
  

MODELO PIEZOELÉCTRICO NO LINEAL PARA PLACAS 
CIRCULARES: INFLUENCIA DE LA NO LINEALIDAD 

GEOMÉTRICA Y DE MATERIAL. 
  

 NONLINEAR PIEZOELECTRIC MODEL FOR CIRCULAR PLATES: INFLUENCE 
OF GEOMETRIC AND MATERIAL NONLINEARITY 

Carlos Veraa, Sebastián Machadoa, Mariano Febbob  

a Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Grupo de Investigación en 

Multifísica Aplicada (GIMAP). Bahía Blanca, Argentina, gimap@frbb.utn.edu.ar, 

https://www.frbb.utn..edu.ar/ 

b CONICET-Universidad Nacional del Sur, Instituto de Física del Sur (IFISUR). Bahía Blanca, 

Argentina, ifisur@uns.edu.ar, http://www.ifisur-conicet.gob.ar/ 

Palabras clave: Recolección de energía, piezoelectricidad, vibraciones. 

Resumen.  Se presenta un modelo no lineal para recolectores piezoeléctricos de placas circulares cuya 

dinámica está basada en la teoría clásica de placas de Von – Karman que captura fenómenos no lineales 

asociados a grandes desplazamientos. El modelo incorpora la no linealidad del acoplamiento 

electromecánico constitutivo, la no linealidad constitutiva del material piezoeléctrico y no linealidad de 
disipación. El recolector tiene adosada una masa de oscilación que permite mejorar la obtención de 

energía y la sintonización para una frecuencia de resonancia indicada. La no linealidad geométrica se 

plantea a partir de la función de tensión conocida como Función de Airy, y se resuelve analíticamente 
para incorporarse a la ecuación de equilibrio transversal de la placa. El objetivo del presente artículo es 

analizar para grandes aceleraciones la influencia de la no linealidad geométrica determinada mediante 

esta formulación. Se comparan resultados entre formulaciones aproximadas y exactas con resultados de 

ensayos experimentales. El estudio se realiza sobre un recolector de energía cuya frecuencia de 
resonancia es de 141 Hz.   

 Keywords: Energy harvesting, piezoelectricity, vibration. 

Abstract. A nonlinear model for circular plate piezoelectric collectors is presented based on the classical 
Von-Karman plate theory that captures nonlinear phenomena associated with large displacements. The 
model incorporates the nonlinearity of constitutive electromechanical coupling, the constitutive 
nonlinearity of the piezoelectric material, and dissipation nonlinearities. The harvester has an oscillating 
mass attached for improved energy extraction and tuning to a given resonant frequency. Geometric 
nonlinearity is derived from the stress function known as the Airy function and is solved analytically to 
be incorporated into the plate's transverse equilibrium equation. 
This article analyzes the influence of geometric nonlinearity determined by this formulation for large 
accelerations. Results between approximate and exact formulations are compared with experimental test 
results. The study is carried out on an energy harvester whose resonant frequency is around 141 Hz. 
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1 INTRODUCCIÓN 

El uso de recolectores de energía piezoeléctricos desde fuentes vibratorias (Erturk et. al 

2009) y de geometría circular (Yang Y et. al 2018) son estudiados con alto interés debido a su 

bajo costo de manutención, su versatilidad constructiva y bajo valor de mercado. Estos 

dispositivos conocidos como buzzer se construyen mediante la unión de dos discos de diferente 

diámetro: uno de diámetro mayor y de latón (sustrato) sobre el que se monta otro de diámetro 

menor y de material piezoeléctrico. En particular se suele adosar una masa para mejorar la 

generación de energía y para sintonizar la frecuencia de resonancia. La generación de energía 

se da por aplicación de una tensión mecánica al recolector, que al contraerse o expandirse 

radialmente induce un momento flector en el actuador y provoca una deformación transversal. 

La obtención de una solución analítica precisa para esas deformaciones transversales es de gran 

importancia, tomando siempre en consideración las dimensiones del actuador, las propiedades 

del material y la frecuencia de resonancia (Yuanlin Hu et. al 2017).  

