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Resumen. Se presenta un modelo no lineal para recolectores piezoeléctricos de placas circulares cuya
dindmica estd basada en la teoria clasica de placas de Von — Karman que captura fendmenos no lineales
asociados a grandes desplazamientos. El modelo incorpora la no linealidad del acoplamiento
electromecanico constitutivo, la no linealidad constitutiva del material piezoeléctrico y no linealidad de
disipacion. El recolector tiene adosada una masa de oscilacion que permite mejorar la obtencion de
energia y la sintonizacion para una frecuencia de resonancia indicada. La no linealidad geométrica se
plantea a partir de la funcidon de tension conocida como Funcidn de Airy, y se resuelve analiticamente
para incorporarse a la ecuacion de equilibrio transversal de la placa. El objetivo del presente articulo es
analizar para grandes aceleraciones la influencia de la no linealidad geométrica determinada mediante
esta formulacion. Se comparan resultados entre formulaciones aproximadas y exactas con resultados de
ensayos experimentales. El estudio se realiza sobre un recolector de energia cuya frecuencia de
resonancia es de 141 Hz.

Keywords: Energy harvesting, piezoelectricity, vibration.

Abstract. A nonlinear model for circular plate piezoelectric collectors is presented based on the classical
Von-Karman plate theory that captures nonlinear phenomena associated with large displacements. The
model incorporates the nonlinearity of constitutive electromechanical coupling, the constitutive
nonlinearity of the piezoelectric material, and dissipation nonlinearities. The harvester has an oscillating
mass attached for improved energy extraction and tuning to a given resonant frequency. Geometric
nonlinearity is derived from the stress function known as the Airy function and is solved analytically to
be incorporated into the plate's transverse equilibrium equation.

This article analyzes the influence of geometric nonlinearity determined by this formulation for large
accelerations. Results between approximate and exact formulations are compared with experimental test
results. The study is carried out on an energy harvester whose resonant frequency is around 141 Hz.
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1 INTRODUCCION

El uso de recolectores de energia piezoeléctricos desde fuentes vibratorias (Erturk et. al
2009) y de geometria circular (Yang Y et. al 2018) son estudiados con alto interés debido a su
bajo costo de manutencion, su versatilidad constructiva y bajo valor de mercado. Estos
dispositivos conocidos como buzzer se construyen mediante la union de dos discos de diferente
diametro: uno de didametro mayor y de laton (sustrato) sobre el que se monta otro de didametro
menor y de material piezoeléctrico. En particular se suele adosar una masa para mejorar la
generacion de energia y para sintonizar la frecuencia de resonancia. La generacion de energia
se da por aplicacion de una tension mecanica al recolector, que al contraerse o expandirse
radialmente induce un momento flector en el actuador y provoca una deformacion transversal.
La obtencién de una solucidn analitica precisa para esas deformaciones transversales es de gran
importancia, tomando siempre en consideracion las dimensiones del actuador, las propiedades
del material y la frecuencia de resonancia (Yuanlin Hu et. al 2017).

Muchas de las soluciones analiticas parten de teorias clésicas de vibraciones de placas
lineales (Chen et. al. 2014, Reddy et. al. 2006). Estas, sin embargo, dejan de lado efectos no
lineales que juegan un rol importante en el comportamiento vibratorio del recolector, sobre todo
para altas aceleraciones de excitacion y principalmente en resonancia (Amabili M. 2008). Se
destacan entre los efectos no lineales mas estudiados los geométricos (Mak et. al. 2012),
elasticos (Joshi, 1992) y de acoplamiento electromecanico (Abdelkefi er. al. 2012).

