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Resumen. Se presenta un desarrollo segin el Método de Volimenes Finitos para resolver problemas
magnetostaticos en mallas no ortogonales. El esquema conserva de forma el flujo magnético en interfa-
ces, alcanza segundo orden de precision en mallas distorsionadas y asegura convergencia estable en me-
dios de alta permeabilidad. Las comparaciones con elementos finitos muestran similar exactitud con me-
nor costo computacional. Estudios de convergencia y pruebas con soluciones manufacturadas confirman
la robustez del enfoque, que se plantea como una alternativa a los métodos clasicos en aplicaciones indus-
triales.

Keywords: OpenFOAM, Finite Volume Method, Magnetostatics, Numerical Methods.

Abstract. We present a Finite Volume Method for solving magnetostatic problems on non-orthogonal
meshes. The scheme conserves magnetic flux across interfaces, achieves second-order accuracy on distor-
ted grids, and ensures stable convergence in high-permeability regions. Comparisons with Finite Element
solutions show similar accuracy at lower computational cost. Mesh convergence studies and manufac-
tured solution tests confirm the robustness of the approach, positioning it as a scalable alternative to
classical methods in industrial applications.
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1. INTRODUCCION

La prediccion de campos magnéticos en medios permeables y magnetizados es esencial en
tecnologias como motores eléctricos (Gangl et al., 2015), sistemas de resonancia magnética
(Giovannetti et al., 2007) o aceleradores de particulas (Jorge et al., 2007). El método de Ele-
mentos Finitos (FEM) ha sido la herramienta dominante en este campo (Ciarlet y Raviart, 1972;
Sevilla et al., 2011), aunque presenta limitaciones: la continuidad de flujo se impone de forma
débil, aparecen pérdidas en interfaces y los costos crecen rapidamente en dominios grandes y
multi-regién (Sabbagh-Yazdi et al., 2012; Haber y Ruthotto, 2014).

El Método de Volumenes Finitos (FVM), en contraste, se apoya en leyes locales de conserva-
cién y se adapta de manera natural a problemas con discontinuidades (Moukalled et al., 2016).
Su eficacia ya se ha mostrado en fluidos y magnetohidrodindmica (Shekaramiz et al., 2021;
Toghraie, 2020), pero su aplicacidén en magnetostdtica sigue siendo incipiente. Avances recien-
tes han explorado esquemas multi-region y conservacion de flujo (Saravia et al., 2017; Saravia,
2019, 2020, 2021), aunque con restricciones a mallas ortogonales (Riedinger y Saravia, 2023).

En este trabajo se propone un esquema de FVM centrado en celdas que combina: (i) correc-
ciones para mallas no ortogonales, (ii) acoplamiento conservativo en interfaces y (iii) estabiliza-
cién en materiales de alta permeabilidad. Con ello se plantea una alternativa robusta y escalable
al FEM para aplicaciones industriales.

2. FORMULACION MAGNETOSTATICA

Sea (2 C E un dominio abierto y conexo en un espacio euclideo tridimensional, con espacio
vectorial asociado V. En (2 distinguimos un subdominio de aire A, donde los campos cumplen
la relacidn constitutiva lineal

B.(x) = pohy(x), Vx €A,
con i = 47 x 107" h/m. Ademds, en todo {2 rige la ley de Gauss:
V-B=0. (1)

El andlisis magnetostatico en medios permeables, magnetizados y conductores de corriente
se establece a partir de las leyes de equilibrio y de las condiciones de borde e interfaz que
gobiernan la evolucién de B.

2.1. LEY DE AMPERE

Consideramos tres regiones: aire A, un dominio permeable con corriente P y un medio mag-
netizado permanente M, de modo que 2 = A U P U M. Estas regiones se conectan a través de
interfaces comunes, mientras que P y M son disjuntas.

