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Resumen. Se presenta un desarrollo según el Método de Volúmenes Finitos para resolver problemas
magnetostáticos en mallas no ortogonales. El esquema conserva de forma el flujo magnético en interfa-
ces, alcanza segundo orden de precisión en mallas distorsionadas y asegura convergencia estable en me-
dios de alta permeabilidad. Las comparaciones con elementos finitos muestran similar exactitud con me-
nor costo computacional. Estudios de convergencia y pruebas con soluciones manufacturadas confirman
la robustez del enfoque, que se plantea como una alternativa a los métodos clásicos en aplicaciones indus-
triales.
Keywords: OpenFOAM, Finite Volume Method, Magnetostatics, Numerical Methods.

Abstract. We present a Finite Volume Method for solving magnetostatic problems on non-orthogonal
meshes. The scheme conserves magnetic flux across interfaces, achieves second-order accuracy on distor-
ted grids, and ensures stable convergence in high-permeability regions. Comparisons with Finite Element
solutions show similar accuracy at lower computational cost. Mesh convergence studies and manufac-
tured solution tests confirm the robustness of the approach, positioning it as a scalable alternative to
classical methods in industrial applications.
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1. INTRODUCCIÓN

La predicción de campos magnéticos en medios permeables y magnetizados es esencial en
tecnologías como motores eléctricos (Gangl et al., 2015), sistemas de resonancia magnética
(Giovannetti et al., 2007) o aceleradores de partículas (Jorge et al., 2007). El método de Ele-
mentos Finitos (FEM) ha sido la herramienta dominante en este campo (Ciarlet y Raviart, 1972;
Sevilla et al., 2011), aunque presenta limitaciones: la continuidad de flujo se impone de forma
débil, aparecen pérdidas en interfaces y los costos crecen rápidamente en dominios grandes y
multi-región (Sabbagh-Yazdi et al., 2012; Haber y Ruthotto, 2014).

El Método de Volúmenes Finitos (FVM), en contraste, se apoya en leyes locales de conserva-
ción y se adapta de manera natural a problemas con discontinuidades (Moukalled et al., 2016).
Su eficacia ya se ha mostrado en fluidos y magnetohidrodinámica (Shekaramiz et al., 2021;
Toghraie, 2020), pero su aplicación en magnetostática sigue siendo incipiente. Avances recien-
tes han explorado esquemas multi-región y conservación de flujo (Saravia et al., 2017; Saravia,
2019, 2020, 2021), aunque con restricciones a mallas ortogonales (Riedinger y Saravia, 2023).

En este trabajo se propone un esquema de FVM centrado en celdas que combina: (i) correc-
ciones para mallas no ortogonales, (ii) acoplamiento conservativo en interfaces y (iii) estabiliza-
ción en materiales de alta permeabilidad. Con ello se plantea una alternativa robusta y escalable
al FEM para aplicaciones industriales.

2. FORMULACIÓN MAGNETOSTÁTICA

Sea Ω ⊂ E un dominio abierto y conexo en un espacio euclídeo tridimensional, con espacio
vectorial asociado V . En Ω distinguimos un subdominio de aire A, donde los campos cumplen
la relación constitutiva lineal

Ba(x) = µ0 ha(x), ∀x ∈ A,

con µ0 = 4π × 10−7 h/m. Además, en todo Ω rige la ley de Gauss:

∇ ·B = 0. (1)

El análisis magnetostático en medios permeables, magnetizados y conductores de corriente
se establece a partir de las leyes de equilibrio y de las condiciones de borde e interfaz que
gobiernan la evolución de B.

2.1. LEY DE AMPERE

Consideramos tres regiones: aire A, un dominio permeable con corriente P y un medio mag-
netizado permanente M, de modo que Ω = A ∪ P ∪M. Estas regiones se conectan a través de
interfaces comunes, mientras que P y M son disjuntas.

2.1.1. MEDIOS PERMEABLES CON CORRIENTE LIBRE

En P, la ley de Ampère se expresa como

∇×Bp = µ0 (Jf + Ji), (2)

donde Jf es la densidad de corriente libre y Ji = ∇ × Mi la corriente inducida asociada a la
magnetización Mi.
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Definiendo

hp =
1

µ0

Bp −Mi, (3)

se obtiene la forma clásica
∇× hp = Jf . (4)

Bajo la ley constitutiva lineal, la magnetización puede expresarse en términos de la susceptibi-
lidad magnética normalizada χ:

Mi = χBp, χ =
µr − 1

µrµ0

, (5)

con µr = µ/µ0.