Los autores del presente trabajo vienen estudiando de manera analitica y experimental este
tipo de resonadores con modelos lineales (Vera et. al 2022; Vera et. al 2023) y no lineales (Vera
et. al 2024). En el citado trabajo desarrollaron un modelo analitico que considera términos de
orden superior en las ecuaciones de tensiones radiales y transversales para el material
piezoeléctrico, para el desplazamiento eléctrico (Machado et. al. 2016), y modela el efecto de
amortiguamiento del tipo Rayleigh con un coeficiente de amortiguamiento no lineal. La parte
piezoeléctrica se caracteriza mediante la inclusion de coeficientes de acoplamiento
piezoeléctrico lineales y no lineales, capacidad interna e impedancias correspondientes (Stanton
et. al. 2010). La deflexion transversal del recolector, sin embargo, cumple la teoria de placa
delgada de Kirchhoff'y la no linealidad geométrica se calcula de forma aproximada.

Para el presente trabajo se propone un modelo de la deflexion transversal a través de la teoria
de placas circulares de Von-Karman (Faris W. 2003). Esta teoria permite capturar los
fendmenos no lineales geométricos en la placa de manera completa, pero con una complejidad
minima en las ecuaciones de movimiento. El modelo obtenido asi se denomina no lineal
geométrico exacto. El sistema de ecuaciones electromecénicas no lineales se obtiene desde las
ecuaciones de Lagrange, para la condicion de borde de empotramiento en toda la circunferencia.
La no linealidad geométrica requiere para su solucion de la definicion de una funcidn de tension
conocida como Funcion de Airy, la que es resuelta analiticamente para incorporarse a la
ecuacion de equilibrio transversal de la placa (Touzé et. al. 2005).

El trabajo presenta comparaciones de los resultados analiticos obtenidos con la presente
formulacion en contraste con resultados del modelo no lineal geométrico segin la teoria de
placa tipo Kirchoff (Vera, et. al. 2023) y con resultados experimentales de laboratorio para
diferentes valores de excitacion, en rangos que van desde 0,1g a 1g. La excitacion se sintoniza
a la frecuencia de resonancia del recolector, que es del orden de los 140 Hz.

La motivacién del modelo analitico no lineal propuesto es la de optimizar el dispositivo
recolector de energia de geometria circular, con un bajo costo computacional, de manera de
poder incorporarlo como dispositivo de recoleccion de energia en estaciones de sensado
auténomo de maquinas agricolas (Machado et. al. 2023).

Copyright © 2025 Asociacion Argentina de Mecanica Computacional


http://www.amcaonline.org.ar

Mecanica Computacional Vol XLII, pags. 857-866 (2025) 859

2 RECOLECTOR DE GEOMETRIA CIRCULAR

2.1 Geometria del recolector

El recolector esta construido por un disco de laton al que se le adosa un disco PZT-5H
(Figuras 1la, 1b), estando el primero empotrado a lo largo de toda su circunferencia. Sobre el
PZT-5H se coloca una masa M de acero para sintonizar la frecuencia de resonancia y optimizar
la deformacion.

ds

Figura 1 a,b). Esquema del recolector y ubicacion del eje neutro.

Las dimensiones geométricas del dispositivo son: diametro y espesor del sustrato (d,, h,),
didmetro y espesor del PZT (dp, hp), didmetro (d,,,) y altura (h,,) de la masa de oscilacion. El
contacto entre masa y PZT se materializa montando M sobre cilindros de menor diametro (d,,)

y de altura constante (h,,.). Se define como “a” a la distancia entre el eje neutro y la cota
superior "h”, tal se indica en el esquema de la Figura 1b).

2.2 Modelo analitico no lineal completo. Formulacion variacional

La teoria de Von-Karman para placas circulares supone que el desplazamiento flexional w
es del orden del espesor de la placa, y como consecuencia, la pendiente de la superficie
deformada ya no es tan pequefia como para ser desestimada. Si u(r,t), v(r,t) y w(r,t) son los
desplazamientos del plano medio y g(#) = Gcos(Q)es la excitacion armonica de la base,

tomando simetria radial el desplazamiento total de un punto genérico la seccion transversal de
la placa es (Reddy, 1999)

w U255 =V =D +() 1)
¥
Las deformaciones especificas no lineales y no nulas se calculan desde las ecuaciones
ou 1(ow) _dw u zow v 1o
E=—+-|—| "z &=———"7T"3 &y~ Tt — P
or 2\ or or r ror 2r 2o0r 2)

en tanto que las tensiones para el sustrato (S) y para el piezoeléctrico (p) en direccion radial y
transversal (Yuanlin et. al. 2017) se calculan desde

