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Resumen. La determinacién precisa de los coeficientes de difusion, ya sean aparentes o relativos, exige
la convergencia de mediciones experimentales, modelos tedricos sélidos y simulaciones numéricas avan-
zadas. La estrecha analogia formal entre la ecuacién de Schrodinger en estado estacionario y la ecuacion
de Fick permite aprovechar el rico andamiaje matematico de la Mecdanica Cudntica para describir pro-
cesos de transporte cldsico. En este estudio tedrico, partimos de esa semejanza para derivar expresiones
analiticas del coeficiente de difusion (D) y la barrera de energia potencial Uy que debe superarse para
que una particula penetre en el medio difusor. Mediante el tratamiento cudntico de la funcién de onda
estacionaria- andlogo al perfil de concentracién en difusién- se obtiene una relacién directa entre las
soluciones de Schrodinger y las soluciones de la ecuacién de difusidén unidimensional de Fick, estable-
ciendo asf un puente riguroso entre ambos formalismos. Como complemento conceptual, el modelo de
random walk en una red bidimensional ilustra el desplazamiento aleatorio de particulas, reforzando la
pertinencia del formalismo exhibido.

Keywords: Diffusion, Diffusion Coefficient, Quantum mechanics, Potential barrier.
Abstract. Precise determination of diffusion coefficients - apparent or relative - requires the convergen-
ce of experimental measurements, robust theoretical models, and advanced numerical simulations. The
close formal analogy between the time-independent Schrédinger equation and Fick’s diffusion equation
enables the use of the rich mathematical framework of Quantum Mechanics to describe classical transport
processes. In this theoretical study, we build upon this analogy to derive analytical expressions for the
diffusion coefficient (D) and the potential energy barrier Uy that must be overcome for a particle to pe-
netrate the diffusive medium. Through a quantum treatment of the stationary wave function—analogous
to the concentration profile in diffusion—a direct relationship is established between the solutions of
the Schrodinger equation and those of the one-dimensional Fick diffusion equation, thereby constructing
a rigorous bridge between both formalisms. As a conceptual complement, a random walk model on a
two-dimensional lattice is employed to illustrate the stochastic displacement of particles, reinforcing the
relevance and applicability of the proposed formalism.
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1. INTRODUCCION

Este trabajo propone, por primera vez, redefinir el coeficiente de difusién (D) como un ana-
logo directo de la tasa de transmision cudntica a través de barreras de potencial efectivas U
(Mita, 2021). Bajo este prisma, D deja de ser un pardmetro de ajuste y se convierte en un resul-
tado tedrico emergente del potencial, susceptible de ser calculado con las mismas técnicas de
discretizacion (FDM, FEM) y aceleracion por GPU que se utiliza en la fisica cudntica. Asi, se
establece un puente interdisciplinario que, ademds de enriquecer la comprension de la difusion,
habilita el traspase de algoritmos y librerias de alto rendimiento al dominio de la Mecdnica
Computacional.

El objetivo principal de este manuscrito es presentar el marco analitico de la analogia Schrodinger-
Fick, delinear su implementacién mediante un esquema Monte Carlo cudntico-estocdstico (Fa-
ber, 2024) para el movimiento browniano y esbozar casos de estudio en 1D, extensibles a 2D y
en rangos de mayor complejidad a 3D. De este modo, se sientan las bases para futuros trabajos
de validacién y optimizacién de este enfoque innovador, que promete acelerar y unificar el mo-
delado de difusién en materiales complejos.

