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Resumen. La determinación precisa de los coeficientes de difusión, ya sean aparentes o relativos, exige
la convergencia de mediciones experimentales, modelos teóricos sólidos y simulaciones numéricas avan-
zadas. La estrecha analogía formal entre la ecuación de Schrödinger en estado estacionario y la ecuación
de Fick permite aprovechar el rico andamiaje matemático de la Mecánica Cuántica para describir pro-
cesos de transporte clásico. En este estudio teórico, partimos de esa semejanza para derivar expresiones
analíticas del coeficiente de difusión (D) y la barrera de energía potencial U0 que debe superarse para
que una partícula penetre en el medio difusor. Mediante el tratamiento cuántico de la función de onda
estacionaria- análogo al perfil de concentración en difusión- se obtiene una relación directa entre las
soluciones de Schrödinger y las soluciones de la ecuación de difusión unidimensional de Fick, estable-
ciendo así un puente riguroso entre ambos formalismos. Como complemento conceptual, el modelo de
random walk en una red bidimensional ilustra el desplazamiento aleatorio de partículas, reforzando la
pertinencia del formalismo exhibido.
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Abstract. Precise determination of diffusion coefficients - apparent or relative - requires the convergen-

ce of experimental measurements, robust theoretical models, and advanced numerical simulations. The

close formal analogy between the time-independent Schrödinger equation and Fick’s diffusion equation

enables the use of the rich mathematical framework of Quantum Mechanics to describe classical transport

processes. In this theoretical study, we build upon this analogy to derive analytical expressions for the

diffusion coefficient (D) and the potential energy barrier U0 that must be overcome for a particle to pe-

netrate the diffusive medium. Through a quantum treatment of the stationary wave function—analogous

to the concentration profile in diffusion—a direct relationship is established between the solutions of

the Schrödinger equation and those of the one-dimensional Fick diffusion equation, thereby constructing

a rigorous bridge between both formalisms. As a conceptual complement, a random walk model on a

two-dimensional lattice is employed to illustrate the stochastic displacement of particles, reinforcing the

relevance and applicability of the proposed formalism.
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1. INTRODUCCIÓN

Este trabajo propone, por primera vez, redefinir el coeficiente de difusión (D) como un aná-
logo directo de la tasa de transmisión cuántica a través de barreras de potencial efectivas U0

(Mita, 2021). Bajo este prisma, D deja de ser un parámetro de ajuste y se convierte en un resul-
tado teórico emergente del potencial, susceptible de ser calculado con las mismas técnicas de
discretización (FDM, FEM) y aceleración por GPU que se utiliza en la física cuántica. Así, se
establece un puente interdisciplinario que, además de enriquecer la comprensión de la difusión,
habilita el traspase de algoritmos y librerías de alto rendimiento al dominio de la Mecánica
Computacional.
El objetivo principal de este manuscrito es presentar el marco analítico de la analogía Schrödinger-
Fick, delinear su implementación mediante un esquema Monte Carlo cuántico-estocástico (Fa-
ber, 2024) para el movimiento browniano y esbozar casos de estudio en 1D, extensibles a 2D y
en rangos de mayor complejidad a 3D. De este modo, se sientan las bases para futuros trabajos
de validación y optimización de este enfoque innovador, que promete acelerar y unificar el mo-
delado de difusión en materiales complejos.
Generalmente se conoce como difusión al transporte neto de partículas impulsado por gradien-
tes de concentración o potencial químico, sustentado en el movimiento térmico de partículas y
condicionado por la viscosidad del medio y tamaño de las especies. Aunque el flujo macroscópi-
co cesa cuando los gradientes desaparecen, persiste la auto-difusión microscópica en equilibrio.
La velocidad de este movimiento es una función de la temperatura, la viscosidad del fluido y
del tamaño (masa) de las partículas. Cuando las concentraciones de partículas son iguales, las
moléculas continúan moviéndose, pero como no existe un gradiente de concentración, es decir,
el valor del gradiente de presión es cero, y el proceso de difusión molecular cesa. En cambio, el
movimiento se rige por el proceso de equilibrio de auto difusión, debido al movimiento aleato-
rio de las molécula. El resultado de la difusión es una mezcla gradual de materia, de forma tal
que la distribución de las moléculas es uniforme.
Dado que las moléculas aún están en movimiento, pero bajo una situación de equilibrio, el re-
sultado final de la difusión molecular se denomina equilibrio dinámico. En una fase donde el
gradiente de temperatura es nula o el potencial químico no varía, equilibrio termodinámico, el
proceso de difusión eventualmente resultará en una mezcla uniforme completa.
Si se consideran dos sistemas; S1 y S2 a la misma temperatura y capaces de intercambiar par-
tículas, el gradiente de potencial químico (µ) impulsa el flujo de partículas desde la región de
mayor µ a la de menor µ, por ejemplo µ1 > µ2. Este proceso a T constante minimiza la ener-
gía libre de Gibbs (G) y simultáneamente maximiza la entropía (∆S > 0), conduciendo así al
equilibrio termodinámico donde µ1 = µ2 y ∆G = 0 y ya no hay flujo neto de materia.

