrictora
comparado con la ausencia de ellos. Por otro lado, en las Figuras 3a y 3b se muestra el desplaza-
miento vertical (w(t)) y el voltaje (v(t)) para los casos completo e incompleto respectivamente.
Se observa el gran amortiguamiento causado por la placa viscoelástica en comparación con el
caso en que no está.
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DRA Gelves et al. (2024) MEF Propuesta

Completo 85,4 [Hz] 83,16 [Hz] 86,36 [Hz]
Incompleto 76,45[Hz] 78,34 [Hz] 76,45 [Hz]

Tabla 2: Comparación entre las frecuencias naturales de las dos configuraciones mencionadas
según tres métodos distintos: modelo de parámetros concentrados, numérico y modelo de con-
tinuo.

20 30 40 50 60 70 80 90 100 110 120

Frecuencia [Hz]

10-4

10-3

10-2

10-1

|F
le

xi
bi

lid
ad

|

Completo
Incompleto

(a) Flexibilidad del DRA con configuración
completa e incompleta.
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Figura 2: Flexibilidad y potencia disipada por el DRA.
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Figura 3: Respuestas temporales del DRA.

5. CONCLUSIONES

Se desarrolló un modelado analítico de un sistema compuesto por una placa piezoeléctrica
equivalente, una lámina viscoelástica y una placa restrictora. Las ecuaciones de movimiento pa-
ra los desplazamientos vertical, en el plano y el voltaje fueron obtenidas a partir del principio de
Hamilton. De la resolución de la ecuación secular se obtuvieron las frecuencias naturales del sis-
tema. A partir de la aplicación de un método basado en la transformada de Fourier se obtuvieron
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las respuestas temporales y en frecuencia. Los resultados arrojan una muy buena comparación
con estudios basados en elementos finitos y aproximaciones de parámetros concentrados. En
cuanto a la disipación agregada por la inclusión del material viscoelástico, esta demuestra ser
contundente a la hora de compararla con un piezoeléctrico sin material viscoelástico, afectando
la generación de energía de la placa piezoeléctrica.
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