Generalmente se conoce como difusién al transporte neto de particulas impulsado por gradien-
tes de concentracion o potencial quimico, sustentado en el movimiento térmico de particulas y
condicionado por la viscosidad del medio y tamafio de las especies. Aunque el flujo macroscopi-
co cesa cuando los gradientes desaparecen, persiste la auto-difusion microscépica en equilibrio.
La velocidad de este movimiento es una funcién de la temperatura, la viscosidad del fluido y
del tamafio (masa) de las particulas. Cuando las concentraciones de particulas son iguales, las
moléculas continian moviéndose, pero como no existe un gradiente de concentracion, es decir,
el valor del gradiente de presion es cero, y el proceso de difusién molecular cesa. En cambio, el
movimiento se rige por el proceso de equilibrio de auto difusion, debido al movimiento aleato-
rio de las molécula. El resultado de la difusién es una mezcla gradual de materia, de forma tal
que la distribucién de las moléculas es uniforme.

Dado que las moléculas atin estdn en movimiento, pero bajo una situacion de equilibrio, el re-
sultado final de la difusiéon molecular se denomina equilibrio dindmico. En una fase donde el
gradiente de temperatura es nula o el potencial quimico no varia, equilibrio termodindmico, el
proceso de difusion eventualmente resultard en una mezcla uniforme completa.

Si se consideran dos sistemas; S1y S2 a la misma temperatura y capaces de intercambiar par-
ticulas, el gradiente de potencial quimico (x) impulsa el flujo de particulas desde la regién de
mayor £ a la de menor p, por ejemplo p; > jio. Este proceso a I’ constante minimiza la ener-
gia libre de Gibbs (G) y simultineamente maximiza la entropia (AS > 0), conduciendo asf al
equilibrio termodindmico donde 11 = po y AG = 0y ya no hay flujo neto de materia.

[ ]
L
[ ] i
[ ] ° [ ]
S | ° S

Figura 1: Esquema de un proceso de difusion.
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La difusiéon molecular suele formalizarse mediante las leyes de Fick (Fick, 1855). Estas leyes
sobre los procesos de difusion son de naturaleza cuantitativas, representadas formalmente por
una ecuacion diferencial (ecuacion 2), que describe matemdaticamente al proceso de difusion de
materia o energia térmica en un medio en el que inicialmente no existe equilibrio quimico o
térmico.

» Primera ley de Fick: Relacionan el flujo difusivo perpendicular a una drea determinada,
con la concentracidn, bajo la asuncién de un estado estacionario. Postulando que el flujo
va desde una region de alta concentracién a las regiones de menor concentracion, con
una magnitud que es proporcional al gradiente de concentraciones, o en otros términos,
establece el concepto de que el soluto se movera desde una region de alta concentracion
a una de més baja concentracion en la direccion del gradiente de concentraciones:

J=-DVC (1)

donde J es el flujo de difusién de particulas perpendicular a cierta drea de interés de
estudio, D representa el coeficiente de difusion del material en que se difunde el fluido
de estudio, V(' es el gradiente de concentracion (C') de la sustancia que se difunde.

= Segunda ley de Fick: Considerando las condiciones de conservaciéon de la masa en
cualquier reaccién quimica:

oC
— =DV*C 2
5 (2)
Una cuestion interesante a tener en cuenta es que la ecuacion diferencial de Schrodinger de la
mecdnica cudntica para una particula que se mueve libremente puede escribirse como:
ov ik
— =_—V*¥ 3
at  2m ©)

como se puede apreciar, existe una completa analogia en la expresion matemadtica entre la con-
centracion de particulas en un punto determinado a un tiempo dado (Okino, 2013), con la ecua-
cién de Schrodinger, que ofrece como solucién la ecuacién de onda, cuyo valor al cuadrado,
dard el valor probable de que las particulas se encuentren en un punto dado en un instante de
tiempo determinado.

2. HIPOTESIS

Dada la similitud y analogia existente entre las ecuaciones de Fick y Schrodinger expuestas,
permite utilizar los conceptos y aparatos matematicos de la mecdnica cudntica para describir los
procesos de difusion de las particulas.

2.1. Modelo unidimensional de la barrera de energia potencial

En una buena primera aproximacion, se puede modelizar el fendmeno de difusién como el
caso de cada particula que compone el material que se difunde, debe penetrar una barrera de
energia potencial promedio U, para poder ingresar al material (Sigalotti et al., 2024) correspon-
diente como se muestra en la Figura 2.