Figura 1: Esquema de un proceso de difusión.
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La difusión molecular suele formalizarse mediante las leyes de Fick (Fick, 1855). Estas leyes
sobre los procesos de difusión son de naturaleza cuantitativas, representadas formalmente por
una ecuación diferencial (ecuación 2), que describe matemáticamente al proceso de difusión de
materia o energía térmica en un medio en el que inicialmente no existe equilibrio químico o
térmico.

Primera ley de Fick: Relacionan el flujo difusivo perpendicular a una área determinada,
con la concentración, bajo la asunción de un estado estacionario. Postulando que el flujo
va desde una región de alta concentración a las regiones de menor concentración, con
una magnitud que es proporcional al gradiente de concentraciones, o en otros términos,
establece el concepto de que el soluto se moverá desde una región de alta concentración
a una de más baja concentración en la dirección del gradiente de concentraciones:

J = −D ∇⃗C (1)

donde J es el flujo de difusión de partículas perpendicular a cierta área de interés de
estudio, D representa el coeficiente de difusión del material en que se difunde el fluido
de estudio, ∇⃗C es el gradiente de concentración (C) de la sustancia que se difunde.

Segunda ley de Fick: Considerando las condiciones de conservación de la masa en
cualquier reacción química:

∂C

∂t
= D∇2C (2)

Una cuestión interesante a tener en cuenta es que la ecuación diferencial de Schrödinger de la
mecánica cuántica para una partícula que se mueve libremente puede escribirse como:

∂Ψ

∂t
=

iℏ

2m
∇2Ψ (3)

como se puede apreciar, existe una completa analogía en la expresión matemática entre la con-
centración de partículas en un punto determinado a un tiempo dado (Okino, 2013), con la ecua-
ción de Schrödinger, que ofrece como solución la ecuación de onda, cuyo valor al cuadrado,
dará el valor probable de que las partículas se encuentren en un punto dado en un instante de
tiempo determinado.

2. HIPÓTESIS

Dada la similitud y analogía existente entre las ecuaciones de Fick y Schrödinger expuestas,
permite utilizar los conceptos y aparatos matemáticos de la mecánica cuántica para describir los
procesos de difusión de las partículas.

2.1. Modelo unidimensional de la barrera de energía potencial

En una buena primera aproximación, se puede modelizar el fenómeno de difusión como el
caso de cada partícula que compone el material que se difunde, debe penetrar una barrera de
energía potencial promedio U0 para poder ingresar al material (Sigalotti et al., 2024) correspon-
diente como se muestra en la Figura 2.