2.1.2. MEDIOS PERMANENTEMENTE MAGNETIZADOS

En el dominio M, donde existe una magnetización permanente M, se cumple

∇×Bm = µ0 ∇×M. (6)

2.1.3. FORMA GLOBAL

Combinando las tres regiones se obtiene una expresión unificada de la ley de Ampère:

∇×B = µ0

[
Jf +∇× (χB) +∇×M

]
. (7)

Como ∇ ·B = 0, introducimos el potencial vector magnético A tal que

B = ∇×A. (8)

Reescribiendo (7) en términos de A se obtiene la ecuación gobernante:

∇2
A = −µ0

[
Jf −∇ ·

(
χ∇Ã

)
+∇×M

]
, (9)

donde ∇Ã = ∇A−∇A
T garantiza una formulación conservativa (Saravia, 2021).

2.2. CONDICIONES DE INTERFAZ

Además de las condiciones en el contorno externo ∂Ω, es necesario imponer condiciones de
continuidad en las interfaces ∂A ∩ ∂P y ∂A ∩ ∂M. En estas superficies se cumple:

JAK = 0, (10)

JBK · en = 0, (11)

asegurando continuidad del potencial vector y de la componente normal del campo magnético.
En cambio, la componente tangencial de B puede presentar un salto debido a corrientes

superficiales:
JBK = µ0 K× en, (12)

con
K = −Kf +

q
χB+M

y
× en. (13)

Esto conduce a la condición s
∂A

∂n

{
= −µ0 K, (14)

que establece la relación entre discontinuidades de A y corrientes en la interfaz.
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3. EXPERIMENTOS NUMÉRICOS

En esta sección se presenta una evaluación del método propuesto. Primero, se analiza su
capacidad para reproducir distribuciones discontinuas de campo magnético en configuraciones
con materiales permeables y magnetizados permanentes, comparando los resultados con los
obtenidos mediante el Método de Elementos Finitos (FEM). Luego, se estudia la convergencia
del esquema a través del índice de convergencia de malla (GCI) y se observa la influencia de la
densidad de malla en las predicciones. Finalmente, se examina el efecto del factor de relajación
en la estabilidad del procedimiento iterativo. Siguiendo lo discutido en (Riedinger y Saravia,
2023), se emplean casos pseudo-2D —equivalentes a los 3D pero más eficientes—, con mallas
triangulares no estructuradas generadas en hypermesh.

3.1. CASO 1 - COMPARACIÓN CON FEM

Este primer caso estudia la interacción entre un bloque magnetizado y un cilindro permeable,
ambos contenidos en aire. El material permeable P tiene diámetro ϕ = 0,075m y permeabilidad
relativa µr = 30, mientras que el imán M es un cubo de 0,1m de lado con magnetización
permanente M = 9,75 × 105 Am−1

ey. El dominio de aire A mide 1m en cada dirección y se
imponen condiciones de contorno homogéneas A = 0 en ∂Ω. La malla es más fina cerca de los
materiales (5× 10−3 m) y más gruesa en el borde (10−2 m).

(a) Campo magnético con FEM. (b) Campo magnético con FVM.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
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(c) Componente y del campo magnético.

Figura 1: Comparación entre FEM y FVM en el Caso 1.
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La misma malla se exportó a COMSOL (FEM) y a OpenFOAM (FVM), garantizando com-
paración punto a punto. Las Figuras 1a y 1b muestran el campo magnético mediante SLIC para
ambas formulaciones, observándose un acuerdo visual muy estrecho.

El perfil del componente y de B a lo largo de una línea transversal en M (Figura 1c) confirma
que el FVM reproduce correctamente las discontinuidades esperadas.

En términos de desempeño, la simulación FEM tomó 2132 s y 36,2 GB de memoria física,
mientras que la versión FVM finalizó en 1759 s con 26,4 GB, logrando reducciones del 17,5%
en tiempo y del 27,1% en memoria.

3.2. CASO 2 - ESTUDIO DE CONVERGENCIA CON GCI

Se aplicó la metodología de (Eça y Hoekstra, 2014) sobre cuatro mallas jerárquicas con
razón de refinamiento r = 2 (Figura 2). El dominio incluye aire, un cilindro permeable y otro
magnetizado, y se evaluaron cuatro puntos característicos P = {P1, P2, P3, P4} (centro y borde
de M y P).
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Figura 2: Configuración geométrica del Caso 2.