Desde un punto de vista de la mecédnica cudntica, cada particula tiene una cierta probabilidad
de encontrarse en un instante dado en la regién 1, anterior a ingresar, o en la regién 2, dentro del
elemento difusor una vez que atraveso la barrera. Esta probabilidad estd dada por el cuadrado de
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Figura 2: Gréfico de la barrera de energia potencial en funcién de la posicién. En el origen de coordenadas (x = 0)
existe una barrera de potencial U (x) = U.

la funcién de onda ¥ correspondiente, solucion de la ecuacién de Schrodinger unidimensional
que en este caso se toma como la direccion del eje coordenado x (Levich, 1979):
h? d*v

EV = 57 d? + U(z)¥ 4)
donde E es la energia total de la particula, m la masa de cada particula que intenta penetrar la
barrera de potencial. Ademés 7 es la constante de Planck dividida por 27, y U(x) es la energia
potencial existente en una posicion determinada .
Laregion 1 corresponde a la zona en la que las particulas todavia no ingresan, y por lo tanto no
han atravesado atin la barrera de energia potencial Uy, en este caso la energia potencial es nula,
es decir U(x) = 0.
La ecuacion (4) en la regién 1, con x < 0, entonces:

h? d>v
EV=———" 5
2m da? ©)
cuya solucion es: ' ,
Uy (z) = Ay’ 4 Be ™" ©)
donde:
2mFE
=N

Aj es la fraccién de particulas de la region 1 que se mueven en direccion positiva del eje coor-
denado x hacia la barrera de potencial, B; la fraccion de particulas de la regiéon 1 que luego de
reflejarse en la barrera de potencial, invierten su direcciéon de movimiento en sentido negativo
del eje x.

Laregion 2 (z > 0), es donde se encuentran las particulas que han atravesado la barrera de ener-
gia potencial, esta tiene el valor constante U(z) = Up. En esta region, la ecuacién diferencial
(4) toma la forma:

BV =~ s + UV 7
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cuya solucion es:

Wy(x) = Age™ 4 Bye ™" (8)
donde:
]{J, N Qm(E — U())
=\

Aj es la fraccion de particulas de la region 1 que logran traspasar la barrera de potencial Uy y
se mueven en direccion positiva del eje coordenado x, y By es la fraccion de particulas de la
region 2 que invierten su direccién de movimiento en sentido negativo del eje z.

Las condiciones de continuidad de la mecénica cudntica establece que en la region de la barrera
debe existir continuidad de la funcién de onda W (x), como asi también de su derivada primera
respecto de la posicion. Es decir, que en z = 0 se debe cumplir que (Beisser, 1965):

Uy (0) = W2(0) )
| _ v,
% =0 a d$ =0 (10)

aplicando estas condiciones a las ecuaciones (6) y (8) cuando £ > 0, se obtiene el siguiente

sistema de ecuaciones:
Ai+B = A (11
k?(Al — Bl) = k?/AQ

El coeficiente de transmisiéon D (Crank, 1957), que calcula la probabilidad de las particulas de
atravesar la barrera de energia potencial respecto de toda la poblacién que inciden sobre ella,
estd dado por:

/
D— _ARE (12)
(k+ k)2
El coeficiente de transmision de la ecuacién (9), debe interpretarse fisicamente en los procesos
de difusion como el coeficiente de difusion D que establece el niimero proporcional del total
de particulas del elemento difusivo, que logran atravesar la superficie exterior del material, para
penetrar y luego difundirse.