E E
o =—= (& +u055,); 0y =——(g,+0s¢,) &)
(1-0vy5) (1-vy)
1 e 1
- — (g +veg )— 31 E, + &’+v g.& |sign(e
? lel(l—uf,)(  *0y0) shd-v,) Sfll(l—uf,)[ o'+ 0,208 Jsign () (4)

e311 .
—1 E
le“(l—uf,)( +up)ggs1gn(gg) s
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e, 1
E.+
shd-v,) 7 shd-v)
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En las Ecs. (3), (4) y (5) Es, y g son el médulo de Young y el modulo de Poisson del

() _ 1
: sfl(l—z);)

2 .
(5r +Up€5)— [g,, +Up568r}51gn(£r)

)

E g , . . . , . , .
sustrato, s,; ¥ v, la flexibilidad elastica del material piezoeléctrico a campo eléctrico constante
y el modulo de Poisson del piezoeléctrico, E3 el campo eléctrico en la direccion z,, e, la

constante piezoeléctrica lineal y, SIE11 y e, el moédulo de elasticidad no lineal y la constante

piezoeléctrica no lineal, términos asociados a la no linealidad constitutiva.
La energia potencial U (de deformacion y del potencial eléctrico) para el sustrato (S) y para
el piezoeléctrico (p) se obtiene desde las expresiones

U, = I%{g,afs) +8gaés)}dVS
v,

(6)
1
U,= j E{grafp) + 8gaép)} av,— I D.E.dV
v, Y
en la que la energia del potencial eléctrico en (p) se define como
D3:d13(0'r(")+0'é”))+e§3 E3+£e (7)

Sﬁ(l—up) ’

. . , . T e . .y
siendo D3 la componente del desplazamiento eléctrico, €;; la permitividad a tension constante,

d,, la constante piezoeléctrica, y E3 el campo eléctrico en la direccidn z, cuya expresion es
(Erturk et. al. 2011)

==y ®)

La deformacion flexional w(r,t) se divide en 3 secciones (Vera et. al 2023): sustrato (7),

sustrato y piezoeléctrico (2) y masa oscilante (3). La energia cinética 7 se calcula integrando en
cada seccion como

1 . 1 . 1 .
r ZEIV} P (b +g) v, +5-[Vp p, (W, +g)dv, +E,[VS ps (i + &) v ©)

enlaque p,, ps y p, son las densidades por unidad lineal del piezoeléctrico, del sustrato y

de la masa oscilante
Reemplazando la Ec. (2) en las Ecs. (4) y (5), aplicando las Ecs. (6) y (9) y mediante el
operador de Lagrange L=T-U, se derivan las ecuaciones del movimiento desde el principio de

Hamilton
0 (oL 0 ( oL 0 (oL . . .
+ 57 +cw+cew szgn(w):O
r

5 % 5 ow' ow" 10
a(&j % (10)
ot\oV) R,

Copyright © 2025 Asociacion Argentina de Mecanica Computacional


http://www.amcaonline.org.ar

Mecanica Computacional Vol XLII, pags. 857-866 (2025) 861

expresion en la que el trabajo de las fuerzas no conservativas se lo supone en dos términos, uno
debido a la disipacidon viscosa estructural lineal del buzzer y el otro término debido a la
disipacion no lineal (Stanton et. al. 2010).