Muchas de las soluciones analíticas parten de teorías clásicas de vibraciones de placas 

lineales (Chen et. al. 2014, Reddy et. al. 2006). Estas, sin embargo, dejan de lado efectos no 

lineales que juegan un rol importante en el comportamiento vibratorio del recolector, sobre todo 

para altas aceleraciones de excitación y principalmente en resonancia (Amabili M. 2008). Se 

destacan entre los efectos no lineales más estudiados los geométricos (Mak et. al. 2012), 

elásticos (Joshi, 1992) y de acoplamiento electromecánico (Abdelkefi er. al. 2012). 

Los autores del presente trabajo vienen estudiando de manera analítica y experimental este 

tipo de resonadores con modelos lineales (Vera et. al 2022; Vera et. al 2023) y no lineales (Vera 

et. al 2024). En el citado trabajo desarrollaron un modelo analítico que considera términos de 

orden superior en las ecuaciones de tensiones radiales y transversales para el material 

piezoeléctrico, para el desplazamiento eléctrico (Machado et. al. 2016), y modela el efecto de 

amortiguamiento del tipo Rayleigh con un coeficiente de amortiguamiento no lineal. La parte 

piezoeléctrica se caracteriza mediante la inclusión de coeficientes de acoplamiento 

piezoeléctrico lineales y no lineales, capacidad interna e impedancias correspondientes (Stanton 

et. al. 2010). La deflexión transversal del recolector, sin embargo, cumple la teoría de placa 

delgada de Kirchhoff y la no linealidad geométrica se calcula de forma aproximada. 

Para el presente trabajo se propone un modelo de la deflexión transversal a través de la teoría 

de placas circulares de Von-Karman (Faris W. 2003). Esta teoría permite capturar los 

fenómenos no lineales geométricos en la placa de manera completa, pero con una complejidad 

mínima en las ecuaciones de movimiento. El modelo obtenido así se denomina no lineal 

geométrico exacto. El sistema de ecuaciones electromecánicas no lineales se obtiene desde las 

ecuaciones de Lagrange, para la condición de borde de empotramiento en toda la circunferencia. 

La no linealidad geométrica requiere para su solución de la definición de una función de tensión 

conocida como Función de Airy, la que es resuelta analíticamente para incorporarse a la 

ecuación de equilibrio transversal de la placa (Touzé et. al. 2005). 

El trabajo presenta comparaciones de los resultados analíticos obtenidos con la presente 

formulación en contraste con resultados del modelo no lineal geométrico según la teoría de 

placa tipo Kirchoff (Vera, et. al. 2023) y con resultados experimentales de laboratorio para 

diferentes valores de excitación, en rangos que van desde 0,1g a 1g. La excitación se sintoniza 

a la frecuencia de resonancia del recolector, que es del orden de los 140 Hz.  

La motivación del modelo analítico no lineal propuesto es la de optimizar el dispositivo 

recolector de energía de geometría circular, con un bajo costo computacional, de manera de 

poder incorporarlo como dispositivo de recolección de energía en estaciones de sensado 

autónomo de máquinas agrícolas (Machado et. al. 2023).  
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2 RECOLECTOR DE GEOMETRÍA CIRCULAR 

2.1 Geometría del recolector 

El recolector está construido por un disco de latón al que se le adosa un disco PZT-5H 

(Figuras 1a, 1b), estando el primero empotrado a lo largo de toda su circunferencia. Sobre el 

PZT-5H se coloca una masa M de acero para sintonizar la frecuencia de resonancia y optimizar 

la deformación.  

 

 

 

Figura 1 a,b). Esquema del recolector y ubicación del eje neutro. 

Las dimensiones geométricas del dispositivo son: diámetro y espesor del sustrato (݀௦, ℎ௦), 
diámetro y espesor del PZT (݀௉ , ℎ௉), diámetro (݀௠) y altura (ℎ௠) de la masa de oscilación. El 

contacto entre masa y PZT se materializa montando M sobre cilindros de menor diámetro (݀௠௖) 
y de altura constante (ℎ௠௖). Se define como “a” a la distancia entre el eje neutro y la cota 

superior "ℎ௦”, tal se indica en el esquema de la Figura 1b). 