Reemplazando las expresiones de k y k£’ en la ecuacion (12) y operando, se obtiene:

D 4/ E(E — Uy) (13)
(2E —Uy) + VE(E - U))

En el estudio de los procesos difusivos, en la region 1, donde las particulas se desplazan
libremente, £ representa la energia cinética con que se mueven cada particula a lo largo del eje
coordenado x adoptado, que segtin la termodindmica es igual a %k g1 por grado de libertad de
su movimiento. Donde kg es la constante de Boltzmann y 7' la temperatura en grados Kelvin a
la que se encuentran las particulas en su movimiento. De la misma forma, reemplazando estas
dos relaciones en la ecuacion (13), el coeficiente de difusion se expresa como:

A\ kT (kT — 2U
D= Vs (ks 0) (14)
2(kpT — Up) + \/kgT (kgT — 2Up)
La ecuacidn (14) muestra que el coeficiente de difusién depende de la temperatura 7" a la que
se producen los procesos y al valor de la barrera de energia potencial U, que deben vencer las
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particulas para poder penetrar.

Encontrada esta importante relacion, queda por establecer como determinar el valor de la ba-
rrera de energia potencial Uy para poder calcular el coeficiente de difusion para las diferentes
temperaturas 7" a las que se desea realizar los procesos difusivos.

2.2. Calculo empirico del valor de la energia potencial U, de la barrera

Un método experimental para poder obtener el valor de la barrera de energia potencial Uy es
el siguiente:
Del sistema de ecuaciones (11.a,b) se obtiene la relacion:

p (oA
k:_k<2A 1) (15)

2

el valor de la relacion ﬁ—; se puede calcular experimentalmente realizando a un tiempo de-
terminado, las mediciones de la concentracion de particulas en la sustancia en el interior de la
region 2, y dividido por el valor de la medicion correspondiente de la concentracion de afuera
en la region 1.
Una vez calculado este valor, se puede operar sobre la ecuacion (15) para obtener el valor de la

energia potencial U de la barrera

K =v2mE (Qé — 1) (16)

Ay
2
E—UO:E(Qé—l) (17)
Ay
A 11 A A
Uy=F |1—(2— -1 =—kgT ||2——-1] —4— 18
: (2 -1) | =gt | (23 1) —4F 1s)
Finalmente se tiene que:
B A [ A
Uy = QkBTA—2 {A—Z — 1} (19)

De acuerdo a la ecuacion (19), se puede obtener el valor de la barrera de energia potencial
Uy en forma empirica, midiendo en un tiempo dado, la concentracién A; de la sustancia que se
difunde en la regién 1, fuera del material difusor, y la concentracién A, en el interior, y también
como la ecuacién lo indica, con la medida a la temperatura 7" a la que ocurre el proceso de
difusion.

Utilizando el resultado de la ecuacién (19) en la (14), es posible obtener el valor aproximado
del coeficiente de difusién D, utilizando los conceptos y ecuaciones de la mecédnica cudntica.
Finalmente, conocido los valores de la energia potencial umbral U, y del coeficiente de difusion
D a través de la utilizacién de las ecuaciones (19) y (14) respectivamente, se pueden modelar
los procesos de difusion desde un abordaje mecanico-cuantico del estudio del movimiento de
las particulas que intervienen en este fenémeno.

2.3. Dispersion de la difusion

Se conoce como proceso de dispersion a la desviacion de la trayectoria de particulas respecto
a su direccidn inicial debido a la interaccion o colisién con un sistema conocido como dispersor.
Algunos conceptos fundamentales involucrados en el fenémeno de dispersion se desarrolla a
continuacion.
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2.4. Seccion eficaz (o)

La seccion eficaz (o) es definida como la razén diferencial de particulas dispersadas d/Ng;s,
por unidad de tiempo en un dngulo sélido df?, respecto del flujo de densidad de particulas
incidentes J;,., que formalizado matemdaticamente se expresa por la ecuacion:

_ deisp(ea 90)