Desde un punto de vista de la mecánica cuántica, cada partícula tiene una cierta probabilidad
de encontrarse en un instante dado en la región 1, anterior a ingresar, o en la región 2, dentro del
elemento difusor una vez que atravesó la barrera. Esta probabilidad está dada por el cuadrado de
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Figura 2: Gráfico de la barrera de energía potencial en función de la posición. En el origen de coordenadas (x = 0)
existe una barrera de potencial U(x) = U0.

la función de onda Ψ correspondiente, solución de la ecuación de Schrödinger unidimensional
que en este caso se toma como la dirección del eje coordenado x (Levich, 1979):

EΨ = − ℏ
2

2m

d2Ψ

dx2
+ U(x)Ψ (4)

donde E es la energía total de la partícula, m la masa de cada partícula que intenta penetrar la
barrera de potencial. Además ℏ es la constante de Planck dividida por 2π, y U(x) es la energía
potencial existente en una posición determinada x.
La región 1 corresponde a la zona en la que las partículas todavía no ingresan, y por lo tanto no
han atravesado aún la barrera de energía potencial U0, en este caso la energía potencial es nula,
es decir U(x) = 0.
La ecuación (4) en la región 1, con x < 0, entonces:

EΨ = − ℏ
2

2m

d2Ψ

dx2
(5)

cuya solución es:
Ψ1(x) = A1e

ikx +B1e
−ikx (6)

donde:

k =

√

2mE

ℏ2

A1 es la fracción de partículas de la región 1 que se mueven en dirección positiva del eje coor-
denado x hacia la barrera de potencial, B1 la fracción de partículas de la región 1 que luego de
reflejarse en la barrera de potencial, invierten su dirección de movimiento en sentido negativo
del eje x.
La región 2 (x > 0), es donde se encuentran las partículas que han atravesado la barrera de ener-
gía potencial, esta tiene el valor constante U(x) = U0. En esta región, la ecuación diferencial
(4) toma la forma:

EΨ = − ℏ
2

2m

d2Ψ

dx2
+ U0Ψ (7)
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cuya solución es:
Ψ2(x) = A2e

ikx +B2e
−ikx (8)

donde:

k′ =

√

2m(E − U0)

ℏ2

A2 es la fracción de partículas de la región 1 que logran traspasar la barrera de potencial U0 y
se mueven en dirección positiva del eje coordenado x, y B2 es la fracción de partículas de la
región 2 que invierten su dirección de movimiento en sentido negativo del eje x.
Las condiciones de continuidad de la mecánica cuántica establece que en la región de la barrera
debe existir continuidad de la función de onda Ψ(x), como así también de su derivada primera
respecto de la posición. Es decir, que en x = 0 se debe cumplir que (Beisser, 1965):

Ψ1(0) = Ψ2(0) (9)

dΨ1

dx

∣

∣

∣

∣

x=0

=
dΨ2

dx

∣

∣

∣

∣

x=0

(10)

aplicando estas condiciones a las ecuaciones (6) y (8) cuando E > 0, se obtiene el siguiente
sistema de ecuaciones:

A1 +B1 = A2

k(A1 − B1) = k′A2
(11)

El coeficiente de transmisión D (Crank, 1957), que calcula la probabilidad de las partículas de
atravesar la barrera de energía potencial respecto de toda la población que inciden sobre ella,
está dado por:

D =
4 k k′

(k + k′)2
(12)

El coeficiente de transmisión de la ecuación (9), debe interpretarse físicamente en los procesos
de difusión como el coeficiente de difusión D que establece el número proporcional del total
de partículas del elemento difusivo, que logran atravesar la superficie exterior del material, para
penetrar y luego difundirse.
Reemplazando las expresiones de k y k′ en la ecuación (12) y operando, se obtiene:

D =
4
√

E(E − U0)

(2E − U0) +
√

E(E − U0)
(13)

En el estudio de los procesos difusivos, en la región 1, donde las partículas se desplazan
libremente, E representa la energía cinética con que se mueven cada partícula a lo largo del eje
coordenado x adoptado, que según la termodinámica es igual a 1