2.1.1. MEDIOS PERMEABLES CON CORRIENTE LIBRE
En P, la ley de Ampere se expresa como
VXBPZUO(Jf—{—Ji), (2)
donde J es la densidad de corriente libre y J; = V x M, la corriente inducida asociada a la

magnetizacién M.
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Definiendo ]
h,=—B,-M,, 3)
Ho
se obtiene la forma clasica

Vxh, =1, @)

Bajo la ley constitutiva lineal, la magnetizacion puede expresarse en términos de la susceptibi-
lidad magnética normalizada x:

M, =B, y=H—1 (5)
Hr o
con (i, = fi/ fio.
2.1.2. MEDIOS PERMANENTEMENTE MAGNETIZADOS
En el dominio M, donde existe una magnetizaciéon permanente M, se cumple
V xB,, = uyV x M. (6)
2.1.3. FORMA GLOBAL
Combinando las tres regiones se obtiene una expresion unificada de la ley de Ampere:
¥ x B = /1o Jf+V><(XB)+V><M]. )
Como V - B = 0, introducimos el potencial vector magnético A tal que
B=VxA. (8)
Reescribiendo (7) en términos de A se obtiene la ecuacidon gobernante:
V2A = —pp [Jf—v-()(vg)—FVXM}, )

donde VA = VA — VAT garantiza una formulacién conservativa (Saravia, 2021).

2.2. CONDICIONES DE INTERFAZ

Ademas de las condiciones en el contorno externo 0f2, es necesario imponer condiciones de
continuidad en las interfaces 0A N JP y A N OM. En estas superficies se cumple:

[A] =0, (10)

[B] -e. =0, (11)

asegurando continuidad del potencial vector y de la componente normal del campo magnético.

En cambio, la componente tangencial de B puede presentar un salto debido a corrientes
superficiales:

[B] = oK x ey, (12)
con
K=-K;+ [xB+M] xe,. (13)
Esto conduce a la condicion
0A
o | = XK. (14)
n

que establece la relacion entre discontinuidades de A y corrientes en la interfaz.
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3. EXPERIMENTOS NUMERICOS

En esta seccién se presenta una evaluacion del método propuesto. Primero, se analiza su
capacidad para reproducir distribuciones discontinuas de campo magnético en configuraciones
con materiales permeables y magnetizados permanentes, comparando los resultados con los
obtenidos mediante el Método de Elementos Finitos (FEM). Luego, se estudia la convergencia
del esquema a través del indice de convergencia de malla (GCI) y se observa la influencia de la
densidad de malla en las predicciones. Finalmente, se examina el efecto del factor de relajacion
en la estabilidad del procedimiento iterativo. Siguiendo lo discutido en (Riedinger y Saravia,
2023), se emplean casos pseudo-2D —equivalentes a los 3D pero més eficientes—, con mallas
triangulares no estructuradas generadas en hypermesh.

3.1. CASO1- COMPARACION CON FEM

Este primer caso estudia la interaccidn entre un bloque magnetizado y un cilindro permeable,
ambos contenidos en aire. El material permeable P tiene didmetro ¢ = 0,075 m y permeabilidad
relativa ;. = 30, mientras que el imdn M es un cubo de 0,1 m de lado con magnetizacién
permanente M = 9,75 x 10° Am™'e,. El dominio de aire A mide 1 m en cada direccién y se
imponen condiciones de contorno homogéneas A = 0 en 0f). La malla es mds fina cerca de los
materiales (5 x 1073 m) y m4s gruesa en el borde (10~2m).

(a) Campo magnético con FEM. (b) Campo magnético con FVM.

0.5 |- —

B.e, [T]

—e— FEM

05 e T \ \ \ L
\ \

|
—0.06 —0.04 —0.02 0 0.02 0.04 0.06

 [m]

(c) Componente y del campo magnético.

Figura 1: Comparacién entre FEM y FVM en el Caso 1.
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La misma malla se export6 a COMSOL (FEM) y a OpenFOAM (FVM), garantizando com-
paracion punto a punto. Las Figuras 1a y 1b muestran el campo magnético mediante SLIC para
ambas formulaciones, observandose un acuerdo visual muy estrecho.

El perfil del componente y de B a lo largo de una linea transversal en M (Figura 1¢) confirma
que el FVM reproduce correctamente las discontinuidades esperadas.

En términos de desempeiio, la simulacion FEM tomé 2132 s y 36,2 GB de memoria fisica,
mientras que la versién FVM finaliz6 en 1759 s con 26,4 GB, logrando reducciones del 17,5 %
en tiempo y del 27,1 % en memoria.

3.2. CASO 2 - ESTUDIO DE CONVERGENCIA CON G(CI

Se aplicé la metodologia de (Eca y Hoekstra, 2014) sobre cuatro mallas jerarquicas con
razon de refinamiento » = 2 (Figura 2). El dominio incluye aire, un cilindro permeable y otro
magnetizado, y se evaluaron cuatro puntos caracteristicos P = { P;, P,, P5, P,} (centro y borde
de My P).