(0, ) 7

(20)
donde #, ¢ son los dngulos polares que indican la direccion de dispersién de las particulas.
Generalmente, es mas conveniente para el cdlculo de la ecuacién (21) expresar sus términos de
la siguiente manera (Levich, 1979):

deisp(07 QO) = Jdis(ea 90) : dS (21)

siendo Jy;5(6, ) la densidad de flujo de particulas dispersas lejos del sistema dispersor y d.S
es un elemento diferencial de drea perpendicular a la direccion del flujo de particulas incidentes

y se puede expresar cOmo:
dsS = r%d§) (22)

donde r es la posicion de las particulas respecto de la ubicacion del centro dispersor. Reempla-
zando estas expresiones en la ecuacion (21) se obtiene la relacién para la seccion eficaz:

(0, ) = % ds (23)

2.5. Amplitud de dispersion

El modelo de dispersion debido al proceso de difusion se realizard bajo la hipétesis del caso
ineldstico (Taylor, 1991), ya que las particulas incidentes disipan energia cinética debido al he-
cho de tener que vencer la barrera de potencial cuando ingresan al material difusor.

El sistema dispersor se considera en reposo en el mencionado marco de referencia. En la inter-
accion de colisiones entre cada particula componente del sistema difusor y las incidentes que
se dispersaran, existe una fuerza proveniente de las particulas dispersoras que obligan a las par-
ticulas incidentes a disminuir su energia cinética debido a que deben gastar energia, como la
energia potencial U (z), para poder ingresar al material difusivo.

Definiendo como eje z del sistema de ejes coordenados del marco de referencia, al coincidente
con la direccién inicial del flujo de las particulas incidentes, la funcién de onda de las particulas
incidentes consideradas como libres, sin ser todavia afectadas por el potencial U(z) son ondas
planas:

U(z) = e (24)
VomE

con k = ==, donde E es la energia total de las particulas, m la masa de las particulas y 7 la
constante de Planck dividida por 27.

Una vez que las particulas se encuentran dentro del campo de fuerza generados por el sistema
dispersor, su funcién de onda cambiard debido a que en el proceso de dispersion las particulas
tienen la probabilidad de salir en cualquier direccion, propagdndose como una onda esférica.
Posteriormente, ya lejos de las particulas dispersoras, continuardn su propagacién como ondas
planas. Toda esta situacion se puede describir y sintetizar por la ecuacion:

f(0,p)e*r

r2

Y(z) = e** + (25)
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al factor f(6, ) se lo conoce como amplitud de dispersién y su significado fisico es el valor
de la probabilidad que cada particula incidente cambie su trayectoria inicial con dngulos 6y .
La distancia entre el centro de coordenadas y la posicién probable de las particulas dispersadas

estd representada por 7.

L . 2m(E-U L, ,
El nimero de onda cambia a un valor k£’ = +) que es el nimero de onda de las particulas

que lograron penetrar la barrera de energia potencial, ya que la energia inicial que tenian las
particulas incidentes, se le debe restar la energia potencial U(z) y debieron disipar esa cantidad
de energia para poder atravesar el campo de fuerza generado por los centros dispersores. Motivo
por el cual seguirdn difundiéndose con una cantidad de energia total &/ — U.

El término e**'* representa la funcién de onda de todas aquellas particulas incidentes que no
sufren dispersion por el sistema dispersor y contindan la direccidn de su trayectoria inicial.

3. PROPUESTA PARA UN MODELO BIDIMENSIONAL

Si se estudia un modelo bidimensional en el cual la dispersion en un plano paralelo a la
trayectoria de las particulas incidentes y perpendicular a la superficie del sistema dispersor
como muestra la Figura 3; la ecuacion (25) se transforma en:

ik'r
p(z) = o+ {0 (26)

donde @ es el dngulo de dispersion respecto al eje z en el plano paralelo a la trayectoria de las
particulas y que contiene al recorrido inicial antes de la dispersion.

e >

7]
o O ——— ——————— .
e »

Figura 3: Dispersién de particulas por un sistema de dispersion.