2
kBT por grado de libertad de

su movimiento. Donde kB es la constante de Boltzmann y T la temperatura en grados Kelvin a
la que se encuentran las partículas en su movimiento. De la misma forma, reemplazando estas
dos relaciones en la ecuación (13), el coeficiente de difusión se expresa como:

D =
4
√

kBT (kBT − 2U0)

2(kBT − U0) +
√

kBT (kBT − 2U0)
(14)

La ecuación (14) muestra que el coeficiente de difusión depende de la temperatura T a la que
se producen los procesos y al valor de la barrera de energía potencial U0 que deben vencer las
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partículas para poder penetrar.
Encontrada esta importante relación, queda por establecer cómo determinar el valor de la ba-
rrera de energía potencial U0 para poder calcular el coeficiente de difusión para las diferentes
temperaturas T a las que se desea realizar los procesos difusivos.

2.2. Cálculo empírico del valor de la energía potencial U0 de la barrera

Un método experimental para poder obtener el valor de la barrera de energía potencial U0 es
el siguiente:
Del sistema de ecuaciones (11.a,b) se obtiene la relación:

k′ = k

(

2
A1

A2

− 1

)

(15)

el valor de la relación A1

A2

se puede calcular experimentalmente realizando a un tiempo de-
terminado, las mediciones de la concentración de partículas en la sustancia en el interior de la
región 2, y dividido por el valor de la medición correspondiente de la concentración de afuera
en la región 1.
Una vez calculado este valor, se puede operar sobre la ecuación (15) para obtener el valor de la
energía potencial U0 de la barrera

k′ =
√
2mE

(

2
A1

A2

− 1

)

(16)

E − U0 = E

(

2
A1

A2

− 1

)2

(17)

U0 = E

[

1−
(

2
A1

A2

− 1

)2
]

=
1

2
kBT

[

(

2
A1

A2

− 1

)2

− 4
A1

A2

]

(18)

Finalmente se tiene que:

U0 = 2kBT
A1

A2

[

A1

A2

− 1

]

(19)

De acuerdo a la ecuación (19), se puede obtener el valor de la barrera de energía potencial
U0 en forma empírica, midiendo en un tiempo dado, la concentración A1 de la sustancia que se
difunde en la región 1, fuera del material difusor, y la concentración A2 en el interior, y también
como la ecuación lo indica, con la medida a la temperatura T a la que ocurre el proceso de
difusión.
Utilizando el resultado de la ecuación (19) en la (14), es posible obtener el valor aproximado
del coeficiente de difusión D, utilizando los conceptos y ecuaciones de la mecánica cuántica.
Finalmente, conocido los valores de la energía potencial umbral U0 y del coeficiente de difusión
D a través de la utilización de las ecuaciones (19) y (14) respectivamente, se pueden modelar
los procesos de difusión desde un abordaje mecánico-cuántico del estudio del movimiento de
las partículas que intervienen en este fenómeno.

2.3. Dispersión de la difusión

Se conoce como proceso de dispersión a la desviación de la trayectoria de partículas respecto
a su dirección inicial debido a la interacción o colisión con un sistema conocido como dispersor.
Algunos conceptos fundamentales involucrados en el fenómeno de dispersión se desarrolla a
continuación.
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2.4. Sección eficaz (σ)

La sección eficaz (σ) es definida como la razón diferencial de partículas dispersadas dNdisp

por unidad de tiempo en un ángulo sólido dΩ, respecto del flujo de densidad de partículas
incidentes Jinc, que formalizado matemáticamente se expresa por la ecuación:

σ(θ, φ) =
dNdisp(θ, φ)