Los valores de B y la cantidad de elementos se resumen en la Tabla 1a, y los resultados del
GCI en la Tabla 1b.

ni P1 P2 P3 P4

19882 0.6109 0.1859 -0.2620 0.0741
38284 0.6087 0.1884 -0.2753 0.0747
79218 0.6093 0.1883 -0.2836 0.0746

159792 0.6083 0.1895 -0.2889 0.0747

(a) Datos de B en Pi.

Punto ϕ0 ϕ1 Uϕ p

P1 0.607 0.611 1.3 % 1.00
P2 0.190 0.186 5.3 % 1.99
P3 -0.296 -0.262 14.7 % 1.52
P4 0.0751 0.0741 2.7 % 1.00

(b) Resumen GCI.

Tabla 1: Entradas y resultados del análisis GCI en una misma figura.

En P2 se observa convergencia casi ideal de segundo orden, mientras que en P1 y P4 aparecen
oscilaciones, clasificadas como casos anómalos. El punto P3 refleja un comportamiento mixto
(p ≈ 1,5) debido a las discontinuidades en interfaces.

El refinamiento suaviza los perfiles en regiones con gradientes pronunciados, confirmando
la validez del esquema en zonas regulares, aunque con sensibilidad aumentada cerca de aristas.
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(a) Perfil sobre L1 en M.
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(b) Perfil sobre L2 en P.
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Figura 3: Componentes de By con distinto refinamiento de malla.

3.3. Caso 3 – Verificación de convergencia mediante el Método de Soluciones Manufac-
turadas (MMS)

Debido al comportamiento oscilatorio observado en los puntos P1 y P4 durante el análisis de
GCI, recurrimos al Método de Soluciones Manufacturadas (MMS) (Roache, 2002; Marchand y
Davidson, 2011) con el objetivo de verificar rigurosamente el orden de convergencia del esque-
ma propuesto. Para este fin, consideramos la configuración donde el dominio Ω = A ∪ M se
compone de una región cuadrada de aire A de lado R ∈ R

+ y un dominio circular magnetizado
M, de radio S ≪ R, centrado en (x0, y0). Para construir la solución manufacturada, imponemos
las siguientes condiciones de contorno e interfaz:

1. El potencial vectorial toma la forma A
i = (0, 0, Ai

z(x, y)) con i ∈ {A,M}.

2. Se cumple la continuidad de Az en la interfaz, es decir:

JAi
zK∂A∩∂M = 0.

3. En el borde externo ∂Ω, se prescribe una condición de Dirichlet: Ai
z(x, y) = g(x, y) con

g ∈ C1(∂Ω).

4. Las condiciones de interfaz derivadas de la ecuación (14) deben cumplirse en ∂A ∩ ∂M.
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Particularmente, si adoptamos coordenadas polares (r, θ) y consideramos una magnetización
M = Mxex en M, la condición de salto se reduce a

s
∂Az

∂r

{

∂A∩∂M

= −µ0Mx sin θ. (15)

Bajo estas restricciones, proponemos la siguiente solución analítica manufacturada:

AM

z (r, θ) = C1r sin θ, ∀(x, y) ∈ M, (16)

AA

z (r, θ) =
[
C1S + S (C1 − µ0Mx) log

(
r
S

) ]
sin θ, ∀(x, y) ∈ A, (17)

donde C1 := −µ0Mx

2
. Se puede demostrar que (16)–(17) satisfacen las condiciones gobernantes.

Con el fin de implementar el esquema numérico, definimos un residual que corresponde a la
sustitución de la solución manufacturada en la ecuación balance (9):

Γ(r, θ) :=





0, (x, y) ∈ M,

−
C1S + S(C1 − µ0Mx) log(r/S)

r2
sin θ, (x, y) ∈ A.

(18)

Se prescribe además en ∂Ω la condición de contorno

g(r, θ) := AA

z (r, θ)
∣∣
∂Ω
.

En nuestro estudio adoptamos S = 0,05m, R = 1m y Mx = 9,75× 105 A/m. Se ensayaron
tres mallas con n ∈ {3548, 14432, 57184} elementos. Denotamos la solución numérica obtenida
como Az y mantenemos Az para la analítica. La Figura 4 muestra (a) el campo Az como mapa
de contornos, y (b) la comparación puntual entre Az y Az a lo largo de la recta vertical x = 0,
y ∈ [−0,5, 0,5].