A 1 _A=0

€ o

L.

0.125m —

1m

0.5m

Figura 2: Configuraciéon geométrica del Caso 2.

Los valores de B y la cantidad de elementos se resumen en la Tabla 1a, y los resultados del
GClI en la Tabla 1b.

n; P Py P3 Py Punto (Z)() gZ51 U, é p
19882 0.6109 0.1859 -0.2620 0.0741 P 0.607 0.611 1.3% 1.00
38284 0.6087 0.1884 -0.2753 0.0747 P, 0.190 0.186 53% 1.99
79218 0.6093 0.1883 -0.2836 0.0746 P -0.296 -0.262 14.7% 1.52

159792 0.6083 0.1895 -0.2889 0.0747 Py 0.0751 0.0741 2.7% 1.00
(a) Datos de B en P,. (b) Resumen GCI.

Tabla 1: Entradas y resultados del andlisis GCI en una misma figura.

En P, se observa convergencia casi ideal de segundo orden, mientras que en P y P aparecen
oscilaciones, clasificadas como casos andmalos. El punto P; refleja un comportamiento mixto
(p =~ 1,5) debido a las discontinuidades en interfaces.

El refinamiento suaviza los perfiles en regiones con gradientes pronunciados, confirmando
la validez del esquema en zonas regulares, aunque con sensibilidad aumentada cerca de aristas.
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(c) Perfil sobre L3 vertical.

Figura 3: Componentes de B, con distinto refinamiento de malla.

3.3. Caso 3 - Verificacion de convergencia mediante el Método de Soluciones Manufac-
turadas (MMYS)

Debido al comportamiento oscilatorio observado en los puntos P, y P, durante el andlisis de
GCI, recurrimos al Método de Soluciones Manufacturadas (MMS) (Roache, 2002; Marchand y
Davidson, 2011) con el objetivo de verificar rigurosamente el orden de convergencia del esque-
ma propuesto. Para este fin, consideramos la configuracién donde el dominio 2 = A U M se
compone de una regién cuadrada de aire A de lado R € R* y un dominio circular magnetizado
M, de radio S < R, centrado en (g, yo). Para construir la solucién manufacturada, imponemos
las siguientes condiciones de contorno e interfaz:

1. El potencial vectorial toma la forma A’

2. Se cumple la continuidad de A, en la interfaz, es decir:

[A ] oanom = O.

(0,0, Ai(a,y)) con i € {A, M}.

3. En el borde externo 92, se prescribe una condicién de Dirichlet: A (z,y) = g(z,y) con

g € CL(09).

4. Las condiciones de interfaz derivadas de la ecuacion (14) deben cumplirse en 0A N OML.

Copyright © 2025 Asociacion Argentina de Mecénica Computacional


http://www.amcaonline.org.ar

Mecénica Computacional Vol XLII, pags. 839-848 (2025) 845

Particularmente, si adoptamos coordenadas polares (r, #) y consideramos una magnetizacién
M = M_e, en M, la condicion de salto se reduce a

0A, .
|[ ]] = — oM, sin 6. (15)
I || ganom
Bajo estas restricciones, proponemos la siguiente solucién analitica manufacturada:
AM(r, 0) = Cyrsind, V(x,y) € M, (16)
Al (r,0) = [C’lS + S (Cy — poM,) log(g)] sin 0, V(z,y) € A, (17)
donde C; := —"O—éw”. Se puede demostrar que (16)—(17) satisfacen las condiciones gobernantes.

Con el fin de implementar el esquema numérico, definimos un residual que corresponde a la
sustitucion de la soluciéon manufacturada en la ecuacién balance (9):
0, (z,y) € M,

I(r,0) = 1S + S(Cy = poM,) log(r/S) sinf, (z,y) € A. (18)

r2
Se prescribe ademads en 0f2 la condicién de contorno
g(r,0) = AA (r,0) |aQ

En nuestro estudio adoptamos S = 0,05m, R = 1my M, = 9,75 x 105 A/m. Se ensayaron
tres mallas conn € {3548, 14432, 57184} elementos. Denotamos la soluciéon numérica obtenida
como A, y mantenemos A, para la analitica. La Figura 4 muestra (a) el campo A, como mapa
de contornos, y (b) la comparacién puntual entre A, y A, a lo largo de la recta vertical = = 0,

€ [-0,5,0,5].