2.2 Modelo analítico no lineal completo. Formulación variacional 

La teoría de Von-Karman para placas circulares supone que el desplazamiento flexional w 

es del orden del espesor de la placa, y como consecuencia, la pendiente de la superficie 

deformada ya no es tan pequeña como para ser desestimada. Si u(r,t), v(r,t) y w(r,t) son los 

desplazamientos del plano medio y ( ) cos( )g t G t=  es la excitación armónica de la base, 

tomando simetría radial el desplazamiento total de un punto genérico la sección transversal de 

la placa es (Reddy, 1999)   

( , ) ;      ( , );      ( , ) ( )r z

w
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= − = = +
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 (1) 

Las deformaciones específicas no lineales y no nulas se calculan desde las ecuaciones      
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(2) 

en tanto que las tensiones para el sustrato (S) y para el piezoeléctrico (p) en dirección radial y 

transversal (Yuanlin et. al. 2017) se calculan desde   
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     En las Ecs. (3), (4) y (5) ES, y S  son el módulo de Young y el módulo de Poisson del 

sustrato,  11  y E

ps  la flexibilidad elástica del material piezoeléctrico a campo eléctrico constante 

y el módulo de Poisson del piezoeléctrico, E3 el campo eléctrico en la dirección z,, 31e la 

constante piezoeléctrica lineal y, 111

Es  y 311e el módulo de elasticidad no lineal y la constante 

piezoeléctrica no lineal, términos asociados a la no linealidad constitutiva. 

La energía potencial U (de deformación y del potencial eléctrico) para el sustrato (S) y para 

el piezoeléctrico (p) se obtiene desde las expresiones     
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en la que la energía del potencial eléctrico en (p) se define como   
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siendo D3 la componente del desplazamiento eléctrico, 33

T  la permitividad a tensión constante, 

13d  la constante piezoeléctrica, y E3 el campo eléctrico en la dirección z, cuya expresión es 

(Erturk et. al. 2011)  

3
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 La deformación flexional ( ),w r t  se divide en 3 secciones (Vera et. al 2023):  sustrato (1), 

sustrato y piezoeléctrico (2) y masa oscilante (3). La energía cinética T se calcula integrando en 

cada sección como   
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en la que p , S  y M  son las densidades por unidad lineal del piezoeléctrico, del sustrato y 

de la masa oscilante 

    Reemplazando la Ec. (2) en las Ecs. (4) y (5), aplicando las Ecs. (6) y (9) y mediante el 

operador de Lagrange L=T-U, se derivan las ecuaciones del movimiento desde el principio de 

Hamilton  
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expresión en la que el trabajo de las fuerzas no conservativas se lo supone en dos términos, uno 

debido a la disipación viscosa estructural lineal del buzzer y el otro término debido a la 

disipación no lineal (Stanton et. al. 2010).    

De la aplicación de la Ec. (10) surge un sistema de tres ecuaciones diferenciales 
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en las que aparecen los términos de rigidez no lineal piezoeléctrica ( nrEI y nEI  ), el 

acoplamiento electromecánico no lineal ( pnrJ y pnJ  ), la masa M , y la capacidad Cp, definidas 

por las expresiones  
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     Los esfuerzos normales y los momentos flectores ,  ,   y  r rN N M M  del sustrato se definen 

de acuerdo con las expresiones  
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     Estos esfuerzos están acoplados con los desplazamientos u(x,t) y w(x,t) en las Ecs. (11) y 

(12). Como las frecuencias naturales longitudinales son grandes en comparación con las 

transversales, el término de inercia en el plano puede despreciarse. De esta manera se busca 

desacoplar la ecuación axial de la transversal. Para ello se define una función de tensión ( ),F r t

denominada función de Airy (Faris W. 2003), que cumple con las ecuaciones  

2
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     Reemplazando las Ecs. (15) y (16) en las Ecs. (11) y (12) queda ahora   

Mecánica Computacional Vol XLII, págs. 857-866 (2025) 861

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


  ( )

( ) ( ) ( ) ( )

  ( )  

4

2

1 1
'' ' ' '' ' ' '' '

6 2 '' ''' 3 ''' ' 3 '' ''