Jinc
(20)

donde θ, φ son los ángulos polares que indican la dirección de dispersión de las partículas.
Generalmente, es más conveniente para el cálculo de la ecuación (21) expresar sus términos de
la siguiente manera (Levich, 1979):

dNdisp(θ, φ) = Jdis(θ, φ) · dS (21)

siendo Jdis(θ, φ) la densidad de flujo de partículas dispersas lejos del sistema dispersor y dS
es un elemento diferencial de área perpendicular a la dirección del flujo de partículas incidentes
y se puede expresar como:

dS = r2dΩ (22)

donde r es la posición de las partículas respecto de la ubicación del centro dispersor. Reempla-
zando estas expresiones en la ecuación (21) se obtiene la relación para la sección eficaz:

σ(θ, φ) =
Jdisp

Jinc
dS (23)

2.5. Amplitud de dispersión

El modelo de dispersión debido al proceso de difusión se realizará bajo la hipótesis del caso
inelástico (Taylor, 1991), ya que las partículas incidentes disipan energía cinética debido al he-
cho de tener que vencer la barrera de potencial cuando ingresan al material difusor.
El sistema dispersor se considera en reposo en el mencionado marco de referencia. En la inter-
acción de colisiones entre cada partícula componente del sistema difusor y las incidentes que
se dispersarán, existe una fuerza proveniente de las partículas dispersoras que obligan a las par-
tículas incidentes a disminuir su energía cinética debido a que deben gastar energía, como la
energía potencial U(z), para poder ingresar al material difusivo.
Definiendo como eje z del sistema de ejes coordenados del marco de referencia, al coincidente
con la dirección inicial del flujo de las partículas incidentes, la función de onda de las partículas
incidentes consideradas como libres, sin ser todavía afectadas por el potencial U(z) son ondas
planas:

ψ(z) = eikz (24)

con k =
√
2mE
ℏ

, donde E es la energía total de las partículas, m la masa de las partículas y ℏ la
constante de Planck dividida por 2π.
Una vez que las partículas se encuentran dentro del campo de fuerza generados por el sistema
dispersor, su función de onda cambiará debido a que en el proceso de dispersión las partículas
tienen la probabilidad de salir en cualquier dirección, propagándose como una onda esférica.
Posteriormente, ya lejos de las partículas dispersoras, continuarán su propagación como ondas
planas. Toda esta situación se puede describir y sintetizar por la ecuación:

ψ(z) = eikz +
f(θ, φ)eikr

r2
(25)
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al factor f(θ, φ) se lo conoce como amplitud de dispersión y su significado físico es el valor
de la probabilidad que cada partícula incidente cambie su trayectoria inicial con ángulos θ y φ.
La distancia entre el centro de coordenadas y la posición probable de las partículas dispersadas
está representada por r.

El número de onda cambia a un valor k′ =
√

2m(E−U)

ℏ
que es el número de onda de las partículas

que lograron penetrar la barrera de energía potencial, ya que la energía inicial que tenían las
partículas incidentes, se le debe restar la energía potencial U(z) y debieron disipar esa cantidad
de energía para poder atravesar el campo de fuerza generado por los centros dispersores. Motivo
por el cual seguirán difundiéndose con una cantidad de energía total E − U .
El término eik

′z representa la función de onda de todas aquellas partículas incidentes que no
sufren dispersión por el sistema dispersor y continúan la dirección de su trayectoria inicial.

3. PROPUESTA PARA UN MODELO BIDIMENSIONAL

Si se estudia un modelo bidimensional en el cual la dispersión en un plano paralelo a la
trayectoria de las partículas incidentes y perpendicular a la superficie del sistema dispersor
como muestra la Figura 3; la ecuación (25) se transforma en:

ψ(z) = eik
′z +

f(θ)eik
′r

r
(26)

donde θ es el ángulo de dispersión respecto al eje z en el plano paralelo a la trayectoria de las
partículas y que contiene al recorrido inicial antes de la dispersión.

Figura 3: Dispersión de partículas por un sistema de dispersión.