—— A,

—0.1 - —

—0.2 |- -

l l l l l
—0.6 —0.4 —0.2 0 0.2 0.4 0.6

y-length

(a) Contorno de A,. (b) Comparacion A, vs. A,enz =0.

Figura 4: Resultados numéricos para el Caso 3 (MMS).

Para evaluar cualitativamente la precision, definimos el error de contorno en cada celda c¢; de
volumen V;; como:

Vil (A(e)® = (Ax(i)?

=5 vy

(19)
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(a) Malla 1, n = 3548. (b) Malla 2, n = 14432.

(c) Malla 3, n = 57184.

Figura 5: Distribucion espacial del error de contorno CE(c;) para mallas progresivamente refi-
nadas.

Los resultados de la Figura 5 confirman que el error se concentra en la interfaz A N OM,
donde los gradientes de A, son mds intensos. Al refinar la malla, la magnitud y extensién del
error disminuyen drasticamente, mostrando clara convergencia hacia la solucién analitica.

Para cuantificar este comportamiento definimos el error de discretizacion en cada subdomi-
nio:

Ender - A
N SOV ROS

(20)

DE‘

n; DE[, DE[
3548 | 0.00190755 | 0.0448756
14432 | 0.00055701 | 0.0211728
57184 | 7.00x10~° | 0.00305001

Tabla 2: Errores de discretizacion en aire y material magnetizado.

Finalmente, estimamos el orden de convergencia ajustando en escala log-log el modelo
DE ~ Ch? (Eca y Hoekstra, 2014). La regresion lineal arroja p ~ 2,38 en la regién de ai-
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re y p ~ 1,93 en la region magnetizada. Estos valores confirman una convergencia cercana a
segundo orden en todo el dominio, validando tanto la formulacién como su implementacion
numérica.

4. CONCLUSIONES

En este trabajo se desarroll6 un esquema de volimenes finitos para resolver problemas mag-
netostaticos en medios con propiedades discontinuas y mallas no ortogonales. La formulacién
incorpora técnicas avanzadas tomadas de la dindmica de fluidos computacional, tales como un
esquema hibrido de reconstruccion de gradientes (Green—Gauss/least-squares) para mejorar la
precision en celdas distorsionadas y correcciones explicitas de no-ortogonalidad que permiten
mantener segundo orden de exactitud en geometrias arbitrarias. Asimismo, se implementd un
algoritmo particionado de tipo Block Gauss—Seidel con acoplamiento entre regiones, lo que ga-
rantiza la correcta continuidad del flujo magnético normal y de la componente tangencial del
campo en interfaces de materiales, evitando las pérdidas de flujo y los suavizados numéricos
caracteristicos de formulaciones FEM convencionales.

Las verificaciones numéricas y comparaciones con un solver comercial de elementos finitos
demostraron la capacidad del método para reproducir con fidelidad las distribuciones de campo,
obteniendo resultados de similar precisién pero con menores tiempos de cémputo (reduccioén
cercana al 17 %) y menor consumo de memoria (aproximadamente 27 %). El andlisis de conver-
gencia mediante el Indice de Convergencia de Malla confirmé un comportamiento de orden de
disefio en la mayor parte del dominio, con desviaciones puntuales en regiones proximas a inter-
faces de materiales. Ademas, la validacion a través del Método de Soluciones Manufacturadas
mostré tasas de convergencia globales cercanas al segundo orden (p ~ 2,38 en subdominios
no magnetizados y p >~ 1,93 en regiones magnetizadas), lo que verifica la exactitud formal del
esquema y explica las anomalias observadas en los puntos de prueba individuales del GCI.

En conjunto, los resultados obtenidos demuestran que el marco propuesto de volimenes fi-
nitos constituye una alternativa robusta y escalable frente a enfoques tradicionales basados en
elementos finitos. El método combina, en una sola formulacién, soporte para mallas no ortogo-
nales, acoplamiento conservativo multi-region y estabilidad en medios de alta permeabilidad,
ofreciendo un camino sélido para extender el uso de volumenes finitos en electromagnetismo
computacional y en el disefio magnetostatico de gran escala.
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