De la aplicacion de la Ec. (10) surge un sistema de tres ecuaciones diferenciales

Lo N )+ Mii=0 (I
r or
az aM@ a ' ' J "] s '
L}F (rM, ) - ™ +5(rNrw )} EI,w'[w'=rw"]|sign(w')+
EI [(6+2up)w"w'"+ ?a}’(w'")2 +(Upw'+ 3rw") wlqsign(w") (12)
—Jpngv[w'—rw"]sign(w')—]p[w'+ rw"]—Jpnrv[2w"+rWW]+Mv'{/:—Mg
va+RL+Jp[W“+rv'v"]+JpnrrW"Sign(w")+Jpngrw'W‘sign(w'):0 (13)

L
en las que aparecen los términos de rigidez no lineal piezoeléctrica (EI,y EI ,), el
acoplamiento electromecénico no lineal (J,,.y J,,5), lamasaM , y la capacidad C,, definidas
por las expresiones
B h, (4ar3 + 6a2hp + 4ah; + hz)ﬂ'(:’) +0, )
218,11, (1-0})
h,(4a’ +6a’h, +4al} + 1 )z d,  (2ah,+h)

El, = 28,,,, (1-02) , J,=27 N DT (14)

M =2rrp,; EI,

b

I ono = rze(31“jzp)(_3a2 —3ah, _hzf); S ow zf}#;)( —3a° ~3ah, ~ )

Los esfuerzos normales y los momentos flectores N,, N,, M, y M, del sustrato se definen

—

de acuerdo con las expresiones
N[

M=f

(&, +v,6, )z = I o,dz;

) +U,E Yz = I o,dz;

| (15)
(&, +v,8, )zdz —J. o,dz

(&, +v,&, )zdz = '[szz M, J.

S S

Estos esfuerzos estan acoplados con los desplazamientos u(x,¢) y w(x,?) en las Ecs. (11) y
(12). Como las frecuencias naturales longitudinales son grandes en comparacién con las
transversales, el término de inercia en el plano puede despreciarse. De esta manera se busca

desacoplar la ecuacion axial de la transversal. Para ello se define una funcién de tension F (r, t)

denominada funcion de Airy (Faris W. 2003), que cumple con las ecuaciones

2
N :laF(r,t); N9:8F(Z,t)
r or or

Reemplazando las Ecs. (15) y (16) en las Ecs. (11) y (12) queda ahora

(16)
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DSV“w—lw"F'—lw'F"— EL,w'[w'—rw"|sign(w")+
r r
EI, [(6+2up)w“w"'+ 3r(w"')2 +(Upw'+ 3rw") wlqsign(w") (17)

—Jpngv[w'— rw"]sign(w') -J, [w'+ rw"] - mev[2w"+ w" ] +Mw=-Mg
Tomando las deformaciones especificas

1
gr:ﬂ(Nr_UsNﬁ); gezE_(NH_usNr) (18)
y reemplazando las Ecs. (15) e igualdndolas con la Ec. (2) se obtiene un sistema que relaciona
uyu' con la ecuacion de compatibilidad F (r,t)

1 2 1 (1 u 1 )
u'=——(w')y +— _F'_U,F" ; i Fr—=s gt
S+ (r 5 j p Eshs( —~ j (19)

s S

Eliminando u de las Ecs. (19), se obtiene ahora la nueva ecuacion diferencial de
compatibilidad para la funcion de Airy F

r

Al haber eliminado al desplazamiento longitudinal u y tomando la Ec. (20), el problema
queda definido por un sistema de las tres ecuaciones diferenciales

DSV“w—lw“F'—lw'F"—Elngw'[w'—rw"]sign(w')Jr
r r
21
EI [(6+20p)w“w"'+ 3r(w'")2 +(Upw'+ 3rw")w1qsign(w“) -
—J oV [w'—rw"]sign(w")—J , [w'+rw"] —Jpnrv[2w"+ rw” ] + MW =-Mg
22
L LY e ) S 22
r 2
va+RL +J, [W"Jr rvi/"] + Jpnrrvi/"sign(w") + Jpngrw'vi/'sign(w') =0 (23)
L
El desplazamiento flexional w(r,t) es expandido de forma modal de acuerdo con
3
w(rt) =2 ()4 (1) (24)

en la que ¢(k),n(1’)son los n» modos normales de vibracion de cada seccidon (i) y q(t) es el

desplazamiento temporal. Los modos se determinan segun (Vera et. al. 2023) y responden a
b0 (r)=AJ,(Br)+BY,(Br)+Cl (Br)+DK,(Br); =123 (25)