Al término f(θ) se lo llama amplitud de onda de dispersión, que como muestra la Figura 3,
depende del ángulo θ.
La relación entre la densidad de flujo de las partículas dispersadas e incidentes entrán dadas
por:

Jdisp

Jinc
=

|f(θ)|2v
r2

(27)

donde v representa la velocidad de cada partícula. Según la teoría cinética química, la energía
cinética de las partículas en dos dimensiones se puede expresar como: 1

2
mv2 = kBT , en esta
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expresión, m representa la masa de las partículas dispersadas y T la temperatura en Kelvin.
Despejando la velocidad de esta última expresión y reemplazándola en la ecuación (27) se
obtiene:

Jdisp(θ)

Jinc
=

|f(θ)|2
r2

√

2kBT

m
(28)

La ecuación (28) indica que la probabilidad de que el flujo de partículas que se dispersan de-
penderá inversamente de la masa m de las partículas, de la temperatura del medio ambiente T ,
la distancia r de la partícula al sistema dispersor y de la amplitud de onda de dispersión. En
otras palabras, se obtiene:

|f(θ)|2 = Jdisp(θ) r
2

Jinc

√

m

2kBT
(29)

en orden a poder desarrollar un modelo de los procesos de difusión bajo esta óptica, es necesa-
rio encontrar la ecuación asociada de la amplitud de difusión f(θ). Para ello se pueden realizar
experiencias de laboratorio donde se miden los parámetros T , m y conociendo el valor de la
difusión a distintas distancias r del origen del sistema dispersivo, se puede calcular la amplitud
de difusión a partir de la ecuación (29). La teoría de dispersión de ondas parciales, también co-
nocida como teoría de los corrimientos de fase, es más exacta que la desarrollada anteriormente.
Las funciones de onda de las partículas incidentes lejos de los centros dispersores se consideran
como ondas planas de la forma ψ(z) = eikz.

4. CONCLUSIONES

En una analogía completa a los conceptos de la mecánica cuántica, se ha desarrollado un
abordaje teórico del estudio de los procesos de difusión, abriendo una puerta nueva para tra-
zar los estudios de investigación de estos procesos. El desarrollo de un modelo simple, es el
principio de un nuevo camino por recorrer que permitirá profundizar sus conceptos, como así
también, generar nuevas ideas sobre estos fenómenos.
El enfoque cuántico-clásico desarrollado en este trabajo trasciende la mera analogía formal al
convertirla en una herramienta analítica poderosa. Al demostrar que la ecuación de Schrödinger
estacionaria y la de difusión de Fick comparten un andamiaje matemático y conceptual común,
hemos abierto un nuevo marco para describir procesos de transporte en medios heterogéneos.
Esta unificación no solo refuerza la coherencia teórica entre dos ramas en apariencia distantes -
la mecánica cuántica y la ingeniería de procesos - sino que además aporta una ruta directa para
calcular parámetros críticos como el coeficiente de difusión D y la barrera energética U0.
A través del tratamiento de la función de onda estacionaria como análogo del perfil de con-
centración, se ha obtenido una relación cerrada que permite estimar la facilidad con la que una
partícula atraviesa un medio difusor. Desde un punto de vista aplicado, este trabajo sienta las
bases para explorar una variedad de problemas: la degradación de materiales, la optimización
de procesos de separación en catálisis, y el diseño de nanomateriales con propiedades de trans-
porte a medida. Al contar con un esquema teórico robusto, los investigadores pueden ahora
plantear hipótesis sobre como alterar barreras energéticas o estructurar la superficie difusora
para controlar selectivamente la movilidad de especies químicas. Finalmente, este estudio inau-
gura un itinerario de investigación que va mucho más allá de un modelo simple. De este modo,
no solo profundizaremos en la comprensión de la difusión en estado sólido, sino que también
motivaremos el surgimiento de nuevas estrategias investigativas e innovaciones tecnológicas en
múltiples disciplinas.
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