' '' ' ' '' 2 ''

s n

IV

nr p p

IV

pn p pnr

D w w F w F EI w w rw sign w
r r

EI w w r w w rw w sign w

J v w rw sign w J w rw J v w rw Mw Mg





 

 − − − − +

 + + + + 
 − − − + − + + = −  

 

 

 (17) 

 

     Tomando las deformaciones específicas  
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y reemplazando las Ecs. (15) e igualándolas con la Ec. (2) se obtiene un sistema que relaciona 

 y 'u u  con la ecuación de compatibilidad ( ),F r t  
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     Eliminando u de las Ecs. (19), se obtiene ahora la nueva ecuación diferencial de 

compatibilidad para la función de Airy F 
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     Al haber eliminado al desplazamiento longitudinal u y tomando la Ec. (20), el problema 

queda definido por un sistema de las tres ecuaciones diferenciales  
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     El desplazamiento flexional ( ),w r t es expandido de forma modal de acuerdo con   
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en la que ( )( ),k n r son los n modos normales de vibración de cada sección (i) y q(t) es el 

desplazamiento temporal. Los modos se determinan según (Vera et. al. 2023) y responden a  
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     La normalización de ( )( ),
ˆ

k n r respecto de la masa se calcula a través de la integral en tres 

tramos 
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     Para la solución particular de la Ec. (22) se propone una función ( ),F r t  expandida de la 

forma       

( ) ( ) ( )*,F r t r q t=  (27) 

en la que ( )r es un modo de placa circular para la condición de borde del problema, y ( )*q t

una función del tiempo. Reemplazando la Ec. (27) en la Ec. (22), resolviendo ( ),F r t , 

introduciendo esta solución en (21) y normalizando, se llega ahora al sistema  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

3

332 0

p pn

NL n g

p pn

L p

q t q t q t KNq t sign q t v t v t q t sign q

KG q t C q t q t sign q M g

v t
r v t q t q t q t sign q t

R h

   

  

+ + − − −  
− + = −  


+ + + =  







 
 (28) 

     Las nuevas constantes de la Ec.(28) se definen según las expresiones  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

2

3 2

2

1 1 2
' '' ''' ;

1 1
'' ' ' '' ;

2

' '' '

6 2 '' ''' 3 ''' ' 3 '' '' ;

' '' ;

IV

Si Si
NL

n
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nr p p

p p

K r r r r r dr
r r r
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KG r r r r r dr

r r
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EI r r r r r r r r r sign r dr

J r r r dr


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   
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
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(29) 

en la que NLKG  es la rigidez no lineal geométrica completa. Los coeficientes KN (rigidez no 

lineal constitutiva), Cn (amortiguamiento no lineal), p (acoplamiento no lineal geométrico), 

pn (acoplamiento no lineal constitutivo mecánico), pn (acoplamiento no lineal eléctrico) y 
(rigidez normalizada del dispositivo) ya fueron obtenidos por los autores en (Vera et. al. 2024).

 

3 RESULTADOS  

     Se realizaron comparaciones del modelo completo con valores experimentales y con un 

modelo analítico no lineal (Vera et. al. 2024), que, a diferencia del modelo completo, calcula  

NLKG no por la expresión indicada en la Ec. (29), sino según la expresión aproximada 

( ) ( ) ( ) ( )2

2

12
' ' 3 ''S

NL

D
KG r r r r dr

h

    = +    (30) 
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     La Tabla 1 indica las dimensiones del dispositivo y en la Tabla 2 las constantes mecánicas 

y eléctricas. Experimentalmente se realizaron barridos en frecuencia entre 130 Hz y 170 Hz con 

excitación en unidades de g = 9.80 m/s2 (0.1g, 0.2g, 0.8g y 1.0g), resistencia R = 9.1 k, 

amortiguamiento lineal 0.1 = , y no lineal 0.016NL =  

dm hm dcm hcm dS hS dp hp 

13.25mm 7 mm 6 mm 6 mm 36 mm 0.1 mm 23.5 mm 0.1 mm 

Tabla 1: dimensiones geométricas del dispositivo 

ES S  S  Cp 
11

ES  p  d31 
111

ES  

97 GPa 7850 kg/cm3 0.31 8.15 10-15Fa 62.3GPa 7500 kg/cm3 125 10-12C/m2 -2.685 10-121/Pa 

Tabla 2: valores mecánicos y eléctricos del dispositivo 

La señal de entrada se genera en un equipo Rigol DG4062, se amplifica e ingresa a un shaker 