Al término f(0) se lo llama amplitud de onda de dispersion, que como muestra la Figura 3,
depende del dangulo 6.
La relacion entre la densidad de flujo de las particulas dispersadas e incidentes entran dadas

por:
Jiis 0)|%v

donde v representa la velocidad de cada particula. Segtin la teoria cinética quimica, la energia

1

cinética de las particulas en dos dimensiones se puede expresar como: imv2 = kgT, en esta
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expresion, m representa la masa de las particulas dispersadas y 7' la temperatura en Kelvin.
Despejando la velocidad de esta dltima expresion y reemplazdndola en la ecuacién (27) se

obtiene:
. 2
Jaisp(0) _ [fO)F° [2kpT (28)
Jinc T2 m

La ecuacion (28) indica que la probabilidad de que el flujo de particulas que se dispersan de-
penderd inversamente de la masa m de las particulas, de la temperatura del medio ambiente 7',
la distancia r de la particula al sistema dispersor y de la amplitud de onda de dispersién. En

otras palabras, se obtiene:
Jaisp(0) 72 m
g)|2 — Zdisp )
Fo)p = e [ 29)

en orden a poder desarrollar un modelo de los procesos de difusion bajo esta dptica, es necesa-
rio encontrar la ecuacién asociada de la amplitud de difusién f(#). Para ello se pueden realizar
experiencias de laboratorio donde se miden los pardmetros 7', m y conociendo el valor de la
difusioén a distintas distancias r del origen del sistema dispersivo, se puede calcular la amplitud
de difusidn a partir de la ecuacién (29). La teoria de dispersion de ondas parciales, también co-
nocida como teoria de los corrimientos de fase, es mas exacta que la desarrollada anteriormente.
Las funciones de onda de las particulas incidentes lejos de los centros dispersores se consideran
como ondas planas de la forma v(z) = e**,

4. CONCLUSIONES

En una analogia completa a los conceptos de la mecanica cudntica, se ha desarrollado un
abordaje tedrico del estudio de los procesos de difusion, abriendo una puerta nueva para tra-
zar los estudios de investigacion de estos procesos. El desarrollo de un modelo simple, es el
principio de un nuevo camino por recorrer que permitird profundizar sus conceptos, como asi
también, generar nuevas ideas sobre estos fendmenos.

El enfoque cudntico-cldsico desarrollado en este trabajo trasciende la mera analogia formal al
convertirla en una herramienta analitica poderosa. Al demostrar que la ecuacién de Schrédinger
estacionaria y la de difusion de Fick comparten un andamiaje matematico y conceptual comun,
hemos abierto un nuevo marco para describir procesos de transporte en medios heterogéneos.
Esta unificacion no solo refuerza la coherencia tedrica entre dos ramas en apariencia distantes -
la mecdnica cudntica y la ingenieria de procesos - sino que ademads aporta una ruta directa para
calcular parametros criticos como el coeficiente de difusiéon D y la barrera energética U,.

A través del tratamiento de la funcién de onda estacionaria como andlogo del perfil de con-
centracion, se ha obtenido una relacion cerrada que permite estimar la facilidad con la que una
particula atraviesa un medio difusor. Desde un punto de vista aplicado, este trabajo sienta las
bases para explorar una variedad de problemas: la degradacién de materiales, la optimizacion
de procesos de separacion en catdlisis, y el disefio de nanomateriales con propiedades de trans-
porte a medida. Al contar con un esquema tedrico robusto, los investigadores pueden ahora
plantear hipdtesis sobre como alterar barreras energéticas o estructurar la superficie difusora
para controlar selectivamente la movilidad de especies quimicas. Finalmente, este estudio inau-
gura un itinerario de investigacion que va mucho mds alld de un modelo simple. De este modo,
no solo profundizaremos en la comprension de la difusién en estado sélido, sino que también
motivaremos el surgimiento de nuevas estrategias investigativas e innovaciones tecnolégicas en
multiples disciplinas.
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