(a) Contorno de Az .
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y-length
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e
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(b) Comparación Az vs. Az en x = 0.

Figura 4: Resultados numéricos para el Caso 3 (MMS).

Para evaluar cualitativamente la precisión, definimos el error de contorno en cada celda ci de
volumen Vi como:

CE(ci) =
Vi

[
(Az(ci))

2 − (Az(ci))
2

]

∑
ci
Vi(Az(ci))2

. (19)
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(a) Malla 1, n = 3548. (b) Malla 2, n = 14432.

(c) Malla 3, n = 57184.

Figura 5: Distribución espacial del error de contorno CE(ci) para mallas progresivamente refi-
nadas.

Los resultados de la Figura 5 confirman que el error se concentra en la interfaz ∂A ∩ ∂M,
donde los gradientes de Az son más intensos. Al refinar la malla, la magnitud y extensión del
error disminuyen drásticamente, mostrando clara convergencia hacia la solución analítica.

Para cuantificar este comportamiento definimos el error de discretización en cada subdomi-
nio:

DE
∣∣∣
A,M

:=

√∑
ci
Vi

[
(Az(ci))2 − (Az(ci))2

]

√∑
ci
Vi(Az(ci))2

. (20)

ni DE|A DE|M
3548 0.00190755 0.0448756

14432 0.00055701 0.0211728
57184 7.00×10−5 0.00305001

Tabla 2: Errores de discretización en aire y material magnetizado.

Finalmente, estimamos el orden de convergencia ajustando en escala log-log el modelo
DE ∼ Chp (Eça y Hoekstra, 2014). La regresión lineal arroja p ≈ 2,38 en la región de ai-

A. RIEDINGER, M. SARAVIA, J. RAMIREZ, S. OSINAGA846

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


re y p ≈ 1,93 en la región magnetizada. Estos valores confirman una convergencia cercana a
segundo orden en todo el dominio, validando tanto la formulación como su implementación
numérica.

4. CONCLUSIONES

En este trabajo se desarrolló un esquema de volúmenes finitos para resolver problemas mag-
netostáticos en medios con propiedades discontinuas y mallas no ortogonales. La formulación
incorpora técnicas avanzadas tomadas de la dinámica de fluidos computacional, tales como un
esquema híbrido de reconstrucción de gradientes (Green–Gauss/least-squares) para mejorar la
precisión en celdas distorsionadas y correcciones explícitas de no-ortogonalidad que permiten
mantener segundo orden de exactitud en geometrías arbitrarias. Asimismo, se implementó un
algoritmo particionado de tipo Block Gauss–Seidel con acoplamiento entre regiones, lo que ga-
rantiza la correcta continuidad del flujo magnético normal y de la componente tangencial del
campo en interfaces de materiales, evitando las pérdidas de flujo y los suavizados numéricos
característicos de formulaciones FEM convencionales.

Las verificaciones numéricas y comparaciones con un solver comercial de elementos finitos
demostraron la capacidad del método para reproducir con fidelidad las distribuciones de campo,
obteniendo resultados de similar precisión pero con menores tiempos de cómputo (reducción
cercana al 17 %) y menor consumo de memoria (aproximadamente 27 %). El análisis de conver-
gencia mediante el Índice de Convergencia de Malla confirmó un comportamiento de orden de
diseño en la mayor parte del dominio, con desviaciones puntuales en regiones próximas a inter-
faces de materiales. Además, la validación a través del Método de Soluciones Manufacturadas
mostró tasas de convergencia globales cercanas al segundo orden (p ≃ 2,38 en subdominios
no magnetizados y p ≃ 1,93 en regiones magnetizadas), lo que verifica la exactitud formal del
esquema y explica las anomalías observadas en los puntos de prueba individuales del GCI.

En conjunto, los resultados obtenidos demuestran que el marco propuesto de volúmenes fi-
nitos constituye una alternativa robusta y escalable frente a enfoques tradicionales basados en
elementos finitos. El método combina, en una sola formulación, soporte para mallas no ortogo-
nales, acoplamiento conservativo multi-región y estabilidad en medios de alta permeabilidad,
ofreciendo un camino sólido para extender el uso de volúmenes finitos en electromagnetismo
computacional y en el diseño magnetostático de gran escala.
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