Labworks ET-132. La respuesta se mide con un acelerómetro PCB Piezotronics (sensibilidad 

de 98.7 mV/g) y es adquirida por una placa National Instruments NI 9234 para ser 

postprocesada mediante un código propio en Matlab. 

Las Figuras 4 (a, b, c, d) comparan curvas de generación entre los modelos no lineales y 

experimentales.  

 

 
a) 

 
b) 

Figuras 4 a, b). Respuesta en frecuencia para aceleración 0.1g (a) y 0.2g (b)      

  
c)                                                                                        d) 

Figura 4 c y d). Respuesta en frecuencia para aceleración 0.8g (c) y 1g (d)      

Para bajas aceleraciones (0.1g y 0.2g) se observa que ambos modelos ajustan con los valores 

experimentales, tanto en resonancia como fuera de resonancia, 141 Hz, lo que indica una muy 

buena predicción con lo obtenido en laboratorio. Los valores de generación para estos casos 

son del orden de 1 V y 2 V respectivamente, Figuras 4a) y 4b).  

C.A. VERA, S.P. MACHADO, M. FEBBO864

Copyright © 2025 Asociación Argentina de Mecánica Computacional

file:///C:/Users/Carlos%20Vera/Documents/CVera/INVESTIGACION/Energy%20Harvesting/EH%20-%20Máquinas%20Agrícolas/MECOM%202025/Vera,%20Machado,%20Febbo%20-%20MECOM%202025.docx
http://www.amcaonline.org.ar


Para altas aceleraciones (0.8g y 1g) los resultados experimentales muestran un efecto 

Softening, con un corrimiento de frecuencia hacia la izquierda. Este comportamiento es 

capturado exitosamente por el modelo no lineal completo, con valores máximos de generación 

en 138.65 Hz y 137.4 Hz para 0.8g y 1g respectivamente. Sin embargo, el modelo no lineal 

aproximado no presenta la curvatura Softening necesaria para ajustar con los valores 

experimentales, presentando valores de generación pico en 141 Hz. Como se aprecia en las 

Figuras 4c) y 4d) se mantienen los valores máximos de generación (del orden de los 5.6 Volts 

para 0.8g y 5.65 para 1g), pero la diferencia en la curvatura de la respuesta en frecuencia difiere 

en los valores de frecuencia para los valores picos. 

 

4 CONCLUSIONES 

     Se ha desarrollado un modelo analítico no lineal de recolector piezoeléctrico de geometría 

circular, basado en la teoría clásica de pacas de Von – Karman, la cual permite capturar la 

influencia en la generación de la no linealidad geométrica asociada a grandes desplazamientos 

en la dinámica del recolector. El modelo es una mejora del presentado por los autores con 

anterioridad, en la que los efectos no lineales geométricos se calculaban de manera aproximada 

y la teoría de placas circulares respondía al modelo de placas de Kirchoff.  

     La importancia de considerar los efectos no lineales radica en la limitación de los modelos 

lineales a la hora de predecir la generación de energía para altas aceleraciones. El presente 

modelo captura con mayor precisión el efecto de curvatura de la respuesta en frecuencia 

provocada por el efecto geométrico no lineal. En este caso en particular existe una competencia 

entre el efecto Harding provocado por el efecto geométrico no lineal y el efecto softening 

provocado por la no linealidad constitutiva del material piezoeléctrico. Al considerar un modelo 

no lineal aproximado se sobre estima la rigidez geométrica no lineal, lo que se traduce en una 

disminución del efecto softening. Para bajas aceleraciones hay coincidencia entre las 

predicciones entre ambos modelos, debido a que los efectos no lineales, geométricos y 

constitutivos, influyen de menor manera en la respuesta dinámica del recolector de energía.  
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