La normalizacion de ¢, (7)respecto de la masa se calcula a través de la integral en tres

tramos
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=27 U: m @’ (r)rdr+ J: m,@; (rYrdr + j: mg; (r)rdr} (26)

Para la solucién particular de la Ec. (22) se propone una funcién F (r,t) expandida de la

forma

F(r.)=o(r)q (1) 27)
en la que (p(r) es un modo de placa circular para la condicion de borde del problema, y ¢~ (t)

una funcién del tiempo. Reemplazando la Ec. (27) en la Ec. (22), resolviendo F (r,t),

introduciendo esta solucion en (21) y normalizando, se llega ahora al sistema

§(1)+o*q(1)+E&q(t)— KNg* ( szgn[q ] v(t)80,-0,v(t)q(t)sign(q)

—KGNLq ( )+C q( ) szgn[ } —Mgg (28)

M oS a(0) 6,4(0) v (1) (1) sign g (1)] =0

L P

Las nuevas constantes de la Ec.(28) se definen segun las expresiones
1 1 2
602 — J.K¢(r)[r_3¢v(r)_r_2¢n(r)+;¢m(r)+¢1V (7"):|dl”,

E.h

KG,, =%J‘gb(r)[%ﬁ'(r)q)'(r)ﬁL%¢'(r)go"(r)}dr;
KN = [EL,g(r)[ ¢'(r)=r"(r)]sign(¢'(r))dr+
[EL,8(r)[(6+20,)8"(r)$"(r)+3r¢™ (r)+(0,8'(r)+3r¢"(r)) 8" (r) |sign(¢"(r))dr;
0,=[J,(8'(r)+r¢"(r))dr;
0, = [ (20" 16" )sign(@" (1)) +J .0 (¢'=r9") sign (9" (r)) Jdrs
C, = [(r) 28,0sign(p(r))dr; M, =27rp, |4 (r)dr
V= [[ 8" (r)sign(8"(r))+ 7 ,.0r9'(r) sign(¢'(r)) ]ar.

(29)

en la que KG,, es la rigidez no lineal geométrica completa. Los coeficientes KN (rigidez no
lineal constitutiva), C, (amortiguamiento no lineal), & , (acoplamiento no lineal geométrico),

pn (acoplamiento no lineal constitutivo mecanico), ¥, (acoplamiento no lineal eléctrico) y @
(rigidez normalizada del dispositivo) ya fueron obtenidos por los autores en (Vera et. al. 2024).

3 RESULTADOS

Se realizaron comparaciones del modelo completo con valores experimentales y con un
modelo analitico no lineal (Vera et. al. 2024), que, a diferencia del modelo completo, calcula

KG,, no por la expresion indicada en la Ec. (29), sino seglin la expresion aproximada

KGNL—HZ—DI (r)[#'(r)+3¢"(r)dr (30)
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La Tabla 1 indica las dimensiones del dispositivo y en la Tabla 2 las constantes mecanicas
y eléctricas. Experimentalmente se realizaron barridos en frecuencia entre 130 Hz'y 170 Hz con
excitacion en unidades de g = 9.80 m/s? (0.1g, 0.2g, 0.8g y 1.0g), resistencia R = 9.1 kQ,
amortiguamiento lineal & =0.1, y no lineal &, =0.016

dm hm dcm hcm dS hS dp hp

1325mm 7mm 6mm 6mm 36mm O.Ilmm 23.5mm 0.1 mm

Tabla 1: dimensiones geométricas del dispositivo

E E
Es Ps Vs Co Si Pp ds1 St
97 GPa 7850 kg/lem® 0.31 8.1510"Fa 62.3GPa 7500 kg/cm® 125 10>)C/m> -2.685 10'%1/Pa

Tabla 2: valores mecanicos y eléctricos del dispositivo

La sefial de entrada se genera en un equipo Rigol DG4062, se amplifica e ingresa a un shaker
Labworks ET-132. La respuesta se mide con un acelerémetro PCB Piezotronics (sensibilidad
de 98.7 mV/g) y es adquirida por una placa National Instruments NI 9234 para ser
postprocesada mediante un codigo propio en Matlab.

Las Figuras 4 (a, b, ¢, d) comparan curvas de generacion entre los modelos no lineales y
experimentales.

Aceleracién 0.1g Aceleracidén 0.2g

—— No lineal aproximado —— No lineal aproximado

1.5¢ o No lineal completo o No lineal completo

00 ® Experimental >

® Experimental

Voltaje|—

. L L L 0.0 L L L
130 140 150 160 170 130 140 150 160 170

Frecuencia[Hz]

a)

Frecuencia[Hz]

b)

Figuras 4 a, b). Respuesta en frecuencia para aceleracion 0.1g (a) y 0.2g (b)

Aceleracidén 0.8g

%9 o No lineal completo

® Experimental

—— No lineal aproximado

° I I I
130 140 150 160 170

Frecuencia[Hz]

©)

Aceleracidn 1g
10 T

—— No lineal aproximado

o No lineal completo

® Experimental

0 L L L
130 140 150 160 170

Frecuencia[Hz]

d)

Figura 4 c y d). Respuesta en frecuencia para aceleracion 0.8g (¢) y 1g (d)

Para bajas aceleraciones (0.1g y 0.2g) se observa que ambos modelos ajustan con los valores
experimentales, tanto en resonancia como fuera de resonancia, 141 Hz, lo que indica una muy
buena prediccion con lo obtenido en laboratorio. Los valores de generacion para estos casos
son del orden de 1 V y 2 V respectivamente, Figuras 4a) y 4b).
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Para altas aceleraciones (0.8g y 1g) los resultados experimentales muestran un efecto
Softening, con un corrimiento de frecuencia hacia la izquierda. Este comportamiento es
capturado exitosamente por el modelo no lineal completo, con valores maximos de generacion
en 138.65 Hz y 137.4 Hz para 0.8g y 1g respectivamente. Sin embargo, el modelo no lineal
aproximado no presenta la curvatura Softening necesaria para ajustar con los valores
experimentales, presentando valores de generacion pico en 141 Hz. Como se aprecia en las
Figuras 4c) y 4d) se mantienen los valores maximos de generacion (del orden de los 5.6 Volts
para 0.8g y 5.65 para 1g), pero la diferencia en la curvatura de la respuesta en frecuencia difiere
en los valores de frecuencia para los valores picos.

4 CONCLUSIONES

Se ha desarrollado un modelo analitico no lineal de recolector piezoeléctrico de geometria
circular, basado en la teoria clasica de pacas de Von — Karman, la cual permite capturar la
influencia en la generacion de la no linealidad geométrica asociada a grandes desplazamientos
en la dinamica del recolector. El modelo es una mejora del presentado por los autores con
anterioridad, en la que los efectos no lineales geométricos se calculaban de manera aproximada
y la teoria de placas circulares respondia al modelo de placas de Kirchoft.

La importancia de considerar los efectos no lineales radica en la limitacion de los modelos
lineales a la hora de predecir la generacion de energia para altas aceleraciones. El presente
modelo captura con mayor precision el efecto de curvatura de la respuesta en frecuencia
provocada por el efecto geométrico no lineal. En este caso en particular existe una competencia
entre el efecto Harding provocado por el efecto geométrico no lineal y el efecto softening
provocado por la no linealidad constitutiva del material piezoeléctrico. Al considerar un modelo
no lineal aproximado se sobre estima la rigidez geométrica no lineal, lo que se traduce en una
disminucién del efecto softening. Para bajas aceleraciones hay coincidencia entre las
predicciones entre ambos modelos, debido a que los efectos no lineales, geométricos y
constitutivos, influyen de menor manera en la respuesta dindmica del recolector